
CMUCL User’s Manual

Robert A. MacLachlan, Editor

Mar 2008
Release 19e

CMUCL is a free, high-performance implementation of the Common Lisp programming lan-
guage, which runs on most major Unix platforms. It mainly conforms to the ANSI Common Lisp
Standard. CMUCL features a sophisticated native-code compiler, a foreign function interface, a
graphical source-level debugger, an interface to the X11 Window System, and an Emacs-like edi-
tor.

Keywords: lisp, Common Lisp, manual, compiler, programming language implementation, pro-
gramming environment

This manual is based on CMU Technical Report CMU-CS-92-161, edited by Robert A. MacLachlan, dated
July 1992.

Contents

1 Introduction 1
1.1 Distribution and Support . 1
1.2 Command Line Options . 2
1.3 Credits . 3

2 Design Choices and Extensions 6
2.1 Data Types . 6

2.1.1 Integers . 6
2.1.2 Floats . 6
2.1.3 Extended Floats . 9
2.1.4 Characters . 10
2.1.5 Array Initialization . 10
2.1.6 Hash tables . 10

2.2 Default Interrupts for Lisp . 11
2.3 Implementation-Specific Packages . 12
2.4 Hierarchical Packages . 13

2.4.1 Introduction . 13
2.4.2 Relative Package Names . 13
2.4.3 Compatibility with ANSI Common Lisp . 14

2.5 Package Locks . 15
2.5.1 Rationale . 15
2.5.2 Disabling package locks . 16

2.6 The Editor . 16
2.7 Garbage Collection . 16

2.7.1 GC Parameters . 17
2.7.2 Generational GC . 18
2.7.3 Weak Pointers . 19
2.7.4 Finalization . 19

2.8 Describe . 19
2.9 The Inspector . 20

2.9.1 The Graphical Interface . 20
2.9.2 The TTY Inspector . 20

2.10 Load . 21
2.11 The Reader . 21

2.11.1 Reader Extensions . 21
2.11.2 Reader Parameters . 22

2.12 Stream Extensions . 22
2.13 Simple Streams . 22
2.14 Running Programs from Lisp . 22

2.14.1 Process Accessors . 24
2.15 Saving a Core Image . 25
2.16 Pathnames . 26

2.16.1 Unix Pathnames . 26
2.16.2 Wildcard Pathnames . 27

i

CONTENTS ii

2.16.3 Logical Pathnames . 27
2.16.4 Search Lists . 27
2.16.5 Predefined Search-Lists . 27
2.16.6 Search-List Operations . 28
2.16.7 Search List Example . 28

2.17 Filesystem Operations . 28
2.17.1 Wildcard Matching . 29
2.17.2 File Name Completion . 29
2.17.3 Miscellaneous Filesystem Operations . 29

2.18 Time Parsing and Formatting . 30
2.19 Random Number Generation . 31

2.19.1 Original Generator . 31
2.19.2 New Generator . 31
2.19.3 MT-19937 Generator . 32

2.20 Lisp Threads . 32
2.21 Lisp Library . 32
2.22 Generalized Function Names . 32
2.23 CLOS . 33

2.23.1 Primary Method Errors . 33
2.23.2 Slot Type Checking . 33
2.23.3 Slot Access Optimization . 34
2.23.4 Inlining Methods in Effective Methods . 36
2.23.5 Effective Method Precomputation . 36
2.23.6 Sealing . 37
2.23.7 Method Tracing and Profiling . 37
2.23.8 Misc . 38

2.24 Differences from ANSI Common Lisp . 38
2.24.1 Extensions . 38

2.25 Function Wrappers . 38
2.26 Dynamic-Extent Declarations . 40

2.26.1 &rest argument lists . 40
2.26.2 Closures . 40
2.26.3 list, list*, and cons . 41

2.27 Modular Arithmetic . 41
2.28 Extension to REQUIRE . 41

3 The Debugger 43
3.1 Debugger Introduction . 43
3.2 The Command Loop . 44
3.3 Stack Frames . 44

3.3.1 Stack Motion . 44
3.3.2 How Arguments are Printed . 44
3.3.3 Function Names . 45
3.3.4 Funny Frames . 46
3.3.5 Debug Tail Recursion . 46
3.3.6 Unknown Locations and Interrupts . 47

