

ECL
=

(not only) Embeddable
Common Lisp

Juan José García Ripoll

http://ecls.sourceforge.net

Outline

● Introduction

● ECL's family tree and history

● ECL's current philosophy & design

● Salient features

● Future trends

● Outlook & questions

About the maintainer

● Self-educated in different languages

Lisp/Scheme, C, C++, ML...

● Work heavily focused on numerical analysis

MATLAB, Yorick, ...

● Came to lisp searching for interactive environments
that could evolve into numerical programming ones

Scheme, ML, CMUCL, GCL, EcoLisp, ...

● Some experience on free projects

ECL, OS/2 Gnu ports, Doom port, ...

ECL Family tree

KCL

AKCL

GCL

EcoLisp

ECLS

EcoLisp

ECL
JJGR

1st implementation of CLT.
Yuasa and M. Hagiya

W. Schelter

W. Schelter

GCL Team

Projects merge

G. Attardi

Traditional *CL design

Operating System

Lisp image

Support
Library (C)

Interpreter (C)

Compiled
Lisp code

Interpreted
Lisp Code

(lists)

DATA

● Big chunk of memory
contains everything

● A core is written in C
manually.

● Lisp code compiled to C
by a compiler written in
lisp.

● Binaries loaded as data

● Whole image can be
dumped and restored.

Traditional *CL design

Pros:

✔ Portable (C) backend.

✔ Fast loading of images.

✔ Full control of memory &
any GC strategy.

✔ It follows “tradition”

Cons:

✗ What is portable C?

✗ Low-level knowledge of
each OS

✗ Randomized memory,
non-exec memory...

✗ Need to talk to other
libraries.

✗ Maintainability

ECL's new design

Operating System

Support
Library (C) Interpreter (C)

Compiled
Lisp code

Interpreted
Lisp Code

(bytecodes)DATA

User's FASL
or programs

Foreign
libraries

ECL's design

Operating System

DATA

Foreign
libraries

● Lisp has to coexist with
other libraries.

● ECL knows about foreign
datatypes.

● We know how to find and
talk to those libraries

● OS will not allow us full
control of memory.

● GC can be performed by
external libraries.

ECL's design

● Binary and data
separate

● Pack everything into
a standalone library

● Library can be used
from other binaries /
applications

● Similar to C (C++)
philosophy

● Comes with a
bytecodes interpreter
and compiler

Operating System

Interpreted
Lisp Code

(bytecodes)
DATA

ECL Core
Common-Lisp
library

ECL's design

Operating System

Interpreted
Lisp Code

(bytecodes)
DATA

User's FASL
or programs

● Compiled files are
just binaries loaded
by the OS.

● They are linked to the
ECL library

– lisp objects creation
and manipulation

– talk to other binaries

● No difference bw.
embedding ECL and
its ordinary use.

Portability

● Memory management delegated to a GC library

● Use of standard C compilation and linking facilities

● Minimalistic assumptions on architecture

– We can make pointer ⇆ integer conversions

– C functions can be called with any # arguments

● Anything nonportable is optional & detected at
configuration time.

– Binary file handling using OS facilities if available
● dlopen, Mach Kernel, etc

– Sockets, CLX, long floats, ...

Portability

● Memory management delegated to a GC library

● Use of standard C compilation and linking facilities

● Minimalistic assumptions on architecture

– We can make pointer ⇆ integer conversions

– C functions can be called with any # arguments

● Anything nonportable is optional & detected at
configuration time.

– Binary file handling using OS facilities if available
● dlopen, Mach Kernel, etc

– Sockets, CLX, long floats, ...

Linux, Net/Free/OpenBSD,
Windows' MSVC++,

Cyg/Mingwin,
Mac OS X, Solaris...

Intel 32/64 bits, PPC,
Sparc, ARM...

Wishlist: Cell(PS3),
AIX, iPhone

Compiled code

● One C function per lisp
function.

● Use of standard C
constructs.

● Up to 64 args in C stack,
rest in interpreter stack.

● Return first value directly,
rest in a thread-local array.

● Also closures, unboxed
types, inlined C code...

cl_object
cl_negate(cl_object x)
{

cl_object y =
ecl_minus(MAKE_FIXNUM(0),

 x);
NVALUES = 1;
return (VALUES(0)=x);

}

cl_object
cl_floor(cl_narg narg, ...)
{

cl_va_list args;
cl_va_start(args,narg,0,narg);

 ...
NVALUES = 2;
VALUES(1) = rem;
return (VALUES(0)=div);

}

Interpreter

● Interpreter, compiler, code
walker, stepper & tracer in
under 4kloc.

● Handles all special forms

● Support for some macros
such as do, dotimes,...

● The C library supplies
object handling functions.

● Lisp library adds macros
and remaining functions.

