
Reference

August 1, 2007

Contents

1 ParenScript Language Reference 1

2 Statements and Expressions 1

3 Symbol conversion 1
3.1 Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . . . . 2

4 Literal values 2
4.1 Number literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4.2 String literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.3 Array literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4.4 Object literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.5 Regular Expression literals . . . . . . . . . . . . . . . . . . . . . 4
4.6 Literal symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Variables 5

6 Function calls and method calls 6

7 Operator Expressions 6

8 Body forms 7

9 Function Definition 8

10 Assignment 8

11 Single argument statements 9

12 Single argument expression 9

13 Conditional Statements 10

14 Variable declaration 11

15 Iteration constructs 11

16 The ‘CASE’ statement 13

1



17 The ‘WITH’ statement 14

18 The ‘TRY’ statement 14

19 The HTML Generator 15

20 Macrology 16

21 The ParenScript Compiler 17

1 ParenScript Language Reference

This chapters describes the core constructs of ParenScript, as well as its com-
pilation model. This chapter is aimed to be a comprehensive reference for
ParenScript developers. Programmers looking for how to tweak the Paren-
Script compiler itself should turn to the ParenScript Internals chapter.

2 Statements and Expressions

In contrast to Lisp, where everything is an expression, JavaScript makes the
difference between an expression, which evaluates to a value, and a statement,
which has no value. Examples for JavaScript statements are for, with and
while. Most ParenScript forms are expression, but certain special forms are
not (the forms which are transformed to a JavaScript statement). All Paren-
Script expressions are statements though. Certain forms, like IF and PROGN,
generate different JavaScript constructs whether they are used in an expression
context or a statement context. For example:

(+ i (if 1 2 3)) => i + (1 ? 2 : 3)

(if 1 2 3)

=> if (1) {

2;

} else {

3;

}

3 Symbol conversion

Lisp symbols are converted to JavaScript symbols by following a few simple
rules. Special characters !, ?, #, @, %, ’/’, * and + get replaced by their written-
out equivalents “bang”, “what”, “hash”, “at”, “percent”, “slash”, “start” and
“plus” respectively. The $ character is untouched.

!?#@% => bangwhathashatpercent

The - is an indication that the following character should be converted to up-
percase. Thus, - separated symbols are converted to camelcase. The character
however is left untouched.

2



bla-foo-bar => blaFooBar

If you want a JavaScript symbol beginning with an uppercase, you can either
use a leading -, which can be misleading in a mathematical context, or a lead-
ing *.

*array => Array

The . character is left as is in symbols. This allows the ParenScript program-
mer to use a practical shortcut when accessing slots or methods of JavaScript
objects. Instead of writing

(slot-value foobar ’slot)

we can write

foobar.slot

A symbol beggining and ending with + or * is converted to all uppercase, to
signify that this is a constant or a global variable.

*global-array* => GLOBALARRAY

*global-array*.length => GLOBALARRAY.length

3.1 Reserved Keywords

The following keywords and symbols are reserved in ParenScript, and should
not be used as variable names.

! ~ ++ -- * / % + - << >> >>> < > <= >= == != ==== !== & ^ | && ||

*= /= %= += -= <<= >>= >>>= &= ^= |= 1- 1+

ABSTRACT AND AREF ARRAY BOOLEAN BREAK BYTE CASE CATCH CC-IF CHAR CLASS

COMMA CONST CONTINUE CREATE DEBUGGER DECF DEFAULT DEFUN DEFVAR DELETE

DO DOEACH DOLIST DOTIMES DOUBLE ELSE ENUM EQL EXPORT EXTENDS FALSE

FINAL FINALLY FLOAT FLOOR FOR FUNCTION GOTO IF IMPLEMENTS IMPORT IN INCF

INSTANCEOF INT INTERFACE JS LAMBDA LET LISP LIST LONG MAKE-ARRAY NATIVE NEW

NIL NOT OR PACKAGE PRIVATE PROGN PROTECTED PUBLIC RANDOM REGEX RETURN

SETF SHORT SLOT-VALUE STATIC SUPER SWITCH SYMBOL-MACROLET SYNCHRONIZED T

THIS THROW THROWS TRANSIENT TRY TYPEOF UNDEFINED UNLESS VAR VOID VOLATILE

WHEN WHILE WITH WITH-SLOTS

4 Literal values

4.1 Number literals
; number ::= a Lisp number

ParenScript supports the standard JavaScript literal values. Numbers are
compiled into JavaScript numbers.

