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Abstract  
The Embeddable Common Lisp is an implementation of Common Lisp designed for being embeddable 

within C based applications. 
ECL uses standard C calling conventions for Lisp compiled functions, which allows C programs to 

easily call Lisp functions and viceversa. No foreign function interface is required: data can be exchanged 
between C and Lisp with no need for conversion. 

ECL is based on a Common Runtime Support (CRS) which provides basic facilities for memory 
management, dynamic loading and dumping of binary images, support for multiple threads of execution. 
The CRS is built into a library that can be linked with the code of the application. ECL is modular: 
main modules are the program development tools (top level, debugger, trace, stepper), the compiler, 
and CLOS. A native implementation of CLOS is available in ECL: one can configure ECL with or 
without CLOS. A runtime version of ECL can be built with just the modules which are required by the 
application. 

1 I n t r o d u c t i o n  

As applications become more elaborate, the facilities required to build them grow in number and sophistica- 
tion. Each facility is accessed through a specific package, quite complex itself, like in the cases of: modeling, 
simulation, graphics, hypertext  facilities, da ta  base management,  numerical analysis, deductive capabilities, 
concurrent programming, heuristic search, symbolic manipulation, language analysis, special device control. 
Reusability is quite a significant issue: once a package has been developed, tested and debugged, it is un- 
desirable hat ing to rewrite it in a different language just because the application is based in such other 
language. One cannot expect that  all useful facilities be available in a single language, since for each task 
developers tend to prefer the language which provides the most appropriate concepts and abstractions and 
which supports more convenient programming paradigms. This is specially true in the field of AI, where a 
number of innovative programming paradigms have been developed over the years. On the other hand, it 
would be quite important  for the success of AI facilities, which are often built using specialized languages, 
that  they could be accessible from other languages. Given the unusual execution environment requirements 
for AI languages, the lack of interoperability has so far limited such possibility. 

Several approaches have been proposed to the problem of combining code from different languages [4]: 

• client/server model with remote procedure calls. Each language executes in a separate process main- 
taining its own representation of data; external calls go through a remote procedure call protocol. 
This, however reduces efficiency and requires transcoding of the parameters to a common external 
da ta  representation. 

• foreign function call interfaces. This requires a common base language to which others must conform. 
Limitations exist though on types of parameters which can be passed to foreign procedures and during 
debugging it becomes difficult to trace the execution of programs in the foreign language. 
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• common intermediate form on which all languages are translated. An example is the Poplog Ab- 
stract Machine [Mellish 86], on which different languages (Common Lisp, Prolog, ML and Popll)  are 
translated. This puts too severe restrictions on the language designers and implementors for wide use. 

Only the last approach achieves tight interoperability among languages, i.e. procedures in one language 
can invoke procedures in another language and viceversa, and data can be shared or passed back and forth 
between procedures in different languages, without the overhead of transforming data representations. The 
approach we are proposing achieves tightly coupled interoperability, requiring only an agreement on some 
essential components of the run time environment. A quite significant advantage of our approach is that the 
interoperability is bidirectional, in the sense that not only languages with more sophisticated facilities (like 
memory management)can call procedures of less sophisticated languages, but also the opposite direction is 
supported, allowing for instance a C based application to call a package developed in Prolog or LISP. 

We followed this approach to interoperability by building an intermediate support layer between the 
operating system and the high level programming language, called CRS (Common Runtime Support). 

By means of the CRS we have built an Embeddable Common Lisp, a full Common Lisp implementation 
designed for being embeddable in C applications. 

The goals of the ECL design can be summarized as follows: 

• Lisp implementation with a small kernel and modular components 

• Common Runtime Support provided through a C library 

• applications may link CRS and required Lisp modules 

• C routines can call Lisp and viceversa 

• standard tools can be used for program development (e.g. dbx and make) 

In the next section we describe the CRS and than we survey the critical design solutions for interoper- 
ability. 

2 Common Runtime Support 

The CRS provides the essential functionalities which can be abstracted from modern high level languages. 
The CRS uses C as the common intermediate form for all languages. Such usage of C has been applied 
successfully to several programming languages, for instance Cedar, Common Lisp and Scheme at Xerox 
PARC [4], Modula3 [13] and C at DEC SRC, Linda and also to Prolog [20]. 