3.4 Variable Access . 47
3.4.1 Variable Value Availability . 48
3.4.2 Note On Lexical Variable Access . 48

3.5 Source Location Printing . 48
3.5.1 How the Source is Found . 49
3.5.2 Source Location Availability . 50

3.6 Compiler Policy Control . 50
3.7 Exiting Commands . 51
3.8 Information Commands . 51
3.9 Breakpoint Commands . 52

CONTENTS iii

3.9.1 Breakpoint Example . 52
3.10 Function Tracing . 54

3.10.1 Encapsulation Functions . 55
3.11 Specials . 56

4 The Compiler 57
4.1 Compiler Introduction . 57
4.2 Calling the Compiler . 57
4.3 Compilation Units . 59

4.3.1 Undefined Warnings . 59
4.4 Interpreting Error Messages . 60

4.4.1 The Parts of the Error Message . 60
4.4.2 The Original and Actual Source . 61
4.4.3 The Processing Path . 62
4.4.4 Error Severity . 63
4.4.5 Errors During Macroexpansion . 63
4.4.6 Read Errors . 63
4.4.7 Error Message Parameterization . 64

4.5 Types in Python . 65
4.5.1 Compile Time Type Errors . 65
4.5.2 Precise Type Checking . 66
4.5.3 Weakened Type Checking . 66

4.6 Getting Existing Programs to Run . 67
4.7 Compiler Policy . 69

4.7.1 The Optimize Declaration . 69
4.7.2 The Optimize-Interface Declaration . 70

4.8 Open Coding and Inline Expansion . 70

5 Advanced Compiler Use and Efficiency Hints 72
5.1 Advanced Compiler Introduction . 72

5.1.1 Types . 72
5.1.2 Optimization . 72
5.1.3 Function Call . 73
5.1.4 Representation of Objects . 74
5.1.5 Writing Efficient Code . 74

5.2 More About Types in Python . 75
5.2.1 More Types Meaningful . 75
5.2.2 Canonicalization . 75
5.2.3 Member Types . 76
5.2.4 Union Types . 76
5.2.5 The Empty Type . 76
5.2.6 Function Types . 77
5.2.7 The Values Declaration . 77
5.2.8 Structure Types . 78
5.2.9 The Freeze-Type Declaration . 79
5.2.10 Type Restrictions . 79
5.2.11 Type Style Recommendations . 79

5.3 Type Inference . 80
5.3.1 Variable Type Inference . 80
5.3.2 Local Function Type Inference . 81
5.3.3 Global Function Type Inference . 81
5.3.4 Operation Specific Type Inference . 81
5.3.5 Dynamic Type Inference . 82
5.3.6 Type Check Optimization . 83

5.4 Source Optimization . 84
5.4.1 Let Optimization . 84

CONTENTS iv

5.4.2 Constant Folding . 85
5.4.3 Unused Expression Elimination . 86
5.4.4 Control Optimization . 86
5.4.5 Unreachable Code Deletion . 87
5.4.6 Multiple Values Optimization . 88
5.4.7 Source to Source Transformation . 89
5.4.8 Style Recommendations . 89

5.5 Tail Recursion . 90
5.5.1 Tail Recursion Exceptions . 91

5.6 Local Call . 91
5.6.1 Self-Recursive Calls . 92
5.6.2 Let Calls . 92
5.6.3 Closures . 93
5.6.4 Local Tail Recursion . 93
5.6.5 Return Values . 94

5.7 Block Compilation . 94
5.7.1 Block Compilation Semantics . 94
5.7.2 Block Compilation Declarations . 95
5.7.3 Compiler Arguments . 95
5.7.4 Practical Difficulties . 96
5.7.5 Context Declarations . 96
5.7.6 Context Declaration Example . 97

5.8 Inline Expansion . 98
5.8.1 Inline Expansion Recording . 99
5.8.2 Semi-Inline Expansion . 99
5.8.3 The Maybe-Inline Declaration . 100