1 => 1

123.123 => 123.123

Note that the base is not conserved between Lisp and JavaScript.

#x10 => 16

3



4.2 String literals
; string ::= a Lisp string

Lisp strings are converted into JavaScript literals.

"foobar" => ’foobar’

"bratzel bub" => ’bratzel bub’

Escapes in Lisp are not converted to JavaScript escapes. However, to avoid
having to use double backslashes when constructing a string, you can use the
CL-INTERPOL library by Edi Weitz.

4.3 Array literals
; (ARRAY {values}*)

; (MAKE-ARRAY {values}*)

; (AREF array index)

;

; values ::= a ParenScript expression

; array ::= a ParenScript expression

; index ::= a ParenScript expression

Array literals can be created using the ARRAY form.

(array) => [ ]

(array 1 2 3) => [ 1, 2, 3 ]

(array (array 2 3)

(array "foobar" "bratzel bub"))

=> [ [ 2, 3 ], [ ’foobar’, ’bratzel bub’ ] ]

Arrays can also be created with a call to the Array function using the MAKE-ARRAY.
The two forms have the exact same semantic on the JavaScript side.

(make-array) => new Array()

(make-array 1 2 3) => new Array(1, 2, 3)

(make-array

(make-array 2 3)

(make-array "foobar" "bratzel bub"))

=> new Array(new Array(2, 3), new Array(’foobar’, ’bratzel bub’))

Indexing arrays in ParenScript is done using the form AREF. Note that JavaScript
knows of no such thing as an array. Subscripting an array is in fact reading a
property from an object. So in a semantic sense, there is no real difference be-
tween AREF and SLOT-VALUE.

4



4.4 Object literals
; (CREATE {name value}*)

; (SLOT-VALUE object slot-name)

; (WITH-SLOTS ({slot-name}*) object body)

;

; name ::= a ParenScript symbol or a Lisp keyword

; value ::= a ParenScript expression

; object ::= a ParenScript object expression

; slot-name ::= a quoted Lisp symbol

; body ::= a list of ParenScript statements

Object literals can be create using the CREATE form. Arguments to the
CREATE form is a list of property names and values. To be more “lispy”, the
property names can be keywords.

(create :foo "bar" :blorg 1)

=> { foo : ’bar’,

blorg : 1 }

(create :foo "hihi"

:blorg (array 1 2 3)

:another-object (create :schtrunz 1))

=> { foo : ’hihi’,

blorg : [ 1, 2, 3 ],

anotherObject : { schtrunz : 1 } }

Object properties can be accessed using the SLOT-VALUE form, which takes an
object and a slot-name.

(slot-value an-object ’foo) => anObject.foo

A programmer can also use the “.” symbol notation explained above.

an-object.foo => anObject.foo

The form WITH-SLOTS can be used to bind the given slot-name symbols to a
macro that will expand into a SLOT-VALUE form at expansion time.

(with-slots (a b c) this

(+ a b c))

=> (this).a + (this).b + (this).c;

4.5 Regular Expression literals
; (REGEX regex)

;

; regex ::= a Lisp string

Regular expressions can be created by using the REGEX form. If the argument
does not start with a slash, it is surrounded by slashes to make it a proper
JavaScript regex. If the argument starts with a slash it is left as it is. This makes
it possible to use modifiers such as slash-i (case-insensitive) or slash-g (match-
globally (all)).

5



(regex "foobar") => /foobar/

(regex "/foobar/i") => /foobar/i

Here CL-INTERPOL proves really useful.

(regex #?r"/([^\s]+)foobar/i") => /([^\s]+)foobar/i

4.6 Literal symbols
; T, FALSE, NIL, UNDEFINED, THIS

The Lisp symbols T and FALSE are converted to their JavaScript boolean equiv-
alents true and false.

T => true

FALSE => false

The Lisp symbol NIL is converted to the JavaScript keyword null.

NIL => null

The Lisp symbol UNDEFINED is converted to the JavaScript keyword undefined.

UNDEFINED => undefined

The Lisp symbol THIS is converted to the JavaScript keyword this.