Though convenient for portability, the use of C as intermediate form is not essential to the approach, 
and in fact the fundamental requirements are agreement on procedure call conventions and access to the 
facilities provided by the CRS (memory, I/O and processes) only through the functional interface provided 
by CRS. The CRS provides the following facilities: 

• storage management, which provides dynamic memory allocation and reclamation through a conser- 
vative [6] garbage collector 

• symbol table management, including dynamic linking and loading, and image dumping 

• multiple threads [5], to support concurrent programming constructs 

• generic low level I/O, operating both on files and on network streams 

• support for logic variables and unification 
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The last facility provides support for logic programming languages. 
The following diagram shows the CRS in relation with other elements of a programming environment: 
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An important facility that we plan to add in the future is support for debugging, allowing to debug mixed 
code programs through a single debugging tool. 

3 So lut ions  for the  R u n t i m e  

3.1 M e m o r y  M a n a g e m e n t  

Memory management is the most critical aspect for enabling coexistence of programs in different languages. 
Code and objects built in ECL can be exchanged with traditional code and libraries. No restrictions should 
exist on whether a Lisp object can point to a non Lisp object and viceversa. We wanted to be able to 
pass Lisp objects to programs unaware of garbage collection, allowing them to store such objects in data 
structures, without special burden on the programmer or risk that the object would be garbage collected. 
Alternative solutions require the programmer to put an object in an "escape list" before passing it to an 
external procedure. 

Our solution is based on the technique of conservative garbage collection [6]. The collector assumes that 
anything that might be a pointer actually is a pointer. A random value is assumed to be a pointer by the 
collector if it corresponds to an address inside the current heap range: any such value is called an ambiguous 
pointer. The CRS incorporates a conservative collector which scans the C stack looking for ambiguous roots. 

We have also developed memory management system which is more general as well as customisable. The 
Customisable Memory Manager [3] has been developed for C + +  and allows user to specialise the collector 
strategies to the need of particular algorithms. We plan to incorporate the CMM in future releases of the 
CRS. 

3 .2  D a t a  M o d e l  

Lisp data structures are implemented as C data structures, therefore any C program can manipulate them: 
it needs just to include the file ec l .h .  Of course Lisp objects can be more abstractly manipulated through 
a higher level functional interface of C procedures which implement primitive operations on them. 

C strings are directly used within certain Lisp objects and this also is quite useful to avoid the need for 
conversion when crossing language boundaries. 

ECoLisp uses a direct wrapped [10] representation for certain data types, including FIXNUM, CHARACTER 
and LOCATIVE, by using the lower 2 bits as a tag. This representation avoids memory allocation and costs 
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only 2 cycles on arithmetic operations on integers. Other data types are represented as object pointers. The 
compiler however exploits type information to unwrap data whenever possible to avoid generic arithmetic. 

3 .3  E x e c u t i o n  M o d e l  

The execution model of ECL is based on the use of the normal C stack for parameter passing and function 
invocation. This solution has several advantages: the calling convention from C to Lisp is simple, optimized 
machine instructions can be used for function dispatch, no extra registers must be reserved for maintaining 
an extra stack, standard tools can be used to examine the st~ck during debugging. 

In more details, the following conventions are adopted: 

p a r a m e t e r  passing each Lisp function receives an extra argument which represents the count of actual 
argument in the call: 

fun (na rg ,  a rg l  . . . .  , argn) 

values r e t u r n  function values are returned on the array Values, the result of the function is their count. 
The macro VALUES is actually used in the code since there is a separate Values array for each thread. 

l ex ica l / c losure  e n v i r o n m e n t s  lexical environments are created as arrays, one 
for each successive level of lexical nesting. Closure environment are represented as lists. So the most 
general form of lexical function is the following: 

lexfun(lexO ..... lexk, narg, envO, argl ..... argn) 

The elements in a closure environment are dereferenced after entering the closure, so that cost for 
accessing a lexical variables is just one extra indirection. 

The choice of these conventions has been enabled by the use of a conservative garbage collector: arguments 
on the C stack are examined by the collector, lexical environments are also local arrays on the C stack. 