5.9 Byte Coded Compilation . 100
5.10 Object Representation . 101

5.10.1 Think Before You Use a List . 101
5.10.2 Structure Representation . 101
5.10.3 Arrays . 102
5.10.4 Vectors . 102
5.10.5 Bit-Vectors . 102
5.10.6 Hashtables . 102

5.11 Numbers . 103
5.11.1 Descriptors . 103
5.11.2 Non-Descriptor Representations . 104
5.11.3 Variables . 104
5.11.4 Generic Arithmetic . 105
5.11.5 Fixnums . 106
5.11.6 Word Integers . 106
5.11.7 Floating Point Efficiency . 107
5.11.8 Specialized Arrays . 108
5.11.9 Specialized Structure Slots . 109
5.11.10 Interactions With Local Call . 109
5.11.11 Representation of Characters . 109

5.12 General Efficiency Hints . 109
5.12.1 Compile Your Code . 109
5.12.2 Avoid Unnecessary Consing . 110
5.12.3 Complex Argument Syntax . 110
5.12.4 Mapping and Iteration . 111
5.12.5 Trace Files and Disassembly . 111

5.13 Efficiency Notes . 112
5.13.1 Type Uncertainty . 112
5.13.2 Efficiency Notes and Type Checking . 112

CONTENTS v

5.13.3 Representation Efficiency Notes . 113
5.13.4 Verbosity Control . 114

5.14 Profiling . 115
5.14.1 Profile Interface . 115
5.14.2 Profiling Techniques . 115
5.14.3 Nested or Recursive Calls . 116
5.14.4 Clock resolution . 116
5.14.5 Profiling overhead . 116
5.14.6 Additional Timing Utilities . 116
5.14.7 A Note on Timing . 117
5.14.8 Benchmarking Techniques . 117

6 UNIX Interface 119
6.1 Reading the Command Line . 119
6.2 Useful Variables . 120
6.3 Lisp Equivalents for C Routines . 120
6.4 Type Translations . 121
6.5 System Area Pointers . 121
6.6 Unix System Calls . 122
6.7 File Descriptor Streams . 123
6.8 Unix Signals . 123

6.8.1 Changing Signal Handlers . 124
6.8.2 Examples of Signal Handlers . 125

7 Event Dispatching with SERVE-EVENT 126
7.1 Object Sets . 126
7.2 The SERVE-EVENT Function . 127
7.3 Using SERVE-EVENT with Unix File Descriptors . 127
7.4 Using SERVE-EVENT with the CLX Interface to X . 128

7.4.1 Without Object Sets . 128
7.4.2 With Object Sets . 129

7.5 A SERVE-EVENT Example . 129
7.5.1 Without Object Sets Example . 129
7.5.2 With Object Sets Example . 131

8 Alien Objects 134
8.1 Introduction to Aliens . 134
8.2 Alien Types . 134

8.2.1 Defining Alien Types . 135
8.2.2 Alien Types and Lisp Types . 135
8.2.3 Alien Type Specifiers . 135
8.2.4 The C-Call Package . 137

8.3 Alien Operations . 137
8.3.1 Alien Access Operations . 137
8.3.2 Alien Coercion Operations . 137
8.3.3 Alien Dynamic Allocation . 138

8.4 Alien Variables . 138
8.4.1 Local Alien Variables . 138
8.4.2 External Alien Variables . 139

8.5 Alien Data Structure Example . 139
8.6 Loading Unix Object Files . 140
8.7 Alien Function Calls . 141

8.7.1 The alien-funcall Primitive . 141
8.7.2 The def-alien-routine Macro . 142
8.7.3 def-alien-routine Example . 142
8.7.4 Calling Lisp from C . 143

CONTENTS vi

8.7.5 Callback Example . 143
8.7.6 Accessing Lisp Arrays . 144

8.8 Step-by-Step Alien Example . 146

9 Interprocess Communication under LISP 149
9.1 The REMOTE Package . 149

9.1.1 Connecting Servers and Clients . 149
9.1.2 Remote Evaluations . 150
9.1.3 Remote Objects . 151

9.2 The WIRE Package . 152
9.2.1 Untagged Data . 152
9.2.2 Tagged Data . 152
9.2.3 Making Your Own Wires . 153

9.3 Out-Of-Band Data . 153

10 Networking Support 154
10.1 Byte Order Converters . 154
10.2 Domain Name Services (DNS) . 154
10.3 Binding to Interfaces . 155
10.4 Accepting Connections . 155
10.5 Connecting . 155
10.6 Out-of-Band Data . 156
10.7 Unbound Sockets, Socket Options, and Closing Sockets . 156
10.8 Unix Datagrams . 157
10.9 Errors . 157

