Flexichain: An editable sequence and its gap-buffer
implementation

Robert Strandh (LaBR), Matthieu Villeneuve, Timothy Moore (LaBRI)

2004-04-05

Abstract

Flexichain is an API for editable sequences. Its primary use is in erd-us
applications that edit sequences of objects such as textredcharacters),
word processors (characters, paragraphs, sectionssete} editors (notes,
clusters, measures, etc), though it can also be used askaasid@ double-
ended queue.

We also describe an efficient implementation of the API inftren of a cir-
cular gap buffer. Circularity avoids a common worst case ashimplemen-
tations, makes queue operations efficient, and makes wasstperformance
twice as good as that of ordinary implementations

1 Introduction

Editable sequences are useful, in particular in interacpplications such as text
editors, word processors, score editors, and more. In qualications, it is highly
likely that an editing operation is close to the previous,aneasured as the dif-
ference in positions in the sequence. This statistical \behaakes it feasible to
implement the editable sequence as a gap buffer[Fin91].

The basic idea is to store objects in a vector that is usuaiigdr than the number
of elements stored in it. For a sequence\bélements where editing is required at

*Laboratoire Bordelais de Recherche en Informatique, BomlgFrance



indexi, element$) throughi are stored at the beginning of the vector, and elements
i+ 1 throughN — 1 are stored at the end of the vector. When the vector is longer
N, this storage leavesg@ap. Editing operations always result in modifications at
the beginning or at the end of the gap.

Occasionally, the gap has to be moved, or rather, some eternave to be moved
S0 as to leave the gap where the next editing operation iredesi the worst case,
i.e., that of an alternating sequence of editing operatairthie beginning and at
the end of the sequence, every element needs to be moved: Wddh be argued
that this case does not happen very frequently, it unfotelyp@orresponds to op-
erations that might be reasonable in some clients, namsion of the elements
or the use of the sequence agugue.

The kind of worst-case behavior described in the previouagyaph can be avoided
by the use of a doubly-linked list rather than a gap bufferntgplement the se-
guence. Unfortunately, the doubly-linked list has unatalelp storage overhead
for small objects such as characters (a factor 8-16 acapririhe word size of

the machine and the implementation of the memory allocatdbojts (a factor 128-

256).

2 Previouswork

We are not the first ones to consider the problem of editalyjeesees for interac-
tive applications[Fin91].

Multics Emacs [Gre96] [Gre80] used a doubly-linked listiaEk of text. Each line
was a vector of characters. A new vector type was added toidduMaclisp for
the purpose. The new type used complex instructions of tHenlying architecture
that allowed an arbitrary sequence of bytes to be moved wsihgle instruction.
While this implementation was fine for most text editing, @aspainfully slow for
editing files with few newlines, since a considerable nunifebytes had to be
moved for each editing operation. Today’s hardware is 10084 faster than what
Multics ran on, so this implementation might be acceptabtiay, even though
most processors might not have the specialized instrigtiequired so it would
have to be implemented in software.

GNU Emacs [LLS02] stores the entire buffer as a big gap baffetescribed in the
introduction. This implementation avoids bad worst-casfedvior for long lines of
text. On the other hand, it introduces a different, potdgtimore serious, worst-



case requiring every single character in the buffer to beaddur the alternating
sequence of editing operations described in the introduoicti

Hemlock [CM89] (the Emacs-like editor distributed with CMIU) uses a se-
guence of lines. Lines can be stored in different places agpeot strings, and
one of the lines (the open-line) is represented as a gaprbiifies implementation
largely avoids the worst case of GNU Emacs, at least for arglitext with lines

of relatively modest length.

Goatee (the Emacs-like editor of McCLIM [SM02]) uses a dgtlbiked list of
lines, each line being a gap buffer.

Gsharp [Str02], the interactive editor for music scoregremily uses ordinary
singly-linked Lisp lists, since the score is divided inttat&rely few smaller units

corresponding to musical phrases. Still, this impleméarantroduces some seri-
ous worst-case behavior that we would like to avoid.

It is interesting to notice that the sequence of lines usé&adatee (and in Hemlock
and probably elsewhere as well) is just a version of an dditsdquence with the
implementation exposed.

3 Flexichain: an API for editable sequences

The Flexichain API grew out of the need for code factoringusetn different ap-
plications (especially Goatee and Gsharp, but hopefullynldek as well), and
sometimes between different parts of one application.