THIS => this

5 Variables
; variable ::= a Lisp symbol

All the other literal Lisp values that are not recognized as special forms or
symbol macros are converted to JavaScript variables. This extreme freedom is
actually quite useful, as it allows the ParenScript programmer to be flexible, as
flexible as JavaScript itself.

variable => variable

a-variable => aVariable

*math => Math

*math.floor => Math.floor

6



6 Function calls and method calls
; (function {argument}*)

; (method object {argument}*)

;

; function ::= a ParenScript expression or a Lisp symbol

; method ::= a Lisp symbol beginning with .

; object ::= a ParenScript expression

; argument ::= a ParenScript expression

Any list passed to the JavaScript that is not recognized as a macro or a spe-
cial form (see “Macro Expansion” below) is interpreted as a function call. The
function call is converted to the normal JavaScript function call representation,
with the arguments given in paren after the function name.

(blorg 1 2) => blorg(1, 2)

(foobar (blorg 1 2) (blabla 3 4) (array 2 3 4))

=> foobar(blorg(1, 2), blabla(3, 4), [ 2, 3, 4 ])

((aref foo i) 1 2) => foo[i](1, 2)

A method call is a function call where the function name is a symbol and begins
with a “.” . In a method call, the name of the function is append to its first
argument, thus reflecting the method call syntax of JavaScript. Please note that
most method calls can be abbreviated using the “.” trick in symbol names (see
“Symbol Conversion” above).

(.blorg this 1 2) => this.blorg(1, 2)

(this.blorg 1 2) => this.blorg(1, 2)

(.blorg (aref foobar 1) NIL T)

=> foobar[1].blorg(null, true)

7 Operator Expressions

; (operator {argument}*)

; (single-operator argument)

;

; operator ::= one of *, /, %, +, -, <<, >>, >>>, < >, EQL,

; ==, !=, =, ===, !==, &, ^, |, &&, AND, ||, OR.

; single-operator ::= one of INCF, DECF, ++, --, NOT, !

; argument ::= a ParenScript expression

Operator forms are similar to function call forms, but have an operator as func-
tion name.

Please note that = is converted to == in JavaScript. The = ParenScript op-
erator is not the assignment operator. Unlike JavaScript, ParenScript supports
multiple arguments to the operators.

(* 1 2) => 1 * 2

7



(= 1 2) => 1 == 2

(eql 1 2) => 1 == 2

Note that the resulting expression is correctly parenthized, according to the
JavaScript operator precedence that can be found in table form at:

http://www.codehouse.com/javascript/precedence/

(* 1 (+ 2 3 4) 4 (/ 6 7))

=> 1 * (2 + 3 + 4) * 4 * (6 / 7)

The pre/post increment and decrement operators are also available. INCF and
DECF are the pre-incrementing and pre-decrementing operators, and ++ and
-- are the post-decrementing version of the operators. These operators can
take only one argument.

(++ i) => i++

(-- i) => i--

(incf i) => ++i

(decf i) => --i

The 1+ and 1- operators are shortforms for adding and substracting 1.

(1- i) => i - 1

(1+ i) => i + 1

The not operator actually optimizes the code a bit. If not is used on another
boolean-returning operator, the operator is reversed.

(not (< i 2)) => i >= 2

(not (eql i 2)) => i != 2

8 Body forms

; (PROGN {statement}*) in statement context

; (PROGN {expression}*) in expression context

;

; statement ::= a ParenScript statement

; expression ::= a ParenScript expression

The PROGN special form defines a sequence of statements when used in a state-
ment context, or sequence of expression when used in an expression context.
The PROGN special form is added implicitly around the branches of conditional
executions forms, function declarations and iteration constructs. For example,
in a statement context:

8



(progn (blorg i) (blafoo i))

=> blorg(i);

blafoo(i);

In an expression context:

(+ i (progn (blorg i) (blafoo i)))

=> i + (blorg(i), blafoo(i))

A PROGN form doesn’t lead to additional indentation or additional braces around
it’s body.

9 Function Definition
; (DEFUN name ({argument}*) body)

; (LAMBDA ({argument}*) body)

;

; name ::= a Lisp Symbol

; argument ::= a Lisp symbol

; body ::= a list of ParenScript statements

As in Lisp, functions are defined using the DEFUN form, which takes a name, a
list of arguments, and a function body. An implicit PROGN is added around the
body statements.