11 Debugger Programmer’s Interface 158
11.1 DI Exceptional Conditions . 158

11.1.1 Debug-conditions . 158
11.1.2 Debug-errors . 159

11.2 Debug-variables . 159
11.3 Frames . 160
11.4 Debug-functions . 161
11.5 Debug-blocks . 163
11.6 Breakpoints . 163
11.7 Code-locations . 164
11.8 Debug-sources . 165
11.9 Source Translation Utilities . 166

12 Cross-Referencing Facility 167
12.1 Populating the cross-reference database . 167
12.2 Querying the cross-reference database . 167
12.3 Example usage . 169
12.4 Limitations of the cross-referencing facility . 170

Chapter 1

Introduction

CMUCL is a free, high-performance implementation of the Common Lisp programming language which runs
on most major Unix platforms. It mainly conforms to the ANSI Common Lisp standard. Here is a summary of
its main features:

• a sophisticated native-code compiler which is capable of powerful type inferences, and generates code com-
petitive in speed with C compilers.

• generational garbage collection and multiprocessing capability on the x86 ports.

• a foreign function interface which allows interfacing with C code and system libraries, including shared
libraries on most platforms, and direct access to Unix system calls.

• support for interprocess communication and remote procedure calls.

• an implementation of CLOS, the Common Lisp Object System, which includes multimethods and a
metaobject protocol.

• a graphical source-level debugger using a Motif interface, and a code profiler.

• an interface to the X11 Window System (CLX), and a sophisticated graphical widget library (Garnet).

• programmer-extensible input and output streams.

• an Emacs-like editor implemented in Common Lisp.

• public domain: free, with full source code and no strings attached (and no warranty). Like GNU/Linux
and the *BSD operating systems, CMUCL is maintained and improved by a team of volunteers collaborat-
ing over the Internet.

This user’s manual contains only implementation-specific information about CMUCL. Users will also need
a separate manual describing the Common Lisp standard, for example, the Hyperspec.

In addition to the language itself, this document describes a number of useful library modules that run in
CMUCL. Hemlock, an Emacs-like text editor, is included as an integral part of the CMUCL environment. Two
documents describe Hemlock: the Hemlock User’s Manual, and the Hemlock Command Implementor’s Manual.

1.1 Distribution and Support

CMUCL is developed and maintained by a group of volunteers who collaborate over the internet. Sources and
binary releases for the various supported platforms can be obtained from www.cons.org/cmucl. These pages
describe how to download by FTP or CVS.

A number of mailing lists are available for users and developers; please see the web site for more informa-
tion.

1

http://www.xanalys.com/software_tools/reference/HyperSpec/FrontMatter/index-text.html
http://www.cons.org/cmucl/

CHAPTER 1. INTRODUCTION 2

1.2 Command Line Options

The command line syntax and environment is described in the lisp(1) man page in the man/man1 directory
of the distribution. See also cmucl(1). Currently CMUCL accepts the following switches:

-batch specifies batch mode, where all input is directed from standard-input. An error code of 0 is returned
upon encountering an EOF and 1 otherwise.

-quiet enters quiet mode. This implies setting the variables *load-verbose*, *compile-verbose*, *compile-
print*, *compile-progress*, *require-verbose* and *gc-verbose* to NIL, and disables the printing of
the startup banner.

-core requires an argument that should be the name of a core file. Rather than using the default core
file, which is searched in a number of places, according to the initial value of the library: search-list,
the specified core file is loaded. This switch overrides the value of the CMUCLCORE environment
variable, if present.

-lib requires an argument that should be the path to the CMUCL library directory, which is going to be
used to initialize the library: search-list, among other things. This switch overrides the value of the
CMUCLLIB environment variable, if present.

