Next: , Previous: , Up: Top   [Contents][Index]

15 Special Functions


Next: , Previous: , Up: Special Functions   [Contents][Index]

15.1 Introduction to Special Functions

Special function notation follows:

bessel_j (index, expr)         Bessel function, 1st kind
bessel_y (index, expr)         Bessel function, 2nd kind
bessel_i (index, expr)         Modified Bessel function, 1st kind
bessel_k (index, expr)         Modified Bessel function, 2nd kind

hankel_1 (v,z)                 Hankel function of the 1st kind
hankel_2 (v,z)                 Hankel function of the 2nd kind
struve_h (v,z)                 Struve H function
struve_l (v,z)                 Struve L function

assoc_legendre_p[v,u] (z)      Legendre function of degree v and order u 
assoc_legendre_q[v,u] (z)      Legendre function, 2nd kind

%f[p,q] ([], [], expr)         Generalized Hypergeometric function
gamma (z)                      Gamma function
gamma_incomplete_lower (a,z)   Lower incomplete gamma function
gamma_incomplete (a,z)         Tail of incomplete gamma function
hypergeometric (l1, l2, z)     Hypergeometric function
slommel
%m[u,k] (z)                    Whittaker function, 1st kind
%w[u,k] (z)                    Whittaker function, 2nd kind
erfc (z)                       Complement of the erf function

expintegral_e (v,z)            Exponential integral E
expintegral_e1 (z)             Exponential integral E1
expintegral_ei (z)             Exponential integral Ei
expintegral_li (z)             Logarithmic integral Li
expintegral_si (z)             Exponential integral Si
expintegral_ci (z)             Exponential integral Ci
expintegral_shi (z)            Exponential integral Shi
expintegral_chi (z)            Exponential integral Chi

kelliptic (z)                  Complete elliptic integral of the first 
                               kind (K)
parabolic_cylinder_d (v,z)     Parabolic cylinder D function

Categories:  Bessel functions Airy functions Special functions


Next: , Previous: , Up: Special Functions   [Contents][Index]

15.2 Bessel Functions

Function: bessel_j (v, z)

The Bessel function of the first kind of order v and argument z.

bessel_j is defined as

                inf
                ====       k  - v - 2 k  v + 2 k
                \     (- 1)  2          z
                 >    --------------------------
                /        k! gamma(v + k + 1)
                ====
                k = 0

although the infinite series is not used for computations.

Function: bessel_y (v, z)

The Bessel function of the second kind of order v and argument z.

bessel_y is defined as

              cos(%pi v) bessel_j(v, z) - bessel_j(-v, z)
              -------------------------------------------
                             sin(%pi v)

when v is not an integer. When v is an integer n, the limit as v approaches n is taken.

Function: bessel_i (v, z)

The modified Bessel function of the first kind of order v and argument z.

bessel_i is defined as

                    inf
                    ====   - v - 2 k  v + 2 k
                    \     2          z
                     >    -------------------
                    /     k! gamma(v + k + 1)
                    ====
                    k = 0

although the infinite series is not used for computations.

Function: bessel_k (v, z)

The modified Bessel function of the second kind of order v and argument z.

bessel_k is defined as

           %pi csc(%pi v) (bessel_i(-v, z) - bessel_i(v, z))
           -------------------------------------------------
                                  2

when v is not an integer. If v is an integer n, then the limit as v approaches n is taken.

Function: hankel_1 (v, z)

The Hankel function of the first kind of order v and argument z (A&S 9.1.3). hankel_1 is defined as

   bessel_j(v,z) + %i * bessel_y(v,z)

Maxima evaluates hankel_1 numerically for a complex order v and complex argument z in float precision. The numerical evaluation in bigfloat precision is not supported.

When besselexpand is true, hankel_1 is expanded in terms of elementary functions when the order v is half of an odd integer. See besselexpand.

Maxima knows the derivative of hankel_1 wrt the argument z.

Examples:

Numerical evaluation:

(%i1) hankel_1(1,0.5);
(%o1)        0.24226845767487 - 1.471472392670243 %i
(%i2) hankel_1(1,0.5+%i);
(%o2)       - 0.25582879948621 %i - 0.23957560188301

Expansion of hankel_1 when besselexpand is true:

(%i1) hankel_1(1/2,z),besselexpand:true;
               sqrt(2) sin(z) - sqrt(2) %i cos(z)
(%o1)          ----------------------------------
                       sqrt(%pi) sqrt(z)

Derivative of hankel_1 wrt the argument z. The derivative wrt the order v is not supported. Maxima returns a noun form:

(%i1) diff(hankel_1(v,z),z);
             hankel_1(v - 1, z) - hankel_1(v + 1, z)
(%o1)        ---------------------------------------
                                2
(%i2) diff(hankel_1(v,z),v);
                       d
(%o2)                  -- (hankel_1(v, z))
                       dv

Function: hankel_2 (v, z)

The Hankel function of the second kind of order v and argument z (A&S 9.1.4). hankel_2 is defined as

   bessel_j(v,z) - %i * bessel_y(v,z)

Maxima evaluates hankel_2 numerically for a complex order v and complex argument z in float precision. The numerical evaluation in bigfloat precision is not supported.

When besselexpand is true, hankel_2 is expanded in terms of elementary functions when the order v is half of an odd integer. See besselexpand.

Maxima knows the derivative of hankel_2 wrt the argument z.

For examples see hankel_1.

Option variable: besselexpand

Default value: false

Controls expansion of the Bessel functions when the order is half of an odd integer. In this case, the Bessel functions can be expanded in terms of other elementary functions. When besselexpand is true, the Bessel function is expanded.