✗ Uses 45 bytecodes, but
only about 20 essential

> (defun plus1 (x) (+ x 1))
> (si:bc-disassemble #'plus1)
Name: PLUS1
Required: X
Documentation: NIL
Declarations: NIL
 0 BLOCK 11,PLUS1
 3 PUSHV 1
 5 PUSH '1
 7 CALLG 2,+
 10 EXIT FRAME
 11 EXIT

✗ Very stable, but can be
improved.

Memory management

● Can be completely abstracted

– alloc_atomic(), alloc(), finalization registration,...

● Currently focused on Boehm-Weiser GC

– Conservative → works well with foreign libraries

– Fast, supports heavy loads

– Used in other projects: GCJ, w3m, ...

– We still do not use 100% potential

● But you could plug in your favourite GC library

Data representation (0.9k)

pointer to CONS 10

character code 01

fixnum 11

pointer to object 00

32/64.. bit 1

Two bits of information contain some
type information and distinguish
immediate types.

Large enough to fit most of Unicode
characters: 30 bits

Immediate integers.

All other boxed types: bignums, arrays,
instances, functions, ...

Data representation (0.9k)

pointer to CONS 10

character code 01

fixnum 11

pointer to object 00

32/64.. bit 1

CAR

CDR

CAR

HEADER

Other dataNote that there are objects of various
sizes, containing also references.

Rest of type information, bits for some
flags and also information for GC.

No type information / overhead

Data representation (0.9k)

ECL 0.9j ECL 0.9k CLISP 2.43 SBCL 1.0.10
0

5

10

15

Time (m)

Consed (Gb)

Performance of Paul Dietz's ANSI Common Lisp, with various implementations,
all tested in a Mac OS X 10.4.8 (Tiger)

-20%
-40%

Data representation (0.9k)

ECL 0.9j ECL 0.9k CLISP 2.43 SBCL 1.0.10
0

5

10

15

Time (m)

Consed (Gb)

Performance of Paul Dietz's ANSI Common Lisp, with various implementations,
all tested in a Mac OS X 10.4.8 (Tiger)

-20%
-40%

NIL is fixed word

Smaller CONS

Safety dropped
to get here

We can learn
from this GC!

SUBTYPEP: Type lattice

● Following Henry Baker's paper, types are represented
as sets, with some types being elementary.

● To each set a binary tag is associated

– (tag (AND T1 T2)) = (LOGIAND (tag T1) (tag T2))

– (tag (OR T1 T2)) = (LOGIOR (tag T1) (tag T2))

– (tag (NOT T1)) = (LOGNOT (tag T1))

● SUBTYPEP only fails with recursive types

– T1 = (OR (CONS INTEGER T1) NIL)

● Works with CLOS.

CLOS

● ECL's implementation derives from a stripped down
Portable Common Loops (PCL)

● We have redesigned and extended everything

– Remember to avoid use of COMPILE!

● Everything in ANSI specification is now provided:

– standard classes and objects

– generic functions

– complex method combinations

● Everything in AMOP, except for custom dispatch.

CLOS dispatch

● Thread local method dispatch cache, shared by all
generic functions

– It can be larger and thus more efficient

– It cleans itself based on a generation counter

● Function call objects

– Collect arguments to a generic function

– Are passed around without further consing

– Can be efficiently used to invoke a C function

– Dynamic extent

Environments

● Contain roots to all data

● One global environment

– packages, symbols, list
of libraries, etc.

● One environment per
execution line

– Stacks, bindings, lexical
environment...

● Might be sandboxed at
different levels.

cl_global

cl_env (1)

interp. stack

bind stack

printer stack

cl_env (2)

Multithreading

● Native POSIX threads

● Each thread has access
to its own environment

● Global variable bindings
in a hash

– Not too inefficient

● Still a lot to improve:

– Signals, safety...

cl_global

cl_env (1)

interp. stack

bind stack

printer stack

cl_env (2)

mp:process

Binary files

● One entry function.

● Constants in text form.

● Each binary associated
to a lisp structure.

● When all functions are
garbage collected, the
binary file is as well.

● If the binary file was in a
DLL, it is closed.

● Completely independent
of binaries' purpose.

ecl_codeblock

data string

lisp data
array

entry point

DLL handle /
file name

function

System building: bootstraping

● The ECL interpreter can
handle all Common Lisp.

● Core functionality provided
by C library.

● Rest by the lisp library
interpreted.

● With this we can run the
compiler and compile the
whole library.

● Extremely robust

ecl_min

Core
library

Lisp
lib. files

libecl.so / libecl.a

Bytecodes
interpreter

Lisp 2 C
compiler

Compiled
lisp lib.

Object
files

Other
flags / libs

System building

● ECL knows about the
linking abilities of each
system

– no libtool (sucks!)

● A function links object
files creating

– programs

– static libraries

– shared libraries

– bundles (FASL)

C:BUILDER

Program
Shared/
static lib

FASL

System building

(require 'c)

(defvar *sources*
 '("file1.lsp" "file2.lsp"))

(defvar *objects*
 (loop for i in *sources*
 collect (compile-file i :system-p t)))

(c::builder :program "test"
 :lisp-files *objects*
 :epilogue-code '(format t "~%CLOSING~%"))

ASDF
Other

flags / libs

System building

● Similar features built into
our port of ASDF

● MAKE-BUILD takes a
system definition file and
builds programs,
libraries, FASL

● Can build monolithic
systems containing all
dependencies.