For example the code generated for the function: 

(defun foo (x y) 
(flat ((gen (v) (h y #'(lambda () (h x v))))) 

(list x (gen y)))) 

is the following: 

/* function definition for FO0 
static Ll(int narg, object Vl, object V2) 
{ object TO; object lexO[1]; object envO, *CLVO; 

envO = Cnil; 
CLV0=~CAR(env0=CONS(VI,env0)); 
lex0[0]=V2; 
LC3(lex0,1,env0,1ex0[0]); 
VALUES(0) = Iist(2,*CLV0,VALUES(0)); 
RETURN(l); 

*/ 

I* X *I 
I* Y *I 
I* GEN */ 

/* closure GEN 
static LC3(object *lex0,int narg, object envO, object Vi) 
{ object *CLVI; 

narg--; 
CLVi=&CAR(envO=CONS(Vl,envO)); /* V 

. /  

. /  
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VALUES (0) = make_cclosure (LC2, env0, &Cblock) ; 
RETURN ((*LK0) (2, lex0 [0], VALUES (0)) ) ; /* H */ 

/* closure within GEN */ 
static LC2(int narg, object env0) 
{ object *CLV0, CLVI; 

. . ,  

} 

ECL is written in ANSI C and generates ANSI C. We exploit though one non standard feature of GCC: 
variable size arrays. They are used whenever the interpreter needs to temporary allocate a number of objects, 
for instance during variable binding or argument evaluation. In compiled code they are used for temporary 
saving multiple values in multiple-value-call or multiple-value-progl. On installations where GCC is 
not available, alloca is substituted with some increase of stack occupation. 

3 .4  Alternative Techniques 

Alternative techniques have been considered: for instance one could use the convention of passing arguments 
to Lisp functions in a single C array. This solution, used in the Scheme to C compiler, is appropriate when 
interoperability is not a concern and all invocations are generated by the compiler. If we expect programmers 
to write calls to Lisp functions, having to allocate arrays for the arguments of each call does not seem too 
appealing. The problem could be alleviated by providing an interface function for each Lisp function, for 
instance: 

static inline Lcons(int narg, object car, object cdr) { 
o b j e c t  a rgs[2]  ; 
a rgs [0]  = car ;  a rgs[1]  = car ;  
return LIcons(2, a res )  ; 

} 

L I c o n s ( i n t  narg ,  o b j e c t  *args)  { . . .  } 

Programmers could call Lcons using ordinary notation and a good C compiler would take care of inlining 
Lcons avoiding extra overhead. This solution has still some drawbacks: Lcons would have to be placed in 
header files, and the optimization is only done by some compilers and when explicitly enabled. 

An alternative for returning multiple values would be to use functions returning a structure containing 
the values. This however would require the caller to pass the number of expected values to the callee, again 
deviating from most common practice. 

For the implementation of lexical functions one could have used the mechanism of lexical procedures 
available in GNU GCC. This solution keeps pointers to outer frames in registers, but much the same effect 
is achieved with our solution for most RISC architectures where parameters are passed on registers. 

GCC also provides lexical closures, which however work only for dynamic extent closures. The mechanism 
requires runtime code generation and it is not well supported on all implementation of GCC. 

Since the benefits were marginal, in the end we decided not to use such non standard feature of GCC. 

3 .5  Building Function Calls 

The implementation of functions eval ,  apply and f u n c a l l  requires the ability to construct a function call 
with a variable number of arguments. 

This is a critical operation because it appears very often in interpreted as well compiled code. 
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While the standard C library provides a mechanism (<stdarg.h>) for accessing the arguments of a 
function with variable number of arguments, C does not provide any direct way to build a call with variable 
number of arguments. 

Our solution is based on the use of the variable size arrays of GCC and an assembler macro to perform 
the actual call. 

For example, the code for eva l  which needs to evaluate n arguments and then call function fun with 
those values, is implemented as follows: 

CSTACK[n] 
CPUSH(arg_I) 

CPUSH(arg_n) 
CCALL(fun, n) 

The macro CSTACK [n] allocates a variable size array of size n. Each call to CPUSH pushes a value onto 
this array and finally CCALL(fun, n) issues an assembler branch instruction to procedure fun. To ensure 
portability, a less efficient C version of CCALL is available as default. 