(%i1) besselexpand: false$
(%i2) bessel_j (3/2, z);
                                    3
(%o2)                      bessel_j(-, z)
                                    2
(%i3) besselexpand: true$
(%i4) bessel_j (3/2, z);
                                        sin(z)   cos(z)
                       sqrt(2) sqrt(z) (------ - ------)
                                           2       z
                                          z
(%o4)                  ---------------------------------
                                   sqrt(%pi)

Function: scaled_bessel_i (v, z)

The scaled modified Bessel function of the first kind of order v and argument z. That is, scaled_bessel_i(v,z) = exp(-abs(z))*bessel_i(v, z). This function is particularly useful for calculating bessel_i for large z, which is large. However, maxima does not otherwise know much about this function. For symbolic work, it is probably preferable to work with the expression exp(-abs(z))*bessel_i(v, z).

Categories:  Bessel functions

Function: scaled_bessel_i0 (z)

Identical to scaled_bessel_i(0,z).

Function: scaled_bessel_i1 (z)

Identical to scaled_bessel_i(1,z).

Function: %s [u,v] (z)

Lommel’s little s[u,v](z) function. Probably Gradshteyn & Ryzhik 8.570.1.


Next: , Previous: , Up: Special Functions   [Contents][Index]

15.3 Airy Functions

The Airy functions Ai(x) and Bi(x) are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Section 10.4.

y = Ai(x) and y = Bi(x) are two linearly independent solutions of the Airy differential equation diff (y(x), x, 2) - x y(x) = 0.

If the argument x is a real or complex floating point number, the numerical value of the function is returned.

Function: airy_ai (x)

The Airy function Ai(x). (A&S 10.4.2)

The derivative diff (airy_ai(x), x) is airy_dai(x).

See also airy_bi, airy_dai, airy_dbi.

Function: airy_dai (x)

The derivative of the Airy function Ai airy_ai(x).

See airy_ai.

Function: airy_bi (x)

The Airy function Bi(x). (A&S 10.4.3)

The derivative diff (airy_bi(x), x) is airy_dbi(x).

See airy_ai, airy_dbi.

Function: airy_dbi (x)

The derivative of the Airy Bi function airy_bi(x).

See airy_ai and airy_bi.


Next: , Previous: , Up: Special Functions   [Contents][Index]

15.4 Gamma and factorial Functions

The gamma function and the related beta, psi and incomplete gamma functions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Chapter 6.

Function: bffac (expr, n)

Bigfloat version of the factorial (shifted gamma) function. The second argument is how many digits to retain and return, it’s a good idea to request a couple of extra.

Function: bfpsi (n, z, fpprec)
Function: bfpsi0 (z, fpprec)

bfpsi is the polygamma function of real argument z and integer order n. bfpsi0 is the digamma function. bfpsi0 (z, fpprec) is equivalent to bfpsi (0, z, fpprec).

These functions return bigfloat values. fpprec is the bigfloat precision of the return value.

Function: cbffac (z, fpprec)

Complex bigfloat factorial.

load ("bffac") loads this function.

Function: gamma (z)

The basic definition of the gamma function (A&S 6.1.1) is

                         inf
                        /
                        [     z - 1   - t
             gamma(z) = I    t      %e    dt
                        ]
                        /
                         0

Maxima simplifies gamma for positive integer and positive and negative rational numbers. For half integral values the result is a rational number times sqrt(%pi). The simplification for integer values is controlled by factlim. For integers greater than factlim the numerical result of the factorial function, which is used to calculate gamma, will overflow. The simplification for rational numbers is controlled by gammalim to avoid internal overflow. See factlim and gammalim.

For negative integers gamma is not defined.

Maxima can evalute gamma numerically for real and complex values in float and bigfloat precision.

gamma has mirror symmetry.

When gamma_expand is true, Maxima expands gamma for arguments z+n and z-n where n is an integer.

Maxima knows the derivate of gamma.

Examples:

Simplification for integer, half integral, and rational numbers:

(%i1) map('gamma,[1,2,3,4,5,6,7,8,9]);
(%o1)        [1, 1, 2, 6, 24, 120, 720, 5040, 40320]
(%i2) map('gamma,[1/2,3/2,5/2,7/2]);
                    sqrt(%pi)  3 sqrt(%pi)  15 sqrt(%pi)
(%o2)   [sqrt(%pi), ---------, -----------, ------------]
                        2           4            8
(%i3) map('gamma,[2/3,5/3,7/3]);
                                  2           1
                          2 gamma(-)  4 gamma(-)
                      2           3           3
(%o3)          [gamma(-), ----------, ----------]
                      3       3           9

Numerical evaluation for real and complex values:

(%i4) map('gamma,[2.5,2.5b0]);
(%o4)     [1.329340388179137, 1.3293403881791370205b0]
(%i5) map('gamma,[1.0+%i,1.0b0+%i]);
(%o5) [0.498015668118356 - .1549498283018107 %i, 
          4.9801566811835604272b-1 - 1.5494982830181068513b-1 %i]

gamma has mirror symmetry:

(%i6) declare(z,complex)$
(%i7) conjugate(gamma(z));
(%o7)                  gamma(conjugate(z))

Maxima expands gamma(z+n) and gamma(z-n), when gamma_expand is true:

(%i8) gamma_expand:true$

(%i9) [gamma(z+1),gamma(z-1),gamma(z+2)/gamma(z+1)];
                               gamma(z)
(%o9)             [z gamma(z), --------, z + 1]
                                z - 1

The deriviative of gamma:

(%i10) diff(gamma(z),z);
(%o10)                  psi (z) gamma(z)
                           0

See also makegamma.

The Euler-Mascheroni constant is %gamma.

Function: log_gamma (z)

The natural logarithm of the gamma function.

