Next: , Previous:   [Contents][Index]

16 Elliptic Functions


16.1 Introduction to Elliptic Functions and Integrals

Maxima includes support for Jacobian elliptic functions and for complete and incomplete elliptic integrals. This includes symbolic manipulation of these functions and numerical evaluation as well. Definitions of these functions and many of their properties can by found in Abramowitz and Stegun, A&S Chapter 16 and A&S Chapter 17. See also DLMF 22.2. As much as possible, we use the definitions and relationships given in Abramowitz and Stegun.

In particular, all elliptic functions and integrals use the parameter m instead of the modulus k or the modular angle \alpha. The following relationships are true:

$$ \eqalign{ m &= k^2 \cr k &= \sin\alpha } $$

Note that Abramowitz and Stegun uses the notation \({\rm sn}(u|m)\) where we use \({\rm sn}(u,m)\) instead. The DLMF uses modulus k instead of the parameter m.

The elliptic functions and integrals are primarily intended to support symbolic computation. Therefore, most of derivatives of the functions and integrals are known. However, if floating-point values are given, a floating-point result is returned.

Support for most of the other properties of elliptic functions and integrals other than derivatives has not yet been written.

Some examples of elliptic functions:

(%i1) jacobi_sn (u, m);
(%o1)                    jacobi_sn(u, m)
(%i2) jacobi_sn (u, 1);
(%o2)                        tanh(u)
(%i3) jacobi_sn (u, 0);
(%o3)                        sin(u)
(%i4) diff (jacobi_sn (u, m), u);
(%o4)            jacobi_cn(u, m) jacobi_dn(u, m)
(%i5) diff (jacobi_sn (u, m), m);
(%o5) jacobi_cn(u, m) jacobi_dn(u, m)

      elliptic_e(asin(jacobi_sn(u, m)), m)
 (u - ------------------------------------)/(2 m)
                     1 - m

            2
   jacobi_cn (u, m) jacobi_sn(u, m)
 + --------------------------------
              2 (1 - m)

Some examples of elliptic integrals:

(%i1) elliptic_f (phi, m);
(%o1)                  elliptic_f(phi, m)
(%i2) elliptic_f (phi, 0);
(%o2)                          phi
(%i3) elliptic_f (phi, 1);
                               phi   %pi
(%o3)                  log(tan(--- + ---))
                                2     4
(%i4) elliptic_e (phi, 1);
(%o4)                       sin(phi)
(%i5) elliptic_e (phi, 0);
(%o5)                          phi
(%i6) elliptic_kc (1/2);
                                     1
(%o6)                    elliptic_kc(-)
                                     2
(%i7) makegamma (%);
                                 2 1
                            gamma (-)
                                   4
(%o7)                      -----------
                           4 sqrt(%pi)
(%i8) diff (elliptic_f (phi, m), phi);
                                1
(%o8)                 ---------------------
                                    2
                      sqrt(1 - m sin (phi))
(%i9) diff (elliptic_f (phi, m), m);
       elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)
(%o9) (-----------------------------------------------
                              m

                                 cos(phi) sin(phi)
                             - ---------------------)/(2 (1 - m))
                                             2
                               sqrt(1 - m sin (phi))

Support for elliptic functions and integrals was written by Raymond Toy. It is placed under the terms of the General Public License (GPL) that governs the distribution of Maxima.

Categories: Elliptic functions ·

16.2 Functions and Variables for Elliptic Functions

See A&S Section 6.12 and DLMF 22.2 for more information.

Function: jacobi_sn (u, m)

The Jacobian elliptic function \({\rm sn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_cn (u, m)

The Jacobian elliptic function \({\rm cn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_dn (u, m)

The Jacobian elliptic function \({\rm dn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_ns (u, m)

The Jacobian elliptic function \({\rm ns}(u,m) = 1/{\rm sn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_sc (u, m)

The Jacobian elliptic function \({\rm sc}(u,m) = {\rm sn}(u,m)/{\rm cn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_sd (u, m)

The Jacobian elliptic function \({\rm sd}(u,m) = {\rm sn}(u,m)/{\rm dn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_nc (u, m)

The Jacobian elliptic function \({\rm nc}(u,m) = 1/{\rm cn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_cs (u, m)

The Jacobian elliptic function \({\rm cs}(u,m) = {\rm cn}(u,m)/{\rm sn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_cd (u, m)

The Jacobian elliptic function \({\rm cd}(u,m) = {\rm cn}(u,m)/{\rm dn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_nd (u, m)

The Jacobian elliptic function \({\rm nd}(u,m) = 1/{\rm dn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_ds (u, m)

The Jacobian elliptic function \({\rm ds}(u,m) = {\rm dn}(u,m)/{\rm sn}(u,m).\)

Categories: Elliptic functions ·
Function: jacobi_dc (u, m)

The Jacobian elliptic function \({\rm dc}(u,m) = {\rm dn}(u,m)/{\rm cn}(u,m).\)