(defun a-function (a b)

(return (+ a b)))

=> function aFunction(a, b) {

return a + b;

}

Anonymous functions can be created using the LAMBDA form, which is the
same as DEFUN, but without function name. In fact, LAMBDA creates a DEFUN
with an empty function name.

(lambda (a b) (return (+ a b)))

=> function (a, b) {

return a + b;

}

10 Assignment

; (SETF {lhs rhs}*)

;

; lhs ::= a ParenScript left hand side expression

; rhs ::= a ParenScript expression

Assignment is done using the SETF form, which is transformed into a series of
assignments using the JavaScript = operator.

9



(setf a 1) => a = 1

(setf a 2 b 3 c 4 x (+ a b c))

=> a = 2;

b = 3;

c = 4;

x = a + b + c;

The SETF form can transform assignments of a variable with an operator ex-
pression using this variable into a more “efficient” assignment operator form.
For example:

(setf a (1+ a)) => a++

(setf a (+ a 2 3 4 a)) => a += 2 + 3 + 4 + a

(setf a (- 1 a)) => a = 1 - a

11 Single argument statements

; (RETURN {value}?)

; (THROW {value}?)

;

; value ::= a ParenScript expression

The single argument statements return and throw are generated by the form
RETURN and THROW. THROW has to be used inside a TRY form. RETURN is used
to return a value from a function call.

(return 1) => return 1

(throw "foobar") => throw ’foobar’

12 Single argument expression

; (DELETE {value})

; (VOID {value})

; (TYPEOF {value})

; (INSTANCEOF {value})

; (NEW {value})

;

; value ::= a ParenScript expression

The single argument expressions delete, void, typeof, instanceof and
new are generated by the forms DELETE, VOID, TYPEOF, INSTANCEOF and
NEW. They all take a ParenScript expression.

(delete (new (*foobar 2 3 4))) => delete new Foobar(2, 3, 4)

(if (= (typeof blorg) *string)

(alert (+ "blorg is a string: " blorg))

(alert "blorg is not a string"))

10



=> if (typeof blorg == String) {

alert(’blorg is a string: ’ + blorg);

} else {

alert(’blorg is not a string’);

}

13 Conditional Statements
; (IF conditional then {else})

; (WHEN condition then)

; (UNLESS condition then)

;

; condition ::= a ParenScript expression

; then ::= a ParenScript statement in statement context, a

; ParenScript expression in expression context

; else ::= a ParenScript statement in statement context, a

; ParenScript expression in expression context

The IF form compiles to the if javascript construct. An explicit PROGN around
the then branch and the else branch is needed if they consist of more than one
statement. When the IF form is used in an expression context, a JavaScript ?,
: operator form is generated.

(if (blorg.is-correct)

(progn (carry-on) (return i))

(alert "blorg is not correct!"))

=> if (blorg.isCorrect()) {

carryOn();

return i;

} else {

alert(’blorg is not correct!’);

}

(+ i (if (blorg.add-one) 1 2))

=> i + (blorg.addOne() ? 1 : 2)

The WHEN and UNLESS forms can be used as shortcuts for the IF form.

(when (blorg.is-correct)

(carry-on)

(return i))

=> if (blorg.isCorrect()) {

carryOn();

return i;

}

(unless (blorg.is-correct)

(alert "blorg is not correct!"))

=> if (!blorg.isCorrect()) {

alert(’blorg is not correct!’);

}

11



14 Variable declaration
; (DEFVAR var {value}?)

; (LET ({var | (var value)) body)

;

; var ::= a Lisp symbol

; value ::= a ParenScript expression

; body ::= a list of ParenScript statements

Variables (either local or global) can be declared using the DEFVAR form, which
is similar to its equivalent form in Lisp. The DEFVAR is converted to “var ... =
...” form in JavaScript.

(defvar *a* (array 1 2 3)) => var A = [ 1, 2, 3 ];

(if (= i 1)

(progn (defvar blorg "hallo")

(alert blorg))

(progn (defvar blorg "blitzel")

(alert blorg)))

=> if (i == 1) {

var blorg = ’hallo’;

alert(blorg);

} else {

var blorg = ’blitzel’;

alert(blorg);

}

A more lispy way to declare local variable is to use the LET form, which is
similar to its Lisp form.