Function: gamma_incomplete_lower (a, z)

The lower incomplete gamma function (A&S 6.5.2):

                                    z
                                   /
                                   [  a - 1   - t
    gamma_incomplete_lower(a, z) = I t      %e    dt
                                   ]
                                   /
                                    0

See also gamma_incomplete (upper incomplete gamma function).

Function: gamma_incomplete (a, z)

The incomplete upper gamma function (A&S 6.5.3):

                              inf
                             /
                             [     a - 1   - t
    gamma_incomplete(a, z) = I    t      %e    dt
                             ]
                             /
                              z

See also gamma_expand for controlling how gamma_incomplete is expressed in terms of elementary functions and erfc.

Also see the related functions gamma_incomplete_regularized and gamma_incomplete_generalized.

Function: gamma_incomplete_regularized (a, z)

The regularized incomplete upper gamma function (A&S 6.5.1):

gamma_incomplete_regularized(a, z) = 
                                        gamma_incomplete(a, z)
                                        ----------------------
                                               gamma(a)

See also gamma_expand for controlling how gamma_incomplete is expressed in terms of elementary functions and erfc.

Also see gamma_incomplete.

Function: gamma_incomplete_generalized (a, z1, z1)

The generalized incomplete gamma function.

gamma_incomplete_generalized(a, z1, z2) = 
                                               z2
                                              /
                                              [    a - 1   - t
                                              I   t      %e    dt
                                              ]
                                              /
                                               z1

Also see gamma_incomplete and gamma_incomplete_regularized.

Option variable: gamma_expand

Default value: false

gamma_expand controls expansion of gamma_incomplete. When gamma_expand is true, gamma_incomplete(v,z) is expanded in terms of z, exp(z), and erfc(z) when possible.

(%i1) gamma_incomplete(2,z);
(%o1)                       gamma_incomplete(2, z)
(%i2) gamma_expand:true;
(%o2)                                true
(%i3) gamma_incomplete(2,z);
                                           - z
(%o3)                            (z + 1) %e
(%i4) gamma_incomplete(3/2,z);
                              - z   sqrt(%pi) erfc(sqrt(z))
(%o4)               sqrt(z) %e    + -----------------------
                                               2

Option variable: gammalim

Default value: 10000

gammalim controls simplification of the gamma function for integral and rational number arguments. If the absolute value of the argument is not greater than gammalim, then simplification will occur. Note that the factlim switch controls simplification of the result of gamma of an integer argument as well.

Function: makegamma (expr)

Transforms instances of binomial, factorial, and beta functions in expr into gamma functions.

See also makefact.

Function: beta (a, b)

The beta function is defined as gamma(a) gamma(b)/gamma(a+b) (A&S 6.2.1).

Maxima simplifies the beta function for positive integers and rational numbers, which sum to an integer. When beta_args_sum_to_integer is true, Maxima simplifies also general expressions which sum to an integer.

For a or b equal to zero the beta function is not defined.

In general the beta function is not defined for negative integers as an argument. The exception is for a=-n, n a positive integer and b a positive integer with b<=n, it is possible to define an analytic continuation. Maxima gives for this case a result.

When beta_expand is true, expressions like beta(a+n,b) and beta(a-n,b) or beta(a,b+n) and beta(a,b-n) with n an integer are simplified.

Maxima can evaluate the beta function for real and complex values in float and bigfloat precision. For numerical evaluation Maxima uses log_gamma:

           - log_gamma(b + a) + log_gamma(b) + log_gamma(a)
         %e

Maxima knows that the beta function is symmetric and has mirror symmetry.

Maxima knows the derivatives of the beta function with respect to a or b.

To express the beta function as a ratio of gamma functions see makegamma.

Examples:

Simplification, when one of the arguments is an integer:

(%i1) [beta(2,3),beta(2,1/3),beta(2,a)];
                               1   9      1
(%o1)                         [--, -, ---------]
                               12  4  a (a + 1)

Simplification for two rational numbers as arguments which sum to an integer:

(%i2) [beta(1/2,5/2),beta(1/3,2/3),beta(1/4,3/4)];
                          3 %pi   2 %pi
(%o2)                    [-----, -------, sqrt(2) %pi]
                            8    sqrt(3)

When setting beta_args_sum_to_integer to true more general expression are simplified, when the sum of the arguments is an integer:

(%i3) beta_args_sum_to_integer:true$
(%i4) beta(a+1,-a+2);
                                %pi (a - 1) a
(%o4)                         ------------------
                              2 sin(%pi (2 - a))

The possible results, when one of the arguments is a negative integer:

(%i5) [beta(-3,1),beta(-3,2),beta(-3,3)];
                                    1  1    1
(%o5)                            [- -, -, - -]
                                    3  6    3

beta(a+n,b) or beta(a-n) with n an integer simplifies when beta_expand is true:

(%i6) beta_expand:true$
(%i7) [beta(a+1,b),beta(a-1,b),beta(a+1,b)/beta(a,b+1)];
                    a beta(a, b)  beta(a, b) (b + a - 1)  a
(%o7)              [------------, ----------------------, -]
                       b + a              a - 1           b

Beta is not defined, when one of the arguments is zero:

(%i7) beta(0,b);
beta: expected nonzero arguments; found 0, b
 -- an error.  To debug this try debugmode(true);

Numercial evaluation for real and complex arguments in float or bigfloat precision:

(%i8) beta(2.5,2.3);
(%o8) .08694748611299981

(%i9) beta(2.5,1.4+%i);
(%o9) 0.0640144950796695 - .1502078053286415 %i

(%i10) beta(2.5b0,2.3b0);
(%o10) 8.694748611299969b-2

(%i11) beta(2.5b0,1.4b0+%i);
(%o11) 6.401449507966944b-2 - 1.502078053286415b-1 %i