3 .6  D y n a m i c  L o a d i n g  

Dynamic loading is implemented as a function which takes the name of a binary file as parameter: 

dld(char *faslfile, struct codeblock *Cblock) 

dld is capable of interpreting various binary file formats (a.out, coff, ecoff). It identifies the sections of 
text and data which must be loaded into memory, transfers them into memory and then performs the tasks 
of loader: relocation and linking of external symbols. The start address of the block of memory allocated 
for the code and its size are returned in the structure passed as the second argument. 

Dynamic linking is used to load compiled Lisp code as well as "any other binary file into a running 
application. 

The inverse operation, of dumping an executable image of an application is provided by the unexec 
function, which takes as arguments the name of the file where to save the image and the name of the original 
file containing symbols and relocation information. 

unexec(char *save_file, char *original_file .... ) 

Some of the versions of unexec used in ECL are derived from those supplied with GNU Emacs. 

4 CLOS 

A native implementation of the Common Lisp Object System is provided with ECL. This consists in specific 
data types for instances and generic function dispatchers. Generic function invocation is performed through 
an efficient method lookup which computes a hash code based on the types of the arguments to the function. 
This code is used to access a method*specific hash table which cashes the effective method for each series of 
specializers. The full protocol for computing the effective method is only invoked the first time a method is 
called for a particular combination of argument types. 

Moreover, the generic function dispatcher is cashed in each place in the code where a function is called via 
a reference to its symbol. This allows the code to jump directly to the dispatch code for a generic function 
without the need to go through the function cell of the symbol and testing the type of function to which it 
is bound. 

Method accessors for instances derived from class STANDARD-CLASS are optimized and turned into indexed 
indirect memory references. At entry in a method, index values are retrieved for all slots accessed within 
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the method. Thereafter accesses to the slots use such index into the vector of slots of the instance. The 
indirection is required to support the class redefinition protocol of CLOS. 

The bootstrap of CLOS is done at the C level of the Lisp kernel by creating three basic classes: T, CLASS, 
OBJECT, related as described in [2]. 

Common Lisp structures are implemented as instances of classes derived from class STRUCTURE-CLASS 
and therefore are completely integrated with other classes: for instance a structure class can be specialised 
to a subclass by inheritance. 

5 Threads  

Multiple threads of executions are possible within a single ECL process. Thread scheduling is arranged by 
a preemptive scheduler. The thread mechanism is implemented by means of the Unix software interrupt 
handlers and the set jmp/ longjmp primitives. The interrrupt handler invokes the scheduler to switch control 
among threads at the expiration of each time slice. 

At the Lisp level threads provide a model of execution based on the notion of con t inua t ion .  In this model 
control flow proceeds normally through function calls, unless the program requests access to its continuation. 
It can then decide whether it wants to resume such continuation at the end, thereby proceeding normally, 
or to resume a different continuation, thereby transferring control to another thread, or to suspend until 
its continuation is resumed by another thread. Continuations are first-class objects which can be passed as 
arguments or returned as values from functions. 

Given this model of computation, the only addition which is necessary to be able to handle concurrency 
is the ability to create multiple threads of execution. Control of flow among different threads is obtained 
just by the use of continuations. 

The main Lisp functions available for using threads are: make-thread,  and resume, resume is called 
with a continuation cont and several values: its effect is to resume execution of cont  while returning those 
values to the expression where such continuation was created. 

A continuation is created with the construct ( l e t / c c  cont body) [14] which binds variable cont  to a 
newly created continuation within the thread where it is executed, executes the body and then suspends 
the thread until the continuation is resumed. Here is a simple example of the use of these constructs: 
the consumer function starts a producer thread and then waits to be resumed until something has been 
produced; the producer  function executes in a separate thread and resumes the consumer thread after each 
run of production, suspending itself in turn. 

(defun consumer () 
( l e t  ( (p roducer  (make-thread # ' p r o d u c e r ) ) )  

(loop 
(setq producer (let/cc me (resume producer me))) 
(consume))))  

(defun producer  (consumer) 
( loop 

(produce) 
( s e tq  consumer ( l e t / c c  me (resume consumer me) ) ) ) )  

In this example only one thread is executing at any one time, but in generaiseveraithreads can execute in 
pseudo concurrency. 