Categories: Elliptic functions ·
Function: inverse_jacobi_sn (u, m)

The inverse of the Jacobian elliptic function \({\rm sn}(u,m).\) For \(-1\le u \le 1,\) it can also be written (DLMF 22.15.E12): $$ {\rm inverse\_jacobi\_sn}(u, m) = \int_0^u {dt\over \sqrt{(1-t^2)(1-mt^2)}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_cn (u, m)

The inverse of the Jacobian elliptic function \({\rm cn}(u,m).\) For \(-1\le u \le 1,\) it can also be written (DLMF 22.15.E13): $$ {\rm inverse\_jacobi\_cn}(u, m) = \int_u^1 {dt\over \sqrt{(1-t^2)(1-m+mt^2)}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_dn (u, m)

The inverse of the Jacobian elliptic function \({\rm dn}(u,m).\) For \(\sqrt{1-m}\le u \le 1,\) it can also be written (DLMF 22.15.E14): $$ {\rm inverse\_jacobi\_dn}(u, m) = \int_u^1 {dt\over \sqrt{(1-t^2)(t^2-(1-m))}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_ns (u, m)

The inverse of the Jacobian elliptic function \({\rm ns}(u,m).\) For \(1 \le u,\) it can also be written (DLMF 22.15.E121): $$ {\rm inverse\_jacobi\_ns}(u, m) = \int_u^{\infty} {dt\over \sqrt{(1-t^2)(t^2-m)}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_sc (u, m)

The inverse of the Jacobian elliptic function \({\rm sc}(u,m).\) For all u it can also be written (DLMF 22.15.E20): $$ {\rm inverse\_jacobi\_sc}(u, m) = \int_0^u {dt\over \sqrt{(1+t^2)(1+(1-m)t^2)}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_sd (u, m)

The inverse of the Jacobian elliptic function \({\rm sd}(u,m).\) For \(-1/\sqrt{1-m}\le u \le 1/\sqrt{1-m},\) it can also be written (DLMF 22.15.E16): $$ {\rm inverse\_jacobi\_sd}(u, m) = \int_0^u {dt\over \sqrt{(1-(1-m)t^2)(1+mt^2)}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_nc (u, m)

The inverse of the Jacobian elliptic function \({\rm nc}(u,m).\) For \(1\le u,\) it can also be written (DLMF 22.15.E19): $$ {\rm inverse\_jacobi\_nc}(u, m) = \int_1^u {dt\over \sqrt{(t^2-1)(m+(1-m)t^2)}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_cs (u, m)

The inverse of the Jacobian elliptic function \({\rm cs}(u,m).\) For all u it can also be written (DLMF 22.15.E23): $$ {\rm inverse\_jacobi\_cs}(u, m) = \int_u^{\infty} {dt\over \sqrt{(1+t^2)(t^2+(1-m))}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_cd (u, m)

The inverse of the Jacobian elliptic function \({\rm cd}(u,m).\) For \(-1\le u \le 1,\) it can also be written (DLMF 22.15.E15): $$ {\rm inverse\_jacobi\_cd}(u, m) = \int_u^1 {dt\over \sqrt{(1-t^2)(1-mt^2)}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_nd (u, m)

The inverse of the Jacobian elliptic function \({\rm nd}(u,m).\) For \(1\le u \le 1/\sqrt{1-m},\) it can also be written (DLMF 22.15.E17): $$ {\rm inverse\_jacobi\_nd}(u, m) = \int_1^u {dt\over \sqrt{(t^2-1)(1-(1-m)t^2)}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_ds (u, m)

The inverse of the Jacobian elliptic function \({\rm ds}(u,m).\) For \(\sqrt{1-m}\le u,\) it can also be written (DLMF 22.15.E22): $$ {\rm inverse\_jacobi\_ds}(u, m) = \int_u^{\infty} {dt\over \sqrt{(t^2+m)(t^2-(1-m))}} $$

Categories: Elliptic functions ·
Function: inverse_jacobi_dc (u, m)

The inverse of the Jacobian elliptic function \({\rm dc}(u,m).\) For \(1 \le u,\) it can also be written (DLMF 22.15.E18): $$ {\rm inverse\_jacobi\_dc}(u, m) = \int_1^u {dt\over \sqrt{(t^2-1)(t^2-m)}} $$

Categories: Elliptic functions ·

16.3 Functions and Variables for Elliptic Integrals

Function: elliptic_f (phi, m)

The incomplete elliptic integral of the first kind, defined as

$$ \int_0^{\phi} {\frac{d\theta}{\sqrt{1-m\sin^2\theta}}} $$

See also elliptic_e and elliptic_kc.

Categories: Elliptic integrals ·
Function: elliptic_e (phi, m)

The incomplete elliptic integral of the second kind, defined as

$$ \int_0^\phi {\sqrt{1 - m\sin^2\theta}}\, d\theta $$

See also elliptic_f and elliptic_ec.