To provide maximum flexibility for potential clients, we dded to divide the API

in two different layers: Fexichain and Cursorchain. Thexklgain layer provides
editing operations based @ositions represented as integers, whereas the Cursor-
chain layer introduces the possibility of an arbitrary nembf cursors into the
editable sequence.

3.1 Thebasiclayer: Flexichain

The basic layer provides editing operations based on theepbof aposition.

For an insert operation, a position is an integer betwieand N inclusive, where
N is the length of the sequence. In general, a valué iaflicates the position



before element numbef in the sequence, except of course whea N and there
is no element. In this case, the position indicates the end of the sequefce
reasons that will be explained in the next section, we agtymbvide two insert
operations nsert <* andi nsert >* that are entirely equivalent when only the
basic layer is used.

For a delete operation, a position is an integer betviegnd N — 1 and indicates
the element number of the element to be deleted.

The basic layer also provides operations for accessingegidaing an element at
an arbitrary position in the sequence, as well as operati@tdreats the sequence
as a stack, a linear double-ended queue, or a circular queue.

Some relatively simple applications can use the basic ldirectly. The main
inconvenience of the basic layer is that the position of @meht changes as a
result of editing operations at lower positions in the segee

3.2 The second layer: Cursorchain

Complex applications such as multi-window text editorsche®manage several
positions in the sequence such that these positions refee tsame element inde-
pendently of any editing operations in other places in tlygisace.

For that reason, the second layer introduces the conceptufar. A cursor is
similar to thepoint or amark of Emacs. It is positioned either at the beginning of
the sequence, at the end of the sequence, or between twoneleitiee sequence.

All the operations of the basic layer can be used on instapioesrsorchain.

While it is straightforward to determine what happens tom@uwhen an element

is deleted, it is not clear what happens when an element éstats at a position
occupied by one or more cursors. There are actually two Ipiiiss: either the
element is insertetiefore the cursors (i.e., between the cursors and the element
that precedes them) so that the cursors end up at a positarthe newly inserted
element, or the element is insertaiter the cursors (i.e., between the cursors and
the element that succeeds them) so that the cursors end yjositian before the
newly inserted element.

Different applications might want different behavior wittspect to insertion, and
some applications (this is the case with Gsharp) might waetlzehavior in one
part of the buffer representation and another behavior iiffereint part. For that



reason, we provide two different insert operationsser t < for the first case and
i nsert > for the second case. As indicated in the previous secti@ne thre two
insert operations in the basic layer as well, simply bec#usse operations might
be used on a cursorchain and the behavior of potential Guestothe insertion
position must be specified.

Since cursors are never conceptually positioned on a pkatielement, we provide
two different delete operations to delete elements befodeadter the cursor, and
two different operations for accessing and replacing amefd with respect to the
cursor (before it and after it).

We also provide operations to move the cursor forward an#viaa by an ar-
bitrary number of positions, to translate between a cursdrie position, and to
determine whether the cursor is at the beginning or at theoétite sequence.

4 Implementation of the API

In order to avoid the worst-case behavior of a buffer impletaton of the type
used by GNU Emacs, we usecacular gap buffer. Thus, the first and the last
element of the underlying vector are considered contiguand the first element of
the sequence is not necessarily the first element of the lyimdgrector. We keep
track of the first element by introducing another slot in theess that represents the
Flexichain.

4.1 Implementing the basic layer

There are two main considerations with regard to the implaat®n of the ba-
sic layer, namely when and how to change the size of the vélcadrholds the
sequence, and how to move the gap.

4.2 Changing the size of the vector

Whenever and insert operation is issued on a FlexichainigHall (i.e., the size
of the vector holding the sequence has the same length asdoerse itself),
its underlying vector must be extended. In order to maint@iear worst-case
complexity of a sequence of editing operations, we must thehiply the size of



a vector by a constant (called tkepand factor rather than adding a fixed number
of elements.

Each resize operation requires all the elements to be métisdherefore desirable
to avoid resize operations as much as possible. For thainrgiss advantageous
to have a large expand factor. On the other hand, in orderdio avasted space, it
is desirable to have a small expand factor.

We use a default expand factor of 1.5 with the possibility dieent code to alter
it. Applications that manipulate sequences that varglitillength can use a small
expand factor to minimize overhead, while applicationg tise relatively small
sequences the length of which vary a lot can use a larger dxXpator.

