
E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

ECL

Embeddable Common-Lisp

Juan José García-Ripoll
http://ecls.sourceforge.net

worm@arrakis.es



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

ECL

Embeddable Common-Lisp

Juan José García-Ripoll

Max-Planck-Institut for Quantum Optics
Munich, Germany



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Personal backround:

I Self-educated in varios programming languages

BASIC, Assembler, Logo, Pascal, C



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Personal backround:
I Self-educated in varios programming languages

BASIC, Assembler, Logo, Pascal, C

I Scientific computing for job

Functional programing, interpreted
languages: MATLAB, Mathematica,

Yorick. . ..



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Personal backround:
I Self-educated in varios programming languages

BASIC, Assembler, Logo, Pascal, C

I Scientific computing for job

Functional programing, interpreted
languages: MATLAB, Mathematica,

Yorick. . ..

I Experience on free software

GNU autoconf, XFree86 & Doom on OS/2



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Personal backround:
I Self-educated in varios programming languages

BASIC, Assembler, Logo, Pascal, C

I Scientific computing for job

Functional programing, interpreted
languages: MATLAB, Mathematica,

Yorick. . ..

I Experience on free software

GNU autoconf, XFree86 & Doom on OS/2

I Some spare time. . .



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Where ECL comes from



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Family tree:

KCL

AKCL ECL

GCL

ECLs

ECL

?

?



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Some names:

I Kyoto Common Lisp

Taiichi Yuasa
Masami Hagiya

I Austin KCL, GNU CL

William F. Schelter
I EcoCL (ECL)

Giuseppe Attardi



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The old ECL model



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The architecture:

Interpreter

Compiled
code

Supp.

library

Dumped image

Data



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The Lego pieces:

I Supporting C functions

To create & manipulate Lisp objects.

I An interpreter

Code as lists, walked at evaluation time

I A compiler to C

Object files may be loaded.

I A memory dumper

Code and data may be dumped.
The resulting image may be executed.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The interpreter:

I Code is stored as lists.

I Lists are walked at evaluation time.

I Environments are nested lists of variables.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The interpreter:

I Code is stored as lists.

I Lists are walked at evaluation time.

I Environments are nested lists of variables.

Pros & Cons:

− Unsafe.

− Inefficient in space & time.

− Nonstandard macroexpansion.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The interpreter:

I Code is stored as lists.

I Lists are walked at evaluation time.

I Environments are nested lists of variables.

Pros & Cons:
− Unsafe.

− Inefficient in space & time.

− Nonstandard macroexpansion.

+ Macro dependencies are resolved.

+ The C stack is the interpreter stack.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The C compiler:
Given that the interpreter is written in C, lisp code may
be translated to a sequence of calls to the supporting
C code.

static object LI3(object V24)

{ VMB3 VMS3 VMV3
base[1]= (V24);
vs_top=(vs_base=base+1)+1;

Limagpart();

...
vs_top=sup;
{object V25 = vs_base[0];
VMR3(V25)}

}

However, we would like these functions to be easily
used by the C programmer.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Creating Lisp images:
Basically, the content of data and code segments is
dumped to a file, in executable format.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Creating Lisp images:
Basically, the content of data and code segments is
dumped to a file, in executable format.

+ Very fast startup sequences



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Creating Lisp images:
Basically, the content of data and code segments is
dumped to a file, in executable format.

+ Very fast startup sequences

− Highly nonportable techniques

− Executable formats become obsolete

− No sharing of code (DLLs)



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

ECL now



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The ECL architecture

User C/C++
code

Compiled
Lisp code

InterpreterSupp.

library

ECL library

Compiled
CL basis

ECL library
+

=

+

Program



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 1: Portability
We achieve portability using the ANSI C language, and
the ANSI C and POSIX libraries:

Linux, Mac OSX, FreeBSD,
NetBSD & OpenBSD, i386 & PPC



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 1: Portability
We achieve portability using the ANSI C language, and
the ANSI C and POSIX libraries:

Linux, Mac OSX, FreeBSD,
NetBSD & OpenBSD, i386 & PPC

We only require these non-standard features:

− We need pointer↔ integer conversions.