Categories: Elliptic integrals ·
Function: elliptic_eu (u, m)

The incomplete elliptic integral of the second kind, defined as

$$ E(u, m) = \int_0^u {\rm dn}(v, m)\, dv = \int_0^\tau \sqrt{\frac{1-m t^2}{1-t^2}}\, dt $$

where \(\tau = {\rm sn}(u,m) .\)

This is related to elliptic_e by

$$ E(u,m) = E(\sin^{-1} {\rm sn}(u, m), m) $$

See also elliptic_e.

Categories: Elliptic integrals ·

Function: elliptic_pi (n, phi, m)

The incomplete elliptic integral of the third kind, defined as

$$ \int_0^\phi {{d\theta}\over{(1-n\sin^2 \theta)\sqrt{1 - m\sin^2\theta}}} $$
Categories: Elliptic integrals ·
Function: elliptic_kc (m)

The complete elliptic integral of the first kind, defined as

$$ \int_0^{\frac{\pi}{2}} {{d\theta}\over{\sqrt{1 - m\sin^2\theta}}} $$

For certain values of m, the value of the integral is known in terms of Gamma functions. Use makegamma to evaluate them.

Categories: Elliptic integrals ·
Function: elliptic_ec (m)

The complete elliptic integral of the second kind, defined as

$$ \int_0^{\frac{\pi}{2}} \sqrt{1 - m\sin^2\theta}\, d\theta $$

For certain values of m, the value of the integral is known in terms of Gamma functions. Use makegamma to evaluate them.

Categories: Elliptic integrals ·
Function: carlson_rc (x, y)

Carlson’s RC integral is defined by

$$ R_C(x, y) = \frac{1}{2} \int_0^{\infty} \frac{1}{\sqrt{t+x}(t+y)}\, dt $$

This integral is related to many elementary functions in the following way:

$$ \eqalign{ \log x &= (x-1) R_C\left(\left({\frac{1+x}{2}}\right)^2, x\right), \quad x > 0 \cr \sin^{-1} x &= x R_C(1-x^2, 1), \quad |x| \le 1 \cr \cos^{-1} x &= \sqrt{1-x^2} R_C(x^2,1), \quad 0 \le x \le 1 \cr \tan^{-1} x &= x R_C(1,1+x^2) \cr \sinh^{-1} x &= x R_C(1+x^2,1) \cr \cosh^{-1} x &= \sqrt{x^2-1} R_C(x^2,1), \quad x \ge 1 \cr \tanh^{-1}(x) &= x R_C(1,1-x^2), \quad |x| \le 1 } $$

Also, we have the relationship

$$ R_C(x,y) = R_F(x,y,y) $$

Some special values: $$ \eqalign{R_C(0, 1) &= \frac{\pi}{2} \cr R_C(0, 1/4) &= \pi \cr R_C(2,1) &= \log(\sqrt{2} + 1) \cr R_C(i,i+1) &= \frac{\pi}{4} + \frac{i}{2} \log(\sqrt{2}-1) \cr R_C(0,i) &= (1-i)\frac{\pi}{2\sqrt{2}} \cr } $$

Categories: Elliptic integrals ·
Function: carlson_rd (x, y, z)

Carlson’s RD integral is defined by

$$ R_D(x,y,z) = \frac{3}{2} \int_0^{\infty} \frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}\,(t+z)}\, dt $$

We also have the special values

$$ \eqalign{ R_D(x,x,x) &= x^{-\frac{3}{2}} \cr R_D(0,y,y) &= \frac{3}{4} \pi y^{-\frac{3}{2}} \cr R_D(0,2,1) &= 3 \sqrt{\pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})} } $$

It is also related to the complete elliptic E function as follows

$$ E(m) = R_F(0, 1 - m, 1) - \frac{m}{3} R_D(0, 1 - m, 1) $$
Categories: Elliptic integrals ·
Function: carlson_rf (x, y, z)

Carlson’s RF integral is defined by

$$ R_F(x,y,z) = \frac{1}{2} \int_0^{\infty} \frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}}\, dt $$

We also have the special values

$$ \eqalign{ R_F(0,1,2) &= \frac{\Gamma({\frac{1}{4}})^2}{4\sqrt{2\pi}} \cr R_F(i,-i,0) &= \frac{\Gamma({\frac{1}{4}})^2}{4\sqrt{\pi}} } $$

It is also related to the complete elliptic E function as follows

$$ E(m) = R_F(0, 1 - m, 1) - \frac{m}{3} R_D(0, 1 - m, 1) $$
Categories: Elliptic integrals ·
Function: carlson_rj (x, y, z, p)

Carlson’s RJ integral is defined by

$$ R_J(x,y,z) = \frac{1}{2} \int_0^{\infty} \frac{1}{\sqrt{t+x}\sqrt{t+y}\sqrt{t+z}\,(t+p)}\, dt $$
Categories: Elliptic integrals ·

Next: , Previous:   [Contents][Index]