-dynamic-space-size
requires an argument that should be the number of megabytes (1048576 bytes) that should be allo-
cated to the heap. If not specified, a platform-specific default is used. The actual maximum allowed
heap size is platform-specific.

Currently, this option is only available for the x86 and sparc platforms.

-edit specifies to enter Hemlock. A file to edit may be specified by placing the name of the file between
the program name (usually ‘lisp’) and the first switch.

-eval accepts one argument which should be a Lisp form to evaluate during the start up sequence. The
value of the form will not be printed unless it is wrapped in a form that does output.

-hinit accepts an argument that should be the name of the hemlock init file to load the first time the func-
tion ed is invoked. The default is to load ‘hemlock-init.object-type’, or if that does not exist,
‘hemlock-init.lisp’ from the user’s home directory. If the file is not in the user’s home direc-
tory, the full path must be specified.

-init accepts an argument that should be the name of an init file to load during the normal start up
sequence. The default is to load ‘init.object-type’ or, if that does not exist, ‘init.lisp’ from the
user’s home directory. If the file is not in the user’s home directory, the full path must be specified.

-noinit accepts no arguments and specifies that an init file should not be loaded during the normal start up
sequence. Also, this switch suppresses the loading of a hemlock init file when Hemlock is started
up with the -edit switch.

-nositeinit accepts no arguments and specifies that the site init file should not be loaded during the normal start
up sequence.

-load accepts an argument which should be the name of a file to load into Lisp before entering Lisp’s
read-eval-print loop.

-slave specifies that Lisp should start up as a ıslave Lisp and try to connect to an editor Lisp. The name
of the editor to connect to must be specified—to find the editor’s name, use the Hemlock “Accept
Slave Connections” command. The name for the editor Lisp is of the form:

machine-name:socket

where machine-name is the internet host name for the machine and socket is the decimal number
of the socket to connect to.

CHAPTER 1. INTRODUCTION 3

For more details on the use of the -edit and -slave switches, see the Hemlock User’s Manual.
Arguments to the above switches can be specified in one of two ways: switch=value or switch¡space¿value.

For example, to start up the saved core file mylisp.core use either of the following two commands:

lisp -core=mylisp.core
lisp -core mylisp.core

1.3 Credits

CMUCL was developed at the Computer Science Department of Carnegie Mellon University. The work was
a small autonomous part within the Mach microkernel-based operating system project, and started more as a
tool development effort than a research project. The project started out as Spice Lisp, which provided a modern
Lisp implementation for use in the CMU community. CMUCL has been under continual development since
the early 1980’s (concurrent with the Common Lisp standardization effort). Most of the CMU Common Lisp
implementors went on to work on the Gwydion environment for Dylan. The CMU team was lead by Scott E.
Fahlman, the Python compiler was written by Robert MacLachlan.

CMUCL’s CLOS implementation is derived from the PCL reference implementation written at Xerox PARC:

Copyright (c) 1985, 1986, 1987, 1988, 1989, 1990 Xerox Corporation.
All rights reserved.

Use and copying of this software and preparation of derivative works based upon this software are
permitted. Any distribution of this software or derivative works must comply with all applicable
United States export control laws.

This software is made available AS IS, and Xerox Corporation makes no warranty about the soft-
ware, its performance or its conformity to any specification.

Its implementation of the LOOP macro was derived from code from Symbolics, which was derived from code
written at MIT:

Portions of LOOP are Copyright (c) 1986 by the Massachusetts Institute of Technology.
All Rights Reserved.

Permission to use, copy, modify and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the M.I.T. copyright notice appear in all copies
and that both that copyright notice and this permission notice appear in supporting documentation.
The names ”M.I.T.” and ”Massachusetts Institute of Technology” may not be used in advertising
or publicity pertaining to distribution of the software without specific, written prior permission.
Notice must be given in supporting documentation that copying distribution is by permission of
M.I.T. M.I.T. makes no representations about the suitability of this software for any purpose. It is
provided ”as is” without express or implied warranty.

Portions of LOOP are Copyright (c) 1989, 1990, 1991, 1992 by Symbolics, Inc.
All Rights Reserved.