(if (= i 1)

(let ((blorg "hallo"))

(alert blorg))

(let ((blorg "blitzel"))

(alert blorg)))

=> if (i == 1) {

var blorg = ’hallo’;

alert(blorg);

} else {

var blorg = ’blitzel’;

alert(blorg);

}

However, beware that scoping in Lisp and JavaScript are quite different. For
example, don’t rely on closures capturing local variables in the way you’d
think they would.

15 Iteration constructs
; (DO ({var | (var {init}? {step}?)}*) (end-test) body)

; (DOTIMES (var numeric-form) body)

; (DOLIST (var list-form) body)

12



; (DOEACH (var object) body)

; (WHILE end-test body)

;

; var ::= a Lisp symbol

; numeric-form ::= a ParenScript expression resulting in a number

; list-form ::= a ParenScript expression resulting in an array

; object ::= a ParenScript expression resulting in an object

; init ::= a ParenScript expression

; step ::= a ParenScript expression

; end-test ::= a ParenScript expression

; body ::= a list of ParenScript statements

The DO form, which is similar to its Lisp form, is transformed into a JavaScript
for statement. Note that the ParenScript DO form does not have a return value,
that is because for is a statement and not an expression in JavaScript.

(do ((i 0 (1+ i))

(l (aref blorg i) (aref blorg i)))

((or (= i blorg.length)

(eql l "Fumitastic")))

(document.write (+ "L is " l)))

=> for (var i = 0, l = blorg[i];

!(i == blorg.length || l == ’Fumitastic’);

i = i + 1, l = blorg[i]) {

document.write(’L is ’ + l);

}

The DOTIMES form, which lets a variable iterate from 0 upto an end value, is a
shortcut for DO.

(dotimes (i blorg.length)

(document.write (+ "L is " (aref blorg i))))

=> for (var i = 0; i < blorg.length; i = i + 1) {

document.write(’L is ’ + blorg[i]);

}

The DOLIST form is a shortcut for iterating over an array. Note that this form
creates temporary variables using a function called JS-GENSYM, which is sim-
ilar to its Lisp counterpart GENSYM.

(dolist (l blorg)

(document.write (+ "L is " l)))

=> {

var tmpArr1 = blorg;

for (var tmpI2 = 0; tmpI2 < tmpArr1.length;

tmpI2 = tmpI2 + 1) {

var l = tmpArr1[tmpI2];

document.write(’L is ’ + l);

};

}

The DOEACH form is converted to a for (var .. in ..) form in JavaScript.
It is used to iterate over the enumerable properties of an object.

13



(doeach (i object)

(document.write (+ i " is " (aref object i))))

=> for (var i in object) {

document.write(i + ’ is ’ + object[i]);

}

The WHILE form is transformed to the JavaScript form while, and loops until
a termination test evaluates to false.

(while (film.is-not-finished)

(this.eat (new *popcorn)))

=> while (film.isNotFinished()) {

this.eat(new Popcorn);

}

16 The ‘CASE’ statement
; (CASE case-value clause*)

;

; clause ::= (value body) | ((value*) body) | t-clause

; case-value ::= a ParenScript expression

; value ::= a ParenScript expression

; t-clause ::= {t | otherwise | default} body

; body ::= a list of ParenScript statements

The Lisp CASE form is transformed to a switch statement in JavaScript. Note
that CASE is not an expression in ParenScript.

(case (aref blorg i)

((1 "one") (alert "one"))

(2 (alert "two"))

(t (alert "default clause")))

=> switch (blorg[i]) {

case 1: ;

case ’one’:

alert(’one’);

break;

case 2:

alert(’two’);

break;

default: alert(’default clause’);

}

; (SWITCH case-value clause*)

; clause ::= (value body) | (default body)

The SWITCH form is the equivalent to a javascript switch statement. No break
statements are inserted, and the default case is named DEFAULT. The CASE
form should be prefered in most cases.

(switch (aref blorg i)

(1 (alert "If I get here"))

(2 (alert "I also get here"))

14



(default (alert "I always get here")))

=> switch (blorg[i]) {

case 1: alert(’If I get here’);

case 2: alert(’I also get here’);

default: alert(’I always get here’);

}

17 The ‘WITH’ statement
; (WITH object body)

;

; object ::= a ParenScript expression evaluating to an object

; body ::= a list of ParenScript statements

The WITH form is compiled to a JavaScript with statements, and adds the ob-
ject object as an intermediary scope objects when executing the body.