Beta is symmetric and has mirror symmetry:

(%i14) beta(a,b)-beta(b,a);
(%o14)                                 0
(%i15) declare(a,complex,b,complex)$
(%i16) conjugate(beta(a,b));
(%o16)                 beta(conjugate(a), conjugate(b))

The derivative of the beta function wrt a:

(%i17) diff(beta(a,b),a);
(%o17)               - beta(a, b) (psi (b + a) - psi (a))
                                      0             0

Function: beta_incomplete (a, b, z)

The basic definition of the incomplete beta function (A&S 6.6.1) is

        z
       /
       [         b - 1  a - 1
       I  (1 - t)      t      dt
       ]
       /
        0

This definition is possible for realpart(a)>0 and realpart(b)>0 and abs(z)<1. For other values the incomplete beta function can be defined through a generalized hypergeometric function:

   gamma(a) hypergeometric_generalized([a, 1 - b], [a + 1], z) z

(See functions.wolfram.com for a complete definition of the incomplete beta function.)

For negative integers a = -n and positive integers b=m with m<=n the incomplete beta function is defined through

                            m - 1           k
                            ====  (1 - m)  z
                      n - 1 \            k
                     z       >    -----------
                            /     k! (n - k)
                            ====
                            k = 0

Maxima uses this definition to simplify beta_incomplete for a a negative integer.

For a a positive integer, beta_incomplete simplifies for any argument b and z and for b a positive integer for any argument a and z, with the exception of a a negative integer.

For z=0 and realpart(a)>0, beta_incomplete has the specific value zero. For z=1 and realpart(b)>0, beta_incomplete simplifies to the beta function beta(a,b).

Maxima evaluates beta_incomplete numerically for real and complex values in float or bigfloat precision. For the numerical evaluation an expansion of the incomplete beta function in continued fractions is used.

When the option variable beta_expand is true, Maxima expands expressions like beta_incomplete(a+n,b,z) and beta_incomplete(a-n,b,z) where n is a positive integer.

Maxima knows the derivatives of beta_incomplete with respect to the variables a, b and z and the integral with respect to the variable z.

Examples:

Simplification for a a positive integer:

(%i1) beta_incomplete(2,b,z);
                                       b
                            1 - (1 - z)  (b z + 1)
(%o1)                       ----------------------
                                  b (b + 1)

Simplification for b a positive integer:

(%i2) beta_incomplete(a,2,z);
                                               a
                              (a (1 - z) + 1) z
(%o2)                         ------------------
                                  a (a + 1)

Simplification for a and b a positive integer:

(%i3) beta_incomplete(3,2,z);
                                               3
                              (3 (1 - z) + 1) z
(%o3)                         ------------------
                                      12

a is a negative integer and b<=(-a), Maxima simplifies:

(%i4) beta_incomplete(-3,1,z);
                                       1
(%o4)                              - ----
                                        3
                                     3 z

For the specific values z=0 and z=1, Maxima simplifies:

(%i5) assume(a>0,b>0)$
(%i6) beta_incomplete(a,b,0);
(%o6)                                 0
(%i7) beta_incomplete(a,b,1);
(%o7)                            beta(a, b)

Numerical evaluation in float or bigfloat precision:

(%i8) beta_incomplete(0.25,0.50,0.9);
(%o8)                          4.594959440269333
(%i9)  fpprec:25$
(%i10) beta_incomplete(0.25,0.50,0.9b0);
(%o10)                    4.594959440269324086971203b0

For abs(z)>1 beta_incomplete returns a complex result:

(%i11) beta_incomplete(0.25,0.50,1.7);
(%o11)              5.244115108584249 - 1.45518047787844 %i

Results for more general complex arguments:

(%i14) beta_incomplete(0.25+%i,1.0+%i,1.7+%i);
(%o14)             2.726960675662536 - .3831175704269199 %i
(%i15) beta_incomplete(1/2,5/4*%i,2.8+%i);
(%o15)             13.04649635168716 %i - 5.802067956270001
(%i16) 

Expansion, when beta_expand is true:

(%i23) beta_incomplete(a+1,b,z),beta_expand:true;
                                                       b  a
                   a beta_incomplete(a, b, z)   (1 - z)  z
(%o23)             -------------------------- - -----------
                             b + a                 b + a

(%i24) beta_incomplete(a-1,b,z),beta_expand:true;
                                                           b  a - 1
           beta_incomplete(a, b, z) (- b - a + 1)   (1 - z)  z
(%o24)     -------------------------------------- - ---------------
                           1 - a                         1 - a

Derivative and integral for beta_incomplete:

(%i34) diff(beta_incomplete(a, b, z), z);
                              b - 1  a - 1
(%o34)                 (1 - z)      z
(%i35) integrate(beta_incomplete(a, b, z), z);
              b  a
       (1 - z)  z
(%o35) ----------- + beta_incomplete(a, b, z) z
          b + a
                                       a beta_incomplete(a, b, z)
                                     - --------------------------
                                                 b + a
(%i36) factor(diff(%, z));
(%o36)              beta_incomplete(a, b, z)

Function: beta_incomplete_regularized (a, b, z)

The regularized incomplete beta function (A&S 6.6.2), defined as

beta_incomplete_regularized(a, b, z) = 
                                      beta_incomplete(a, b, z)
                                      ------------------------
                                             beta(a, b)

As for beta_incomplete this definition is not complete. See functions.wolfram.com for a complete definition of beta_incomplete_regularized.

beta_incomplete_regularized simplifies a or b a positive integer.

For z=0 and realpart(a)>0, beta_incomplete_regularized has the specific value 0. For z=1 and realpart(b)>0, beta_incomplete_regularized simplifies to 1.