Permission to use, copy, modify and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the Symbolics copyright notice appear in all copies
and that both that copyright notice and this permission notice appear in supporting documentation.
The name ”Symbolics” may not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. Notice must be given in supporting documen-
tation that copying distribution is by permission of Symbolics. Symbolics makes no representations
about the suitability of this software for any purpose. It is provided ”as is” without express or
implied warranty.

Symbolics, CLOE Runtime, and Minima are trademarks, and CLOE, Genera, and Zetalisp are regis-
tered trademarks of Symbolics, Inc.

The CLX code is copyrighted by Texas Instruments Incorporated:

CHAPTER 1. INTRODUCTION 4

Copyright (C) 1987 Texas Instruments Incorporated.

Permission is granted to any individual or institution to use, copy, modify, and distribute this soft-
ware, provided that this complete copyright and permission notice is maintained, intact, in all copies
and supporting documentation.

Texas Instruments Incorporated provides this software ”as is” without express or implied warranty.

CMUCL was funded by DARPA under CMU’s ”Research on Parallel Computing” contract. Rather than
doing pure research on programming languages and environments, the emphasis was on developing practical
programming tools. Sometimes this required new technology, but much of the work was in creating a Common
Lisp environment that incorporates state-of-the-art features from existing systems (both Lisp and non-Lisp).
Archives of the project are available online.

The project funding stopped in 1994, so support at Carnegie Mellon University has been discontinued. All
code and documentation developed at CMU was released into the public domain. The project continues as a
group of users and developers collaborating over the Internet. The currently active maintainers are:

• Marco Antoniotti

• Martin Cracauer

• Rob MacLachlan

• Pierre Mai

• Eric Marsden

• Gerd Moellman

• Tim Moore

• Raymond Toy

• Peter Van Eynde

• Paul Werkowski

In particular, Paul Werkowski and Douglas Crosher completed the port for the x86 architecture for FreeBSD.
Peter VanEnyde took the FreeBSD port and created a Linux version. Other people who have contributed to the
development of CMUCL since 1981 are

• David Axmark

• Miles Bader

• Rick Busdiecker

• Bill Chiles

• Douglas Thomas Crosher

• Casper Dik

• Ted Dunning

• Scott Fahlman

• Mike Garland

• Paul Gleichauf

• Sean Hallgren

• Richard Harris

CHAPTER 1. INTRODUCTION 5

• Joerg-Cyril Hoehl

• Chris Hoover

• John Kolojejchick

• Todd Kaufmann

• Simon Leinen

• Sandra Loosemore

• William Lott

• Dave McDonald

• Tim Moore

• Skef Wholey

Countless others have contributed to the project by sending in bug reports, bug fixes, new features.
This manual is based on CMU Technical Report CMU-CS-92-161, edited by Robert A. MacLachlan, dated

July 1992. Other contributors include Raymond Toy, Paul Werkowski and Eric Marsden. The Hierarchical
Packages chapter is based on documentation written by Franz. Inc, and is used with permission. The remainder
of the document is in the public domain.

Chapter 2

Design Choices and Extensions

Several design choices in Common Lisp are left to the individual implementation, and some essential parts of
the programming environment are left undefined. This chapter discusses the most important design choices
and extensions.

2.1 Data Types

2.1.1 Integers

The fixnum type is equivalent to (signed-byte 30). Integers outside this range are represented as a bignum or a
word integer (see section 5.11.6, page 106.) Almost all integers that appear in programs can be represented as a
fixnum, so integer number consing is rare.

2.1.2 Floats

CMUCL supports three floating point formats: single-float, double-float and double-double-float. The first two
are implemented with IEEE single and double float arithmetic, respectively. The last is an extension; see sec-
tion 2.1.3, page 9 for more information. short-float is a synonym for single-float, and long-float is a synonym for
double-float. The initial value of *read-default-float-format* is single-float.

Both single-float and double-float are represented with a pointer descriptor, so float operations can cause
number consing. Number consing is greatly reduced if programs are written to allow the use of non-descriptor
representations (see section 5.11, page 103.)