The vector has to be expanded as a result of an insert opedatia full Flexichain.
It is particularly easy to move the gap in this case (no eléaseeed to be moved).
For that reason, in this case we first move the gap and theméxpa vector.

To avoid too much overhead when the number of elements indbeence de-
creases, we occasionally have to shrink the vector. In dodavoid having to im-
mediately expand it again in case of more insert operatiemghssued, we only
shrink the vector when the ratio between the length of théovemd the length of
the sequence is greater than the square of the expand factor.

Shrinking the vector preserves the position of the gap.

4.3 Movingthe gap

Perhaps the most complex part of implementing the basie layaoving the gap
when an editing operation (insert or delete) is issued as#ipn other than that of
the gap.

There are three different possible configurations of thevgtiprespect to the data.
Figure 1 shows the case where both the gap and the data aiguomst Figure 2
shows the case where the data is not contiguous. Finallyefigshows the case
where the gap is not contiguous.

We make sure we always move the minimum number of elementsreggby
moving the gap in either of the two directions possible.

It turns out that there are five different cases of combimatioetween the configu-
rations of the gap and the position of the editing operatian heed to be taken into
account. Two of the five cases need a single call to the Lisptifumr epl ace,

6



Figure 1: Gap and data are both contiguous

Figure 2: Data is not contiguous

two more require two calls, and one case requires three calls

4.4 I mplementing the second layer

The main difficulty in implementing the second layer lies lie tvay cursors are
managed. It is necessary for the implementation to accéssrabrs in order to
be able to update their corresponding positions as the segqugaltered. To avoid
memory leaks, we use weak references to store the cursotbaswhen client
code no longer refers to a cursor, we can detect that.

Perhaps the most natural implementation of cursors woultb &ore the corre-
sponding position in the sequence, and update that positi@mever an editing
operation with a smaller position is issued. However, suthnaplementation
would make the complexity of editing operations proporiboto the number of
cursors into the sequence which is not desirable.

Instead, we storéndexes into the underlying vector. This way, we can split the
cursors into three sets according to whether they are posili before, at, or after

Figure 3: Gap is not contiguous



the gap (although we have not implemented this possibi&ty. yOnly cursors that
are at the gap potentially need to be altered after an edifregation. All other
cursors remain unchanged. Instead, cursors are updateessliaof moving the

gap.

Cursor updates are implemented d&f or e, : af t er, and: ar ound, methods

on the generic functions in the basic layer that handle ntpthe gap and chang-
ing the size of the vector. These operations constitute tnnal protocol of the

Flexichain library and is not part of external API.

5 Conclusions and future work

We believe we have a good APl and a high quality implemeniaifat. We would

be interested in seeing our code used in a variety of exigtiogcts, in particularly
Goatee and Gsharp, but also in similar projects such as lH®rtéemlock and
others.

A typical text editor such as Goatee or Hemlock could useiéfeins (or rather
Cursorchains) to implement both the sequence of lines oftec the sequence of
characters within each line.

Gsharp will use Flexichains for all the levels (currentlydd)its buffer protocol,
which will both simplify the code and improve performancesiderably.

The Flexichain APl and its implementation are both well doeanted, making it
easier for potential clients to take advantage of it.

References

[CMB9] Bill Chiles and Rob MacLachlan. Hemlock Command lempkntor’'s
Manual. Technical Report CMU-CS-89-134-R1, School of Cotap
Science, Carnegie Mellon University, 1989.

[Fin91] Craig A Finseth.The Craft of Text Editing. Springer-Verlag, 1991. Also
available ahtt p: // ww. fi nseth. confcraft.

[Gre80] Bernard S Greenberg. Prose and CONS: A CommerciaPi®cessing
System in Lisp. IrProceedings of the 1980 Lisp Conference, 1980.



[Gre96] Bernard S Greenberg. Multics Emacs: The Historysifre and Im-
plementation. Technical report, http://www.multicisorg/mepap.html,
1996.

[LLSO2] Bil Lewis, Dan LaLiberte, and Richard Stallma@NU Emacs Lisp Ref-
erence Manual. Free Software Foundation, January 2002.

[SM02] Robert Strandh and Tim Moore. A Free ImplementatibiCblM. In
Proceedings of the International Lisp Conference, October 2002.

[Str02] Robert Strandh. Gsharp, an Extensible, Interac@igore Editor. IfPro-
ceedings of the International Lisp Conference, October 2002.