Maxima can evaluate beta_incomplete_regularized for real and complex arguments in float and bigfloat precision.

When beta_expand is true, Maxima expands beta_incomplete_regularized for arguments a+n or a-n, where n is an integer.

Maxima knows the derivatives of beta_incomplete_regularized with respect to the variables a, b, and z and the integral with respect to the variable z.

Examples:

Simplification for a or b a positive integer:

(%i1) beta_incomplete_regularized(2,b,z);
                                       b
(%o1)                       1 - (1 - z)  (b z + 1)

(%i2) beta_incomplete_regularized(a,2,z);
                                               a
(%o2)                         (a (1 - z) + 1) z

(%i3) beta_incomplete_regularized(3,2,z);
                                               3
(%o3)                         (3 (1 - z) + 1) z

For the specific values z=0 and z=1, Maxima simplifies:

(%i4) assume(a>0,b>0)$
(%i5) beta_incomplete_regularized(a,b,0);
(%o5)                                 0
(%i6) beta_incomplete_regularized(a,b,1);
(%o6)                                 1

Numerical evaluation for real and complex arguments in float and bigfloat precision:

(%i7) beta_incomplete_regularized(0.12,0.43,0.9);
(%o7)                         .9114011367359802
(%i8) fpprec:32$
(%i9) beta_incomplete_regularized(0.12,0.43,0.9b0);
(%o9)               9.1140113673598075519946998779975b-1
(%i10) beta_incomplete_regularized(1+%i,3/3,1.5*%i);
(%o10)             .2865367499935403 %i - 0.122995963334684
(%i11) fpprec:20$
(%i12) beta_incomplete_regularized(1+%i,3/3,1.5b0*%i);
(%o12)      2.8653674999354036142b-1 %i - 1.2299596333468400163b-1

Expansion, when beta_expand is true:

(%i13) beta_incomplete_regularized(a+1,b,z);
                                                     b  a
                                              (1 - z)  z
(%o13) beta_incomplete_regularized(a, b, z) - ------------
                                              a beta(a, b)
(%i14) beta_incomplete_regularized(a-1,b,z);
(%o14) beta_incomplete_regularized(a, b, z)
                                                     b  a - 1
                                              (1 - z)  z
                                         - ----------------------
                                           beta(a, b) (b + a - 1)

The derivative and the integral wrt z:

(%i15) diff(beta_incomplete_regularized(a,b,z),z);
                              b - 1  a - 1
                       (1 - z)      z
(%o15)                 -------------------
                           beta(a, b)
(%i16) integrate(beta_incomplete_regularized(a,b,z),z);
(%o16) beta_incomplete_regularized(a, b, z) z
                                                           b  a
                                                    (1 - z)  z
          a (beta_incomplete_regularized(a, b, z) - ------------)
                                                    a beta(a, b)
        - -------------------------------------------------------
                                   b + a

Function: beta_incomplete_generalized (a, b, z1, z2)

The basic definition of the generalized incomplete beta function is

             z2
           /
           [          b - 1  a - 1
           I   (1 - t)      t      dt
           ]
           /
            z1

Maxima simplifies beta_incomplete_regularized for a and b a positive integer.

For realpart(a)>0 and z1=0 or z2=0, Maxima simplifies beta_incomplete_generalized to beta_incomplete. For realpart(b)>0 and z1=1 or z2=1, Maxima simplifies to an expression with beta and beta_incomplete.

Maxima evaluates beta_incomplete_regularized for real and complex values in float and bigfloat precision.

When beta_expand is true, Maxima expands beta_incomplete_generalized for a+n and a-n, n a positive integer.

Maxima knows the derivative of beta_incomplete_generalized with respect to the variables a, b, z1, and z2 and the integrals with respect to the variables z1 and z2.

Examples:

Maxima simplifies beta_incomplete_generalized for a and b a positive integer:

(%i1) beta_incomplete_generalized(2,b,z1,z2);
                   b                      b
           (1 - z1)  (b z1 + 1) - (1 - z2)  (b z2 + 1)
(%o1)      -------------------------------------------
                            b (b + 1)
(%i2) beta_incomplete_generalized(a,2,z1,z2);
                              a                      a
           (a (1 - z2) + 1) z2  - (a (1 - z1) + 1) z1
(%o2)      -------------------------------------------
                            a (a + 1)
(%i3) beta_incomplete_generalized(3,2,z1,z2);
              2      2                       2      2
      (1 - z1)  (3 z1  + 2 z1 + 1) - (1 - z2)  (3 z2  + 2 z2 + 1)
(%o3) -----------------------------------------------------------
                                  12

Simplification for specific values z1=0, z2=0, z1=1, or z2=1:

(%i4) assume(a > 0, b > 0)$
(%i5) beta_incomplete_generalized(a,b,z1,0);
(%o5)                    - beta_incomplete(a, b, z1)

(%i6) beta_incomplete_generalized(a,b,0,z2);
(%o6)                    - beta_incomplete(a, b, z2)

(%i7) beta_incomplete_generalized(a,b,z1,1);
(%o7)              beta(a, b) - beta_incomplete(a, b, z1)

(%i8) beta_incomplete_generalized(a,b,1,z2);
(%o8)              beta_incomplete(a, b, z2) - beta(a, b)

Numerical evaluation for real arguments in float or bigfloat precision:

(%i9) beta_incomplete_generalized(1/2,3/2,0.25,0.31);
(%o9)                        .09638178086368676

(%i10) fpprec:32$
(%i10) beta_incomplete_generalized(1/2,3/2,0.25,0.31b0);
(%o10)               9.6381780863686935309170054689964b-2

Numerical evaluation for complex arguments in float or bigfloat precision:

(%i11) beta_incomplete_generalized(1/2+%i,3/2+%i,0.25,0.31);
(%o11)           - .09625463003205376 %i - .003323847735353769
(%i12) fpprec:20$
(%i13) beta_incomplete_generalized(1/2+%i,3/2+%i,0.25,0.31b0);
(%o13)     - 9.6254630032054178691b-2 %i - 3.3238477353543591914b-3

Expansion for a+n or a-n, n a positive integer, when beta_expand is true:

(%i14) beta_expand:true$

(%i15) beta_incomplete_generalized(a+1,b,z1,z2);

               b   a           b   a
       (1 - z1)  z1  - (1 - z2)  z2
(%o15) -----------------------------
                   b + a
                      a beta_incomplete_generalized(a, b, z1, z2)
                    + -------------------------------------------
                                         b + a
(%i16) beta_incomplete_generalized(a-1,b,z1,z2);

       beta_incomplete_generalized(a, b, z1, z2) (- b - a + 1)
(%o16) -------------------------------------------------------
                                1 - a
                                    b   a - 1           b   a - 1
                            (1 - z2)  z2      - (1 - z1)  z1
                          - -------------------------------------
                                            1 - a

Derivative wrt the variable z1 and integrals wrt z1 and z2:

(%i17) diff(beta_incomplete_generalized(a,b,z1,z2),z1);
                               b - 1   a - 1
(%o17)               - (1 - z1)      z1
(%i18) integrate(beta_incomplete_generalized(a,b,z1,z2),z1);
(%o18) beta_incomplete_generalized(a, b, z1, z2) z1
                                  + beta_incomplete(a + 1, b, z1)
(%i19) integrate(beta_incomplete_generalized(a,b,z1,z2),z2);
(%o19) beta_incomplete_generalized(a, b, z1, z2) z2
                                  - beta_incomplete(a + 1, b, z2)

Option variable: beta_expand

Default value: false

When beta_expand is true, beta(a,b) and related functions are expanded for arguments like a+n or a-n, where n is an integer.

Option variable: beta_args_sum_to_integer

Default value: false

When beta_args_sum_to_integer is true, Maxima simplifies beta(a,b), when the arguments a and b sum to an integer.

Function: psi [n](x)

The derivative of log (gamma (x)) of order n+1. Thus, psi[0](x) is the first derivative, psi[1](x) is the second derivative, etc.

Maxima does not know how, in general, to compute a numerical value of psi, but it can compute some exact values for rational args. Several variables control what range of rational args psi will return an exact value, if possible. See maxpsiposint, maxpsinegint, maxpsifracnum, and maxpsifracdenom. That is, x must lie between maxpsinegint and maxpsiposint. If the absolute value of the fractional part of x is rational and has a numerator less than maxpsifracnum and has a denominator less than maxpsifracdenom, psi will return an exact value.

The function bfpsi in the bffac package can compute numerical values.

Option variable: maxpsiposint

Default value: 20

maxpsiposint is the largest positive value for which psi[n](x) will try to compute an exact value.

Option variable: maxpsinegint

Default value: -10

maxpsinegint is the most negative value for which psi[n](x) will try to compute an exact value. That is if x is less than maxnegint, psi[n](x) will not return simplified answer, even if it could.

Option variable: maxpsifracnum

Default value: 6

Let x be a rational number less than one of the form p/q. If p is greater than maxpsifracnum, then psi[n](x) will not try to return a simplified value.

Option variable: maxpsifracdenom

Default value: 6

Let x be a rational number less than one of the form p/q. If q is greater than maxpsifracdenom, then psi[n](x) will not try to return a simplified value.

Function: makefact (expr)

Transforms instances of binomial, gamma, and beta functions in expr into factorials.

See also makegamma.

Function: numfactor (expr)

Returns the numerical factor multiplying the expression expr, which should be a single term.

content returns the greatest common divisor (gcd) of all terms in a sum.

(%i1) gamma (7/2);
                          15 sqrt(%pi)
(%o1)                     ------------
                               8
(%i2) numfactor (%);
                               15
(%o2)                          --
                               8

Categories:  Expressions


Next: , Previous: , Up: Special Functions   [Contents][Index]

15.5 Exponential Integrals

The Exponential Integral and related funtions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Chapter 5

Function: expintegral_e1 (z)

The Exponential Integral E1(z) (A&S 5.1.1) defined as

Function: expintegral_ei (z)

The Exponential Integral Ei(z) (A&S 5.1.2)

Function: expintegral_li (z)

The Exponential Integral Li(z) (A&S 5.1.3)

Function: expintegral_e (n,z)

The Exponential Integral En(z) (A&S 5.1.4) defined as

Function: expintegral_si (z)

The Exponential Integral Si(z) (A&S 5.2.1) defined as

Function: expintegral_ci (z)

The Exponential Integral Ci(z) (A&S 5.2.2) defined as

Function: expintegral_shi (z)

The Exponential Integral Shi(z) (A&S 5.2.3) defined as

Function: expintegral_chi (z)

The Exponential Integral Chi(z) (A&S 5.2.4) defined as

Option variable: expintrep

Default value: false

Change the representation of one of the exponential integrals, expintegral_e(m, z), expintegral_e1, or expintegral_ei to an equivalent form if possible.

Possible values for expintrep are false, gamma_incomplete, expintegral_e1, expintegral_ei, expintegral_li, expintegral_trig, or expintegral_hyp.

false means that the representation is not changed. Other values indicate the representation is to be changed to use the function specified where expintegral_trig means expintegral_si, expintegral_ci, and expintegral_hyp means expintegral_shi or expintegral_chi.