2.1.2.1 IEEE Special Values

CMUCL supports the IEEE infinity and NaN special values. These non-numeric values will only be generated
when trapping is disabled for some floating point exception (see section 2.1.2.4, page 7), so users of the default
configuration need not concern themselves with special values.

extensions:short-float-positive-infinity [Constant]
extensions:short-float-negative-infinity [Constant]
extensions:single-float-positive-infinity [Constant]
extensions:single-float-negative-infinity [Constant]
extensions:double-float-positive-infinity [Constant]
extensions:double-float-negative-infinity [Constant]
extensions:long-float-positive-infinity [Constant]
extensions:long-float-negative-infinity [Constant]

The values of these constants are the IEEE positive and negative infinity objects for each float format.

6

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 7

extensions:float-infinity-p x [Function]
This function returns true if x is an IEEE float infinity (of either sign.) x must be a float.

extensions:float-nan-p x [Function]
extensions:float-trapping-nan-p x [Function]

float-nan-p returns true if x is an IEEE NaN (Not A Number) object. float-trapping-nan-p returns true only if
x is a trapping NaN. With either function, x must be a float.

2.1.2.2 Negative Zero

The IEEE float format provides for distinct positive and negative zeros. To test the sign on zero (or any other
float), use the Common Lisp float-sign function. Negative zero prints as -0.0f0 or -0.0d0.

2.1.2.3 Denormalized Floats

CMUCL supports IEEE denormalized floats. Denormalized floats provide a mechanism for gradual underflow.
The Common Lisp float-precision function returns the actual precision of a denormalized float, which will be
less than float-digits. Note that in order to generate (or even print) denormalized floats, trapping must be
disabled for the underflow exception (see section 2.1.2.4, page 7.) The Common Lisp least-positive-format-float
constants are denormalized.

extensions:float-denormalized-p x [Function]
This function returns true if x is a denormalized float. x must be a float.

2.1.2.4 Floating Point Exceptions

The IEEE floating point standard defines several exceptions that occur when the result of a floating point op-
eration is unclear or undesirable. Exceptions can be ignored, in which case some default action is taken, such
as returning a special value. When trapping is enabled for an exception, a error is signalled whenever that
exception occurs. These are the possible floating point exceptions:

:underflow
This exception occurs when the result of an operation is too small to be represented as a normal-
ized float in its format. If trapping is enabled, the floating-point-underflow condition is signalled.
Otherwise, the operation results in a denormalized float or zero.

:overflow This exception occurs when the result of an operation is too large to be represented as a float in
its format. If trapping is enabled, the floating-point-overflow exception is signalled. Otherwise, the
operation results in the appropriate infinity.

:inexact This exception occurs when the result of a floating point operation is not exact, i.e. the result was
rounded. If trapping is enabled, the extensions:floating-point-inexact condition is signalled. Other-
wise, the rounded result is returned.

:invalid This exception occurs when the result of an operation is ill-defined, such as (/ 0.0 0.0). If trapping
is enabled, the extensions:floating-point-invalid condition is signalled. Otherwise, a quiet NaN is
returned.

:divide-by-zero
This exception occurs when a float is divided by zero. If trapping is enabled, the divide-by-zero
condition is signalled. Otherwise, the appropriate infinity is returned.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 8

2.1.2.5 Floating Point Rounding Mode

IEEE floating point specifies four possible rounding modes:

:nearest In this mode, the inexact results are rounded to the nearer of the two possible result values. If the
neither possibility is nearer, then the even alternative is chosen. This form of rounding is also called
“round to even”, and is the form of rounding specified for the Common Lisp round function.

:positive-infinity
This mode rounds inexact results to the possible value closer to positive infinity. This is analogous
to the Common Lisp ceiling function.

:negative-infinity
This mode rounds inexact results to the possible value closer to negative infinity. This is analogous
to the Common Lisp floor function.

:zero This mode rounds inexact results to the possible value closer to zero. This is analogous to the Com-
mon Lisp truncate function.

Warning: Although the rounding mode can be changed with set-floating-point-modes, use of any value other
than the default (:nearest) can cause unusual behavior, since it will affect rounding done by Common Lisp
system code as well as rounding in user code. In particular, the unary round function will stop doing round-to-
nearest on floats, and instead do the selected form of rounding.