6 Compi ler  

The ECL compiler is derived with extensive rewriting from the KCL compiler. 
Here is an example of actual code generated by the ECL compiler for the classical factorial function: 
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/* function definition for FACTORIAL 
static Ll(int narg, object VI) 
{ 

if(!(number_compare(MAKE_FIXNUM(0),(Vl))==0)){goto L2;} 
VALUES(O) = MAKE_FIXNUM(1); 
RETURN(1); 

L2: 
Ll(l,one_minus((Vl))) 
VALUES(O) = number_times((Vl),VALuES(O)); 
R.ETURN(1); 

,/ 

/* FACTORIAL */; 

The compiler can exploit type declarations to produce better code which avoids generic arithmetic oper- 
ations, whenever possible. 

Here is an example from a real application: 

(defun logprob (p q) 
(declare (type double-float p q)) 
( i f  (zerop p) 

0.0 
(* p (log q) ) ) )  

which is turned into: 

/* function definition for LOGPROB 
static Ll(int narg, object VI, object V2) 
{ 

{double V3 ; 
V3= lf(V1) ; 
if ( ! ((V3) ==0) ) {goto L2 ; } 
VALUES(0) = VV[0] ; 
RETURN (I) ; 

L2: 

, /  

V A L U E S ( 0 )  = make_longfloat((double)(V3)* 
( d o u b l e ) ( l o g ( ( d o u b l e ) ( l f ( ( V 2 ) ) ) ) ) ) ;  

RETURN(i); 
} 

The macro i f  unwraps a pointer to a long float. In order to produce this code, the compiler exploits 
a simple type inference mechanism which propagates information both bottom-up from the arguments to 
functions as well as top-down from the places where function values are used. 

6.1  Opt imiza t ions  

A number of optimization which cannot be done at the source level are performed on the intermediate form 
produced by the first pass of the compiler. For example, replacing a l e t  variable used just once in the body 
with its corresponding expression, functions with identical code share the same C code. 

The compiler also arranges to allocate frequently accessed variables in registers. 
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6.2  C C o d e  O p t i m i z a t i o n  

Fine tuning of critical functions can be achieved through the mechanism of inline C optimization. One can 
specify directly the C code to be used to perform a certain function, as in the following example, taken from 
the ECL CLX implementation: 

(definline aref-card29 (string fixnum) fixnum 
"((*(unsigned long *) ((#0)->ust.ust_self+(#1))) ~t 0xlfffffff)") 

Any call to function aref-card29 with arguments of type string and fixnum, is compiled into the C 
code supplied, where #0 and #1 represent the two actual arguments. 

7 M o d u l a r i z a t i o n  

The original Common Lisp design did not pay much attention to modularization. More recent work on 
languages like Eulisp [14] stresses the importance of modularization in the language, introducing the sepa- 
ration between the kernel, the libraries and the environment. Many people now recognise the importance 
of a language made out of modular components. It is fairly clear that the requirements for a programming 
and developement environment are quite different from those of a delivered application. So it should be 
possible to build the application without being encumbered by parts which are not needed. The approach 
called "tree shaking" has been proposed to solve this problem, i.e. using an automated tool which analyses 
the program to decide which functions are actually used in it in order to discard them from the final image. 
We consider more practical the approach which is traditional in most languages: i.e. leaving this task to the 
linker with some indication from the user. The user indicates which libraries his application requires and 
the linker takes care of incorporating what is actually needed in the built image. Tools like autoconf and 
make at the operating system level and de:fsystem at the Lisp level are typically used. 

Another issue related to modularisation is the attempt to design a subset of Common Lisp which could 
be suitable as target for compilation. The APPLY project [15] in Germany has produced the specification 
for CL0, a subset of Common Lisp, which is the source language for their Lisp to C compiler CLiCC. CL0 
puts severe restrictions on many Common Lisp constructs, in order to ensure that the final code produced 
can run as a standalone application. 

This approach is therefore different from ours since we do not impose any such limitations to Lisp code, 
given that our runtime support allows full Common Lisp compatibility. The CRS is small enough (700K) 
that the increase in size of the overall application is acceptable for nowaday technology. The APPLY work 
is however relevant since it indicates a way to split Common Lisp into independent components. 