Categories:  Exponential Integrals

Option variable: expintexpand

Default value: false

Expand the Exponential Integral E[n](z) for half integral values in terms of Erfc or Erf and for positive integers in terms of Ei


Next: , Previous: , Up: Special Functions   [Contents][Index]

15.6 Error Function

The Error function and related funtions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Chapter 7

Function: erf (z)

The Error Function erf(z) (A&S 7.1.1)

See also flag erfflag.

Function: erfc (z)

The Complementary Error Function erfc(z) (A&S 7.1.2)

erfc(z) = 1-erf(z)

Function: erfi (z)

The Imaginary Error Function.

erfi(z) = -%i*erf(%i*z)

Function: erf_generalized (z1,z2)

Generalized Error function Erf(z1,z2)

Function: fresnel_c (z)

The Fresnel Integral C(z) = integrate(cos((%pi/2)*t^2),t,0,z). (A&S 7.3.1)

The simplification fresnel_c(-x) = -fresnel_c(x) is applied when flag trigsign is true.

The simplification fresnel_c(%i*x) = %i*fresnel_c(x) is applied when flag %iargs is true.

See flags erf_representation and hypergeometric_representation.

Function: fresnel_s (z)

The Fresnel Integral S(z) = integrate(sin((%pi/2)*t^2),t,0,z). (A&S 7.3.2)

The simplification fresnel_s(-x) = -fresnel_s(x) is applied when flag trigsign is true.

The simplification fresnel_s(%i*x) = -%i*fresnel_s(x) is applied when flag %iargs is true.

See flags erf_representation and hypergeometric_representation.

Option variable: erf_representation

Default value: false

When T erfc, erfi, erf_generalized, fresnel_s and fresnel_c are transformed to erf.

Option variable: hypergeometric_representation

Default value: false

Enables transformation to a Hypergeometric representation for fresnel_s and fresnel_c


Next: , Previous: , Up: Special Functions   [Contents][Index]

15.7 Struve Functions

The Struve functions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Chapter 12.

Function: struve_h (v, z)

The Struve Function H of order v and argument z. (A&S 12.1.1)

Categories:  Special functions

Function: struve_l (v, z)

The Modified Struve Function L of order v and argument z. (A&S 12.2.1)

Categories:  Special functions


Next: , Previous: , Up: Special Functions   [Contents][Index]

15.8 Hypergeometric Functions

The Hypergeometric Functions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Chapters 13 and 15.

Maxima has very limited knowledge of these functions. They can be returned from function hgfred.

Function: %m [k,u] (z)

Whittaker M function M[k,u](z) = exp(-z/2)*z^(1/2+u)*M(1/2+u-k,1+2*u,z). (A&S 13.1.32)

Function: %w [k,u] (z)

Whittaker W function. (A&S 13.1.33)

Function: %f [p,q] ([a],[b],z)

The pFq(a1,a2,..ap;b1,b2,..bq;z) hypergeometric function, where a a list of length p and b a list of length q.

Function: hypergeometric ([a1, ..., ap],[b1, ... ,bq], x)

The hypergeometric function. Unlike Maxima’s %f hypergeometric function, the function hypergeometric is a simplifying function; also, hypergeometric supports complex double and big floating point evaluation. For the Gauss hypergeometric function, that is p = 2 and q = 1, floating point evaluation outside the unit circle is supported, but in general, it is not supported.

When the option variable expand_hypergeometric is true (default is false) and one of the arguments a1 through ap is a negative integer (a polynomial case), hypergeometric returns an expanded polynomial.

Examples:

(%i1)  hypergeometric([],[],x);
(%o1) %e^x

Polynomial cases automatically expand when expand_hypergeometric is true:

(%i2) hypergeometric([-3],[7],x);
(%o2) hypergeometric([-3],[7],x)

(%i3) hypergeometric([-3],[7],x), expand_hypergeometric : true;
(%o3) -x^3/504+3*x^2/56-3*x/7+1

Both double float and big float evaluation is supported:

(%i4) hypergeometric([5.1],[7.1 + %i],0.42);
(%o4)       1.346250786375334 - 0.0559061414208204 %i
(%i5) hypergeometric([5,6],[8], 5.7 - %i);
(%o5)     .007375824009774946 - .001049813688578674 %i
(%i6) hypergeometric([5,6],[8], 5.7b0 - %i), fpprec : 30;
(%o6) 7.37582400977494674506442010824b-3
                          - 1.04981368857867315858055393376b-3 %i

Next: , Previous: , Up: Special Functions   [Contents][Index]

15.9 Parabolic Cylinder Functions

The Parabolic Cylinder Functions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, Chapter 19.

Maxima has very limited knowledge of these functions. They can be returned from function hgfred.

Function: parabolic_cylinder_d (v, z)

The parabolic cylinder function parabolic_cylinder_d(v,z). (A&S 19.3.1)


Previous: , Up: Special Functions   [Contents][Index]

15.10 Functions and Variables for Special Functions

Function: specint (exp(- s*t) * expr, t)

Compute the Laplace transform of expr with respect to the variable t. The integrand expr may contain special functions. The parameter s maybe be named something else; it is determined automatically, as the examples below show where p is used in some places.

The following special functions are handled by specint: incomplete gamma function, error functions (but not the error function erfi, it is easy to transform erfi e.g. to the error function erf), exponential integrals, bessel functions (including products of bessel functions), hankel functions, hermite and the laguerre polynomials.

Furthermore, specint can handle the hypergeometric function %f[p,q]([],[],z), the whittaker function of the first kind %m[u,k](z) and of the second kind %w[u,k](z).

The result may be in terms of special functions and can include unsimplified hypergeometric functions.

When laplace fails to find a Laplace transform, specint is called. Because laplace knows more general rules for Laplace transforms, it is preferable to use laplace and not specint.

demo("hypgeo") displays several examples of Laplace transforms computed by specint.