− Functions must be called with any # args.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 1: Portability
We achieve portability using the ANSI C language, and
the ANSI C and POSIX libraries:

Linux, Mac OSX, FreeBSD,
NetBSD & OpenBSD, i386 & PPC

We only require these non-standard features:

− We need pointer↔ integer conversions.

− Functions must be called with any # args.

− A conservative garbage collector.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 2: ANSI compliance
ECL is rather close to the ANSI CL specification



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 2: ANSI compliance
ECL is rather close to the ANSI CL specification

+ Symbol macros

+ Destructuring



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 2: ANSI compliance
ECL is rather close to the ANSI CL specification

+ Symbol macros

+ Destructuring

+ Symbolics LOOP



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 2: ANSI compliance
ECL is rather close to the ANSI CL specification

+ Symbol macros

+ Destructuring

+ Symbolics LOOP

but still things to be revised

− FORMAT

− Pretty printer

− The type hierarchy



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 3: Self bootstrapping
The C library, the interpreter and the lisp sources for
the rest of the library should form a standalone ANSI
CL implementation, which can be used to compile the
lisp sources.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 3: Self bootstrapping
The C library, the interpreter and the lisp sources for
the rest of the library should form a standalone ANSI
CL implementation, which can be used to compile the
lisp sources.

I Everybody has an ANSI C compiler.

I Non-experts may play with the code.

I Porting issues are reduced.

I Easy error recovery.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 4: Shipped as a library
ECL is shipped with a set of libraries that can be em-
bedded in other C/C++ programs.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 4: Shipped as a library
ECL is shipped with a set of libraries that can be em-
bedded in other C/C++ programs.

I CL as extension language.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 4: Shipped as a library
ECL is shipped with a set of libraries that can be em-
bedded in other C/C++ programs.

I CL as extension language.

I Deliver standalone applications.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 4: Shipped as a library
ECL is shipped with a set of libraries that can be em-
bedded in other C/C++ programs.

I CL as extension language.

I Deliver standalone applications.

I Helps spread Common-Lisp!



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Goal 4: Shipped as a library
ECL is shipped with a set of libraries that can be em-
bedded in other C/C++ programs.

I CL as extension language.

I Deliver standalone applications.

I Helps spread Common-Lisp!

The bottom line:

Keep ECL small!



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Support libray



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Memory management:
We use the Boehm-Weiser garbage collector:



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Memory management:
We use the Boehm-Weiser garbage collector:

+ It is a conservative, mark & sweep GC



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Memory management:
We use the Boehm-Weiser garbage collector:

+ It is a conservative, mark & sweep GC

+ It can handle large amounts of memory



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Memory management:
We use the Boehm-Weiser garbage collector:

+ It is a conservative, mark & sweep GC

+ It can handle large amounts of memory

+ Good support for C/C++ programmers

+ Supports many architectures



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Memory management:
We use the Boehm-Weiser garbage collector:

+ It is a conservative, mark & sweep GC

+ It can handle large amounts of memory

+ Good support for C/C++ programmers

+ Supports many architectures

But any other garbage collector
may be easily plugged in!!!.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Objects representation:

Fixnum

1 0

10

0 0

char

Pointer to structure

32 1

I Bignums provided by GNU MP v4.0

I 0-terminated strings



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

C core library:
Lots of functions are provided to create and manipulate
lisp objects from C/C++ code.

cl_object form =
c_string_to_object("(print 1)");

cl_object output = eval(form, NULL, Cnil);
cl_terpri(Cnil);
cl_make_constant_string("Some string");



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

C core library:

+ The library implements all CL objects

+ Can simulate Lisp control structures

catch, throw, unwind protect



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

C core library:

+ The library implements all CL objects

+ Can simulate Lisp control structures

catch, throw, unwind protect

− An easier interface is being worked on

Hide internal structure of objects
Hide functions, prefix others (cl_*)

− Some things can only be done in CL (CLOS)

− User defined datatypes.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The interpreter



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Bytecodes compiler:

(defun f (x)
(print
(if (< x 0)
"negative"
"positive")))

Name: f
Required: X
Documentation: NIL
Declarations: NIL

0 PUSHVS <
2 PUSH ’0
4 CALLG 2,X
6 JNIL 9
7 "negative"
8 JMP 10
9 "positive"
10 PUSH VALUES(0)
11 CALLG 1,PRINT
13 HALT



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Bytecodes interpreter:

I About 26 instructions dealing with variables

SETQ, SETQS, PBIND, PBINDS. . .