The current version of ECL consists of the following separate modules which can be selected through 
options to the conf igure  shell script: 

• basic runtime (470K) 

• lisp libraries (280K) 

• compiler (380K) 

• CLOS (226K) 

• development environment (160K) 

• CLX (400K) 

• threads (50K) 

• unification (10K) 
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8 Logic P r o g r a m m i n g  Support  

The CRS provides support  for logic variables and unification by implementing the g e t  and u n i f y  primitives 
of the Warren Abstract Machine (WAM) [19]. Further details on the CRS support  for logic programming 
are presented in [1]. 

8 . 1  L o c a t i v e  D a t a  T y p e  

A logic variable is basically a place holder for a value, and variables get bound to values during unification. 
Such bindings may have to be undone later if a failure in the deduction requires backtracking or a search for 
an alternative path to a solution. During deduction, several new variables are generated at each deductive 
step. Therefore a significant saving of space and time can be obtained if no space in the heap is allocated 
for these variables. This can be achieved by representing them as pointers to the locations which contain 
the slot or the value, and to which the variable is bound. A special da ta  type, called locative, is prov!ded 
by the CRS, to implement these temporary  variables. A locative is similar to the locative data  type of Lisp 
Machines [12] and is a pointer to a single memory cell, which can be either a slot within a structure or the 
cell for another variable. 

Locatives are implemented as immediate data, using a tagging schema, where the two low order bits of 
a pointer denote the type of the object. The memory allocator of CRS ensures that  all objects allocated on 
the heap are rounded to a size which is a multiple of 4, therefore a legal reference to a heap allocated object 
must have zeros in the last two bits of the address. Lisp fixnums and c h a r a c t e r s  are also represented as 
immediate data. 

9 Performance  

The performance of ECL is quite satisfactory. Here is a sample of comparisons with the most well known 
public domain Lisp implementations: 

B e n c h  ECL 

(0.4) 
BOYER 2.250 

BROWSE 3.233 

F F T  0.200 

F P R I N T  0.183 

FRPOLY 21.083 

TRIANG 10.050 

A K C L  C M U  C L I S P  

(1.615) (16f) (5.5) 

2.233 4.100 22.600 

4.167 9.130 15.510 

71.333 0.410 9.900 

0.150 0.990 0.260 

175.733 11.010 37.915 

13.133 32.210 198.220 

Times are in seconds on a SparcStation ELC diskless with 16 MB memory. The comparison with AKCL 
is particularly interesting, since the use of the C stack is the most considerable difference in the two im- 
plementations. The data  show that  ECL is 30-40% faster than AKCL, and this seems a good justification 
for the design choices of ECL. A few cases were ECL performs significantly better  are due to the effect of 
type inference in the compiler. Moreover, also the size of compiled code is smaller, from 30% to 50%: code 
sharing produces even more significant effects on files where a lot of auxiliary functions are generated by 
macros (as in CLX). 

10 Related  Work 

KCL [11] has been the first Common Lisp implementation to adopt C as its intermediate compilation 
language. However C was used more as an implementation language rather than providing integration 
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between the two languages: in particular Lisp uses a separate stack for parameters and values, garbage 
collection only applies to Lisp objects, basic data types like strings have different representations. Commercial 
versions of KCL were developed by Ibuki and by DELPHI. 

In AKCL, a version of KCL developed by William F. Schelter, several improvements to KCL were 
introduced, including a conservative garbage collector and a dynamic loader. The latest version of AKCL is 
distributed as GNU Common Lisp (GCL). 

In all these KCL derivatives one can incorporate C code in a program either by including it directly 
within Lisp files or by dynamically linking and loading a binary file. However special conventions have to be 
followed in such C code for parameter passing and also to ensure that live Lisp objects are not prematurely 
garbage collected. A special form defen t ry ,  recognised by the compiler, was used to create an interface 
function between a Lisp function and a C function. Invocation of Lisp functions from C was feasible but 
even more cumbersome. 

ECL instead addresses the issue of allowing a C based application to call Lisp programs, thereby reverting 
the approach of its predecessors. 

Chestnut Software Inc. produces a Lisp-to-C translator [9] which is attempting to be as close as possible 
to Common Lisp, and has a Run-Time Library which appears analogous to the CRS. In terms of size, the 
entire library - including all Common Lisp functionality, the garbage collector, CLOS, and runtime support 
for all Chestnut extensions, occupies approx 1 MB of memory in a translated application. 