Examples:

(%i1) assume (p > 0, a > 0)$
(%i2) specint (t^(1/2) * exp(-a*t/4) * exp(-p*t), t);
                           sqrt(%pi)
(%o2)                     ------------
                                 a 3/2
                          2 (p + -)
                                 4
(%i3) specint (t^(1/2) * bessel_j(1, 2 * a^(1/2) * t^(1/2))
              * exp(-p*t), t);
                                   - a/p
                         sqrt(a) %e
(%o3)                    ---------------
                                2
                               p

Examples for exponential integrals:

(%i4) assume(s>0,a>0,s-a>0)$
(%i5) ratsimp(specint(%e^(a*t)
                      *(log(a)+expintegral_e1(a*t))*%e^(-s*t),t));
                             log(s)
(%o5)                        ------
                             s - a
(%i6) logarc:true$

(%i7) gamma_expand:true$

radcan(specint((cos(t)*expintegral_si(t)
                     -sin(t)*expintegral_ci(t))*%e^(-s*t),t));
                             log(s)
(%o8)                        ------
                              2
                             s  + 1
ratsimp(specint((2*t*log(a)+2/a*sin(a*t)
                      -2*t*expintegral_ci(a*t))*%e^(-s*t),t));
                               2    2
                          log(s  + a )
(%o9)                     ------------
                                2
                               s

Results when using the expansion of gamma_incomplete and when changing the representation to expintegral_e1:

(%i10) assume(s>0)$
(%i11) specint(1/sqrt(%pi*t)*unit_step(t-k)*%e^(-s*t),t);
                                            1
                            gamma_incomplete(-, k s)
                                            2
(%o11)                      ------------------------
                               sqrt(%pi) sqrt(s)

(%i12) gamma_expand:true$
(%i13) specint(1/sqrt(%pi*t)*unit_step(t-k)*%e^(-s*t),t);
                              erfc(sqrt(k) sqrt(s))
(%o13)                        ---------------------
                                     sqrt(s)

(%i14) expintrep:expintegral_e1$
(%i15) ratsimp(specint(1/(t+a)^2*%e^(-s*t),t));
                              a s
                        a s %e    expintegral_e1(a s) - 1
(%o15)                - ---------------------------------
                                        a

Categories:  Laplace transform

Function: hypergeometric_simp (e)

hypergeometric_simp simplifies hypergeometric functions by applying hgfred to the arguments of any hypergeometric functions in the expression e.

Only instances of hypergeometric are affected; any %f, %w, and %m in the expression e are not affected. Any unsimplified hypergeometric functions are returned unchanged (instead of changing to %f as hgfred would).

load(hypergeometric); loads this function.

See also hgfred.

Examples:

(%i1) load ("hypergeometric") $
(%i2) foo : [hypergeometric([1,1], [2], z), hypergeometric([1/2], [1], z)];
(%o2) [hypergeometric([1, 1], [2], z), 
                                                     1
                                     hypergeometric([-], [1], z)]
                                                     2
(%i3) hypergeometric_simp (foo);
                 log(1 - z)              z    z/2
(%o3)         [- ----------, bessel_i(0, -) %e   ]
                     z                   2
(%i4) bar : hypergeometric([n], [m], z + 1);
(%o4)            hypergeometric([n], [m], z + 1)
(%i5) hypergeometric_simp (bar);
(%o5)            hypergeometric([n], [m], z + 1)

Function: hgfred (a, b, t)

Simplify the generalized hypergeometric function in terms of other, simpler, forms. a is a list of numerator parameters and b is a list of the denominator parameters.

If hgfred cannot simplify the hypergeometric function, it returns an expression of the form %f[p,q]([a], [b], x) where p is the number of elements in a, and q is the number of elements in b. This is the usual pFq generalized hypergeometric function.

(%i1) assume(not(equal(z,0)));
(%o1)                          [notequal(z, 0)]
(%i2) hgfred([v+1/2],[2*v+1],2*%i*z);

                     v/2                               %i z
                    4    bessel_j(v, z) gamma(v + 1) %e
(%o2)               ---------------------------------------
                                       v
                                      z
(%i3) hgfred([1,1],[2],z);

                                   log(1 - z)
(%o3)                            - ----------
                                       z
(%i4) hgfred([a,a+1/2],[3/2],z^2);

                               1 - 2 a          1 - 2 a
                        (z + 1)        - (1 - z)
(%o4)                   -------------------------------
                                 2 (1 - 2 a) z

It can be beneficial to load orthopoly too as the following example shows. Note that L is the generalized Laguerre polynomial.

(%i5) load(orthopoly)$
(%i6) hgfred([-2],[a],z);

                                    (a - 1)
                                 2 L       (z)
                                    2
(%o6)                            -------------
                                   a (a + 1)
(%i7) ev(%);

                                  2
                                 z        2 z
(%o7)                         --------- - --- + 1
                              a (a + 1)    a

Function: lambert_w (z)

The principal branch of Lambert’s W function W(z), the solution of z = W(z) * exp(W(z)). (DLMF 4.13)

Function: generalized_lambert_w (k, z)

The k-th branch of Lambert’s W function W(z), the solution of z = W(z) * exp(W(z)). (DLMF 4.13)

The principal branch, denoted Wp(z) in DLMF, is lambert_w(z) = generalized_lambert_w(0,z).

The other branch with real values, denoted Wm(z) in DLMF, is generalized_lambert_w(-1,z).

Function: nzeta (z)

The Plasma Dispersion Function nzeta(z) = %i*sqrt(%pi)*exp(-z^2)*(1-erf(-%i*z))

Function: nzetar (z)

Returns realpart(nzeta(z)).

Function: nzetai (z)

Returns imagpart(nzeta(z)).


Previous: , Up: Special Functions   [Contents][Index]