● Still under development

ASDF:MAKE-BUILD

Program
Shared/
static lib

FASL

System building

(require 'asdf)
(require 'c)

(asdf:defsystem test
 :components
 ((:file "file1")
 (:file "file2")))

(asdf:make-build :test :type :program
 :epilogue-code '(format t "~%CLOSING~%"))

FFI = foreign functions & callbacks

Way 1: use C

● Generate wrappers for
each function.

● Code to translate lisp
object into C and
viceversa.

● Portable.

● Not so much space
efficient.

Problems:

● Lispers themselves:

– too “static”

– wrappers must be
compiled.

● Wrong assumptions out
there:

– vararg C functions are
just like ordinary ones

FFI = foreign functions & callbacks

Way 2: use assembler

● Code that invokes
arbitrary functions.

● Only requires the
“signature” of the
function.

● Rather fast.

Problems:

● Not portable: low level
details of API.

● Non-exec memory.

● Really gory details about
registers and argument
passing: ABI

FFI = foreign function interface

● Both backends with choice at run time

– C interface is provided everywhere.

– Assembler only for Intel 32 and 64 bits API.

● High level interface is UFFI

– Quasi standard when developed

– Reasonably featured. Supports C interface very well.

● Allows most of CFFI

– ECL provides callbacks, which are outside UFFI.

– More problems regarding hidden assumptions.

Embedding: ECL in 12 lines

#include <ecl/ecl.h>

int
main(int narg, char **argv) {
 const char *lisp_code = “(si:top-level)”;
 cl_object output;

 cl_boot(narg, argv);

 si_select_package(make_simple_base_string("CL-USER"));
 output = cl_safe_eval(c_string_to_object(lisp_code), Cnil,

 OBJNULL);

 cl_shutdown();
 return (output != OBJNULL);
}

The road ahead...

The simple things

● Finish AMOP support

– User defined dispatch

● Finish ASDF system
building interface.

● Programatic API to the
interpreter & debugger

● Polish C interface

● ECL deployment w.o.
compiler

→From 2 to 4 man-week

→From 1 to 2 man-week

→About 1 month
Needed by Slime

→About 1 month + doc time

→Couple of days.

Streams & Unicode

● Move from using C FILE
to using open(), read()...

● Implement own buffering
techniques.

● Implement input/output
formats.

● Redesign streams as
CLOS objects.

➔ Faster & more flexible
I/O strategies

➔ Needed for Unicode.

➔ UTF-8, ISO-Latin,...

➔ Simple streams? Gray?

➔ Easier extensibility.

➔ Requires faster dispatch.

Lisp2C compiler

● Clean up code

● Introduce environments

● Better type inference

● Unboxed functions and
data, with less consing.

● Improve usability

➔ Still a lot of legacy code

➔ Branch local type info.

➔ Access to compiler info.

➔ Database for CL library.

➔ Clean environment

➔ Use conditions

➔ Better specified behavior

Function calls optimization

● Implement call dispatch using assembler:

– Currently a big C switch statement & too many layers

– Should be faster and avoid duplication of data in stack

● Improve CLOS dispatch

– Specialized functions for single object dispatch

– More efficient method combinations

● Improve interpreter

– Should use tail call optimizations

– Handle calls to interpreter functions without recursion

Image dumper

● ECL has two nice features:

– It knows the structure of all its data

– It knows the set with all its data

● It is possible to dump all memory data into a file with a
relocatable format

– The equivalent of “lisp image dump”

– Works with randomized memory and even if ECL does
not have control where data will reside

● The data format and serializer routines have already
been developed.

Some wild ideas

● Lisp objects with C unboxed types

– All objects are CLOS / DEFSTRUCT extensible

● JIT using Tiny C (TCC)

– Functions are compiled to machine code on the run

● Embedding experiments: Xemacs

– Already merged Boehm-Weiser gc in Xemacs (2 nights)

– Would probably simplify Xemacs codebase a lot

– Initially both languages can coexist.

– Then, with minor changes to interpreter, ECL takes over

Need for a “community”

● ECL evolved through periods of one-man maintenance

– Personal circumstances (job, country switch) slowed
development for two years.

● We have had successful “private” collaborations

– Contributions from companies that use ECL

– Good license for doing so: LGPL

● A single developer does not have such a wide scope

– Restricted kind of skills: no web, no GL, no UI

– Different motivations & interests

Conclusions

● ECL is a complete Common Lisp implementation.

● Embedability is an option, not a limitation.

● ANSI compliance and evolving bells & whistles

● Powerful framework for developing and distributing
applications.

● Extremely portable, with little and well isolated system
dependencies.

● Its future strongly depends on how the community
reacts & contributes.