(with (create :foo "foo" :i "i")

(alert (+ "i is now intermediary scoped: " i)))

=> with ({ foo : ’foo’,

i : ’i’ }) {

alert(’i is now intermediary scoped: ’ + i);

}

18 The ‘TRY’ statement
; (TRY body {(:CATCH (var) body)}? {(:FINALLY body)}?)

;

; body ::= a list of ParenScript statements

; var ::= a Lisp symbol

The TRY form is converted to a JavaScript try statement, and can be used to
catch expressions thrown by the THROW form. The body of the catch clause is
invoked when an exception is catched, and the body of the finally is always
invoked when leaving the body of the TRY form.

(try (throw "i")

(:catch (error)

(alert (+ "an error happened: " error)))

(:finally

(alert "Leaving the try form")))

=> try {

throw ’i’;

} catch (error) {

alert(’an error happened: ’ + error);

} finally {

alert(’Leaving the try form’);

}

15



19 The HTML Generator
; (HTML html-expression)

The HTML generator of ParenScript is very similar to the HTML generator in-
cluded in AllegroServe. It accepts the same input forms as the AllegroServer
HTML generator. However, non-HTML construct are compiled to JavaScript
by the ParenScript compiler. The resulting expression is a JavaScript expres-
sion.

(html ((:a :href "foobar") "blorg"))

=> ’<a href=\"foobar\">blorg</a>’

(html ((:a :href (generate-a-link)) "blorg"))

=> ’<a href=\"’ + generateALink() + ’\">blorg</a>’

We can recursively call the JS compiler in a HTML expression.

(document.write

(html ((:a :href "#"

:onclick (js-inline (transport))) "link")))

=> document.write

(’<a href=\"#\" onclick=\"’ + ’javascript:transport();’ + ’\">link</a>’)

Forms may be used in attribute lists to conditionally generate the next attribute.
In this example the textarea is sometimes disabled.

(let ((disabled nil)

(authorized t))

(setf element.inner-h-t-m-l

(html ((:textarea (or disabled (not authorized)) :disabled "disabled")

"Edit me"))))

=> {

var disabled = null;

var authorized = true;

element.innerHTML =

’<textarea’

+ (disabled || !authorized ? ’ disabled=\"’ + ’disabled’ + ’\"’ : ’’)

+ ’>Edit me</textarea>’;

}

; (CSS-INLINE css-expression)

Stylesheets can also be created in ParenScript.

(css-inline :color "red"

:font-size "x-small")

=> ’color:red;font-size:x-small’

(defun make-color-div(color-name)

(return (html ((:div :style (css-inline :color color-name))

color-name " looks like this."))))

=> function makeColorDiv(colorName) {

return ’<div style=\"’ + (’color:’ + colorName) + ’\">’ + colorName

+ ’ looks like this.</div>’;

}

16



20 Macrology

; (DEFJSMACRO name lambda-list macro-body)

; (MACROLET ({name lambda-list macro-body}*) body)

; (SYMBOL-MACROLET ({name macro-body}*) body)

; (JS-GENSYM {string}?)

;

; name ::= a Lisp symbol

; lambda-list ::= a lambda list

; macro-body ::= a Lisp body evaluating to ParenScript code

; body ::= a list of ParenScript statements

; string ::= a string

ParenScript can be extended using macros, just like Lisp can be extended us-
ing Lisp macros. Using the special Lisp form DEFJSMACRO, the ParenScript
language can be extended. DEFJSMACRO adds the new macro to the toplevel
macro environment, which is always accessible during ParenScript compila-
tion. For example, the 1+ and 1- operators are implemented using macros.

