CLASP

Common Lisp Analytical Statistics Package

October 9, 1993

CLASP programming interface

e Data Structures
e Modules

e Functions

CLASP data structures

data
All data classes in CLASP have DATA as a
superclass

e name: The name the user will refer to the data by

e description: A textual history of the data

variable (data)
A variable 1s a collection of semantically related
values

e value: The values in the variable

e dataset: The dataset to which the variable belongs

dataset (data)
A dataset is a collection of variables

e variables: List of the variables in the dataset

e rows: Number of rows in the dataset

CLASP modules

Statistics Graphics I/0

A A
I I

—
e

| |
Y Y

User Interface

A 4|
[y [y

-
—

Data Representation Data Manipulation

Data Representation Functions

In general, data-representation functions deal with the
data objects defined in CLASP. With a few exceptions
(primarily the slot-accessors), anywhere a dataset or
variable is a function parameter, it is also legal to use a
string or symbol with the name of that dataset or
variable.

Some commonly used CLASP functions

e Creating datasets

e make-dataset-from-columns name data
variable-names

e make-dataset-from-rows name data variable-names

e Accessing CLASP data objects
e get-dataset dataset-name

e get-variable variable-name €foptional dataset

e Deleting CLASP data objects
e delete-dataset dataset

e delete-variable varzable

Data access functions

e Getting data from a dataset

e dataset-to-rows dataset :rows (where-clause)
:columns (variable-list)

e dataset-to-columns dataset :rows (where-clause)
:columns (variable-list)

e Getting data from a variable

e variable-value :where (where-clause)
:order-by variable

I/O Functions

There are four I/O functions,

load-dataset filename

save-dataset dataset filename

import-dataset €key separator include-labels-p
export-dataset €dkey separator include-labels-p

Load-dataset and save-dataset use CLASP format. In
a CLASP format file, the first line is a double-quoted
string containing the name of the dataset, the next n
lines are double-quoted strings with the names of each
variable, and the next m lines are rows of the dataset,
each row being a list of values, and the order must be
the same as the variable names in the header.

Import-dataset and export-dataset are for use with
non-clasp format data files.

The data appear in columns separated by an optional
separator character (default “,”). If include-labels-p

is t, then the first line of the file will contain the
names of the variables.

Data Manipulation Functions

e partition-dataset dataset partition-clause
éJoptional variables
This creates a new dataset containing all the rows
of dataset which satisfy the conditions in
partition-clause. If variables is a list of variables
from dataset, then only those variables will be
carried over into the new dataset, otherwise all
variables will. If the partition clause contains an
(.on. variable) expression then the values of
variable will be mapped over and a new dataset
will be created for each unique value.

e merge-datasets datasets
This creates a new dataset which has as its
variables the union of all the variables in datasets,
plus an extra variable, SOURCE. For every dataset d
in datasets, each of d’s rows contributes one row to
the new dataset, and for that row, the value of all
the variables in d are copied into the new dataset,
and any variables in the new dataset that don’t
exist in d are assigned the value nil. Finally, the
variable SOURCE in the new dataset is assigned the
name of d, the dataset from which that row came.

Applying a function to data

create-new-column-from-function dataset expression
‘expression’ must be a valid lisp expression, it may
contain the names of variables in ‘dataset’. The rows
of ‘dataset’ are mapped over, substituting the values of
the variables in ‘expression’, after substitution,
‘expression’ is evaluated. This produces a new column
of data which is added as a variable to ‘dataset’.

For example, the following would produce the ratio of
“Nodes Searched” to “Runtime” in the dataset “My
Data”, and add it as a new variable.

(create-new-column-from-function
'my-data ’(/ nodes-searched runtime))

10

Statistical Functions

All statistical functions operate on sequences.
Wherever it is possible/makes sense, they take a set of
standard keyword arguments including :start, :end and
:key. These are used to determine what part of the
sequence is processed and how to get at elements of
the sequence.

For instance,

(mean ’((a 3) (g 5) (c 7) (a 4) (i 3))
:start 1 :end 3 :key \#’second)

_ 1
=> 51

11

Special case statistical functions

The following is a list of things to be aware of:

e -from-summaries statistics
correlation-from-summaries
confidence-interval-t-summaries
confidence-interval-z-summaries
These are more efficient versions of the correlation,
confidence-interval-t and confidence-interval-z
functions. They do their computations directly
from various summary statistics, so if you have
those summary statistics lying around, you should
call the -summaries version of the functions.

e Special cases for arguments
interquartile-range doesn’t recognize :start, :end
and :key keywords
t-test and it’s variants (-one-sample and -matched)
take an extra argument, tails, which must be
:positive, :negative or :both

e Chi Square
For chi-square analyses, there are -counts versions
of the functions which are the moral equivalent of
-summaries versions of other statistical functions.

12

Special case statistical functions

e Anova
anova-one-way-variables should be used if you want
to pass in the sequences for the anova
anova-one-way-groups should be called if you have
the data in grouped form, see the manual for a
description
The same holds for anova-two-way-variables and
anova-two-way-groups.
anova-two-way-variables-unequal-cell-sizes should
be used if you have data with unequal cell sizes

e Linear Regression
There are six versions of linear-regression
linear-regression-minimal
linear-regression-minimal-summaries
linear-regression-brief
linear-regression-brief-summaries
linear-regression-verbose
linear-regression-verbose-summaries
minimal returns just the slope and intercept. brief
returns the slope, intercept, %, the standard-error
of the slope and the significance. verbose also
returns an anova table.

13

An example using lisp and clasp together

;53 Maps across the values of prediction-point and
;55 prediction-threshold, extracting the appropriate
;55 rows for prediction and actual and calculating the
;;; average prediction error for each condition
(defun summary ()
;5 loop through independent variable values
(loop for pt in ’(.6 .75 .9)
append
(loop for pp in ’(2 5 7)
collect
;; extract appropriate rows for prediction and actual
(let
((prediction
(variable-value
(get-variable ’predicted-queue-length-port-1)

:where
‘(.and. (.==. prediction-point ,pp)
(.==. prediction-threshold ,pt))))
(actual

(variable-value

(get-variable ’ships-queued-port-1)
:where
‘(.and. (.==. prediction-point ,pp)

.==. prediction-threshold ,pt)))))

14

..
L
..
L
..
L

..
L

.
’
.
’
.
’

’

;; collect the independent variables and the
;; prediction error as calculated from prediction
;; and actual
(list pt pp
(summarize-prediction-error
prediction actual pp))))))

Since the system attempts to predict what the
queue length will be lag days in advance,
lagged-correlation is a measure of how accurate
the prediction was.

(defun summarize-prediction-error

(predicted-sequence actual-sequence prediction-lag)
(unless (and predicted-sequence actual-sequence

prediction-lag)

(return-from summarize-prediction-error ’:missing))

(lagged-correlation predicted-sequence

actual-sequence prediction-lag))

15

Here’s what a typical clasp session might look
like using the functions defined above.

o e
L

« ..
L

(load-dataset ‘¢ ‘port-state-demo.clasp’’)
P P
(setf new-data summary)

(make-dataset-from-rows ¢

‘compressed-port-data’’
new-data

’(“‘trial”’
‘‘prediction-threshold’’
‘‘eta-variance-multiplier’’
‘‘prediction-point’’
‘‘prediction-accuracy))

16