11 C o n c l u s i o n s  

Common Lisp is not an easy language to integrate with others. For instance, if Common Lisp had no 
multiple values, like Scheme or Eulisp, it would have been straightforward to compile Lisp functions into C 
functions returning the value. We have shown nevertheless that interoperability between Common Lisp and 
C is feasible and effective. Our embeddable Lisp implementation is useful for those who want to build Lisp 
packages to be incorporated into other non Lisp applications. But we hope also that our experience might 
be useful in designing future evolutions of Lisp which take more seriously interoperability as a concern. 

ECL is available for anonymous ftp from site f t p . i c s i . b e r k e l e y . e d u  in the directory / p u b / a i / e c l .  
Please address comments, suggestions, bug reports to ec l@di .un ip i ,  i t .  

Several ideas and techniques used in ECL were inspired or derived from solutions developed by William 
Schelter for AKCL. Mauro Gaspari and Tito Flagella participated in various stages of the development. 
Andreas Stolcke supplied significant test programs and helped in the debugging. 

R e f e r e n c e s  

[1] G. Attardi, M. Gaspari and F. Saracco "Interoperability of AI languages", Proceedings of 9th European 
Conference on Artificial Intelligence, Stockholm, 1990, 41-46. 

[2] G. Attardi "Metalevel Programming in CLOS", in Object Oriented Programming: the CLOS perspective, 
A. Paepke (Editor), MIT Press, 1992. 

[3] G. Attardi and T. Flagella "A customisable memory management framework", Proceedings of USENIX 
C++  Conference 1994, Cambridge, Massachusetts, April 1994. 

[4] R. Atkinson, et al. "Experiences creating a portable Cedar", Proceedings of the SIGPLAN 89 Conference 
on Programming Language Design and Implementation, 1989. 

[5] G. Attardi and S. Diomedi "Multithread Common Lisp", Technical Report MADS TR-87.1, DELPHI, 
1987. 

[6] J.F. Bartlett "Compacting garbage collection with ambiguous roots", DEC Western Research Lab Re- 
search report 88/2, February 1988. 

40 



[7] J. F. Bartlett "Scheme-~,c a portable scheme-to-c compiler", Research Report 89 1, DEC Western 
Research Laboratory, Palo Alto (CA), January 1989. 

[8] D. G. Bobrow, et al. "Common Lisp Object System Specification", ACM SIGPLAN Notices, 24(6), 
1988. 

[9] Chestnut Software Inc., "Lisp-to-C Translator", Technical Specification Release 3.0, 1991. 

[10] D. Gudeman, "Representing Type Information in Dynamically Typed Languages", TR 93-27, Depart- 
ment of Computer Science, University of Arizona, October 1993. 

[11] M. Hagiya and T. Yuasa "Kyoto Common Lisp Report", RIMS, Kyoto University, 1985. 

[12] K. M. Kahn and M. Carlsson "How to implement Prolog on a Lisp Machine", in J. Campbell (Ed.), 
Implementations of Prolog, Wiley, 1986. 

[13] G. Nelson, editor "Systems Programming with Modula3", Prentice Hall, 1991. 

[14] J. Padget and G. Nguyen (Eds.) "Eulisp Version 0.9", December 1993. 

[15] W. Goerigk, U. Hoffmann, H. Knutzen "Common Lisp to C Compiler", Christian-Albrechts-Universit£t 
zu Kiel, 1993. 

[16] R. M. Stallman "GNU GCC Version 2.5.8", Free Software Foundation, Cambridge (MA), 1993. 

[17] G. L. Steele, Jr "Common Lisp, the Language", Digital Press, Burlington (MA), 1984. 

[18] G. L. Steele, Jr "Common Lisp, the Language", Digital Press, Burlington (MA), 2nd edition, 1990. 

[19] D.H.D. Warren "An abstract Prolog instruction set", Tech. Note 309, SRI International, Menlo Park, 
October 1983. 

[20] J.L. Weiner and S. Ramakrishnan "A piggy-back compiler for Prolog", Proceedings of SIGPLAN '88 
Conference on Programming Language Design and Implementation, 1988. 

41 