(defjsmacro 1- (form)

‘(- ,form 1))

(defjsmacro 1+ (form)

‘(+ ,form 1))

A more complicated ParenScript macro example is the implementation of the
DOLIST form (note how JS-GENSYM, the ParenScript of GENSYM, is used to
generate new ParenScript variable names):

(defjsmacro dolist (i-array &rest body)

(let ((var (first i-array))

(array (second i-array))

(arrvar (js-gensym "arr"))

(idx (js-gensym "i")))

‘(let ((,arrvar ,array))

(do ((,idx 0 (++ ,idx)))

((>= ,idx (slot-value ,arrvar ’length)))

(let ((,var (aref ,arrvar ,idx)))

,@body)))))

Macros can be defined in ParenScript itself (as opposed to Lisp) by using the
ParenScript MACROLET and ’DEFMACRO’ forms. ParenScript also supports
the use of macros defined in the underlying Lisp. Existing Lisp macros can
be imported into the ParenScript macro environment by ’IMPORT-MACROS-
FROM-LISP’. This functionality enables code sharing between ParenScript and
Lisp, and is useful in debugging since the full power of Lisp macroexpanders,
editors and other supporting facilities can be used. However, it is impor-
tant to note that the macroexpansion of Lisp macros and ParenScript macros
takes place in their own respective environments, and many Lisp macros (es-
pecially those provided by the Lisp implementation) expand into code that
is not usable by ParenScript. To make it easy for users to take advantage
of these features, two additional macro definition facilities are provided by

17



ParenScript: ’DEFMACRO/JS’ and ’DEFMACRO+JS’. ’DEFMACRO/JS’ de-
fines a Lisp macro and then imports it into the ParenScript macro environ-
ment, while ’DEFMACRO+JS’ defines two macros with the same name and
expansion, one in ParenScript and one in Lisp. ’DEFMACRO+JS’ is used when
the full ’macroexpand’ of the Lisp macro yields code that cannot be used by
ParenScript. ParenScript also supports symbol macros, which can be intro-
duced using the ParenScript form SYMBOL-MACROLET. A new macro environ-
ment is created and added to the current macro environment list while com-
piling the body of the SYMBOL-MACROLET form. For example, the ParenScript
WITH-SLOTS is implemented using symbol macros.

(defjsmacro with-slots (slots object &rest body)

‘(symbol-macrolet ,(mapcar #’(lambda (slot)

‘(,slot ’(slot-value ,object ’,slot)))

slots)

,@body))

21 The ParenScript Compiler

; (JS-COMPILE expr)

; (JS-TO-STRINGS compiled-expr position)

; (JS-TO-STATEMENT-STRINGS compiled-expr position)

;

; compiled-expr ::= a compiled ParenScript expression

; position ::= a column number

;

; (JS-TO-STRING expression)

; (JS-TO-LINE expression)

;

; expression ::= a Lisp list of ParenScript code

;

; (JS body)

; (JS-INLINE body)

; (JS-FILE body)

; (JS-SCRIPT body)

;

; body ::= a list of ParenScript statements

The ParenScript compiler can be invoked from withing Lisp and from within
ParenScript itself. The primary API function is JS-COMPILE, which takes a
list of ParenScript, and returns an internal object representing the compiled
ParenScript.

(js-compile ’(foobar 1 2))

=> #<JS::FUNCTION-CALL {584AA5DD}>

This internal object can be transformed to a string using the methods JS-TO-STRINGS
and JS-TO-STATEMENT-STRINGS, which interpret the ParenScript in expres-
sion and in statement context respectively. They take an additional parameter
indicating the start-position on a line (please note that the indentation code is
not perfect, and this string interface will likely be changed). They return a list
of strings, where each string represents a new line of JavaScript code. They can
be joined together to form a single string.

18



(js-to-strings (js-compile ’(foobar 1 2)) 0)

=> ("foobar(1, 2)")

As a shortcut, ParenScript provides the functions JS-TO-STRING and JS-TO-LINE,
which return the JavaScript string of the compiled expression passed as an ar-
gument.

(js-to-string ’(foobar 1 2))

=> "foobar(1, 2)"

For static ParenScript code, the macros JS, JS-INLINE, JS-FILE and JS-SCRIPT
avoid the need to quote the ParenScript expression. All these forms add an
implicit PROGN form around the body. JS returns a string of the compiled
body, where the other expression return an expression that can be embed-
ded in a HTML generation construct using the AllegroServe HTML genera-
tor. JS-SCRIPT generates a “SCRIPT” node, JS-INLINE generates a string
to be used in node attributs, and JS-FILE prints the compiled ParenScript
code to the HTML stream. These macros are also available inside ParenScript
itself, and generate strings that can be used inside ParenScript code. Note that
JS-INLINE in ParenScript is not the same JS-INLINE form as in Lisp, for
example. The same goes for the other compilation macros.

19