I About 14 instructions for code flow

JMP, JEQ, CALLG, FCALL. . .

I Rest (∼10) simulate high level constructs

BLOCK, TAGBODY, DO, DOLIST. . .

I Code is "stack" oriented, the stack being shared
with the rest of the library.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Pros & Cons:

+ Code is processed once.

+ Syntax errors are detected early.

+ Code executes faster.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Pros & Cons:

+ Code is processed once.

+ Syntax errors are detected early.

+ Code executes faster.

+ Straightforward (< 4kloc).

+ Much can still be optimized.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Pros & Cons:

+ Code is processed once.

+ Syntax errors are detected early.

+ Code executes faster.

+ Straightforward (< 4kloc).

+ Much can still be optimized.

− No stepping debugger yet.

− No development environment.

− Lexical binding still conses.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Compiled Lisp code



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The look of translated Lisp code:
cl_object
clLenough_namestring(int narg, cl_object path, ...)
{

cl_object defaults;
cl_va_list args;
cl_va_start(args, path, narg, 1);

if (narg < 1) FEtoo_feew_arguments(narg);
...
if (narg > 1) defaults = cl_va_arg(args);
...
NValues = 1; return newpath;

}



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Entry point:
The function may receive any # of arguments, but only
64 using C calling conventions:

cl_object
clLenough_namestring(int narg, cl_object path, ...)
{

cl_object defaults;
cl_va_list args;
cl_va_start(args, path, narg, 1);

&Optional and &key arguments and anything above #64
is retrieved using the cl_va_arg() function.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Exit point:
A function may return one value directly

NValues = 1; return newpath;

or up to 64 on the "values array"

NValues = 2;
VALUES(1) = MAKE_FIXNUM(2);
return MAKE_FIXNUM(1);

The function always outputs the first value, so that func-
tions may be transparently called from C.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

The object files:
A file of Lisp code is translated into a file of C code with
the following sections:

I A textual representation of all the constants

I An array which holds the constants

I The code for all local and exportable functions

I An entry function which sets everything up

In enviroments which support the dlopen() function,
this code may be turned into a DLL and loaded at run-
time.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

To be done:

I C functions with a fixed number of arguments:
cl_object cl_fboundp(cl_object only_arg)

instead of
cl_object clLfboundp(int n, cl_object only_arg)

I Find other ways for handling multiple values.

I Write a better FFI.



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

To be done:

I C functions with a fixed number of arguments:
cl_object cl_fboundp(cl_object only_arg)

instead of
cl_object clLfboundp(int n, cl_object only_arg)

I Find other ways for handling multiple values.

I Write a better FFI.

Write code to unload a DLL



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Work in progress



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Calling conventions
Currently, a compiled function may have only 64 re-
quired arguments. Only optional, keyword and &rest
arguments are allowed to be on the interpreter stack.

+ Minor changes in the C translator

+ More slots per structure & class

+ CLX may be ported!



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Threads
EcoCL had a userland implementation of threads.

+ This implementation may be rescued

+ The code may be recycled for POSIX threads

− With POSIX threads special variables become
more complicated to handle.

− Some code in ECL is not reentrant



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Safe evaluation
ECL is being considered on MUD and other gaming
projects, where code is exchanged between computers
and should be executed in a safe environment.

I Protect the CL package better (makunbound,. . .)

I Selectively disable access to filesystem

I Provide a means to restart ECL

I Integrate better conditions and restarts



E
m

b
ed

d
ab

le
 C

o
m

m
o

n
 L

is
p

Usability:

S.O.S.