2.1.2.6 Accessing the Floating Point Modes

These functions can be used to modify or read the floating point modes:

extensions:set-floating-point-modes &key :traps :rounding-mode
:fast-mode :accrued-exceptions
:current-exceptions

[Function]

extensions:get-floating-point-modes [Function]
The keyword arguments to set-floating-point-modes set various modes controlling how floating point arith-

metic is done:

:traps A list of the exception conditions that should cause traps. Possible exceptions are :underflow, :over-
flow, :inexact, :invalid and :divide-by-zero. Initially all traps except :inexact are enabled. See sec-
tion 2.1.2.4, page 7.

:rounding-mode
The rounding mode to use when the result is not exact. Possible values are :nearest, :positive-infinity,
:negative-infinity and :zero. Initially, the rounding mode is :nearest. See the warning in section
2.1.2.5 about use of other rounding modes.

:current-exceptions, :accrued-exceptions
Lists of exception keywords used to set the exception flags. The current-exceptions are the excep-
tions for the previous operation, so setting it is not very useful. The accrued-exceptions are a cumu-
lative record of the exceptions that occurred since the last time these flags were cleared. Specifying
() will clear any accrued exceptions.

:fast-mode
Set the hardware’s “fast mode” flag, if any. When set, IEEE conformance or debuggability may be
impaired. Some machines may not have this feature, in which case the value is always nil. Sparc
platforms support a fast mode where denormal numbers are silently truncated to zero.

If a keyword argument is not supplied, then the associated state is not changed.
get-floating-point-modes returns a list representing the state of the floating point modes. The list is in the

same format as the keyword arguments to set-floating-point-modes, so apply could be used with set-floating-
point-modes to restore the modes in effect at the time of the call to get-floating-point-modes.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 9

To make handling control of floating-point exceptions, the following macro is useful.

ext:with-float-traps-masked traps &body body [Macro]
body is executed with the selected floating-point exceptions given by traps masked out (disabled). traps

should be a list of possible floating-point exceptions that should be ignored. Possible values are :underflow,
:overflow, :inexact, :invalid and :divide-by-zero.

This is equivalent to saving the current traps from get-floating-point-modes, setting the floating-point modes
to the desired exceptions, running the body, and restoring the saved floating-point modes. The advantage of
this macro is that it causes less consing to occur.

Some points about the with-float-traps-masked:

• Two approaches are available for detecting FP exceptions:

1. enabling the traps and handling the exceptions

2. disabling the traps and either handling the return values or checking the accrued exceptions.

Of these the latter is the most portable because on the alpha port it is not possible to enable some traps at
run-time.

• To assist the checking of the exceptions within the body any accrued exceptions matching the given traps
are cleared at the start of the body when the traps are masked.

• To allow the macros to be nested these accrued exceptions are restored at the end of the body to their
values at the start of the body. Thus any exceptions that occurred within the body will not affect the
accrued exceptions outside the macro.

• Note that only the given exceptions are restored at the end of the body so other exception will be visible
in the accrued exceptions outside the body.

• On the x86, setting the accrued exceptions of an unmasked exception would cause a FP trap. The macro
behaviour of restoring the accrued exceptions ensures than if an accrued exception is initially not flagged
and occurs within the body it will be restored/cleared at the exit of the body and thus not cause a trap.

• On the x86, and, perhaps, the hppa, the FP exceptions may be delivered at the next FP instruction which
requires a FP wait instruction (x86::float-wait) if using the lisp conditions to catch trap within a handler-
bind. The handler-bind macro does the right thing and inserts a float-wait (at the end of its body on the
x86). The masking and noting of exceptions is also safe here.

• The setting of the FP flags uses the (floating-point-modes) and the (set (floating-point-modes). . .) VOPs.
These VOPs blindly update the flags which may include other state. We assume this state hasn’t changed
in between getting and setting the state. For example, if you used the FP unit between the above calls,
the state may be incorrectly restored! The with-float-traps-masked macro keeps the intervening code to a
minimum and uses only integer operations.

2.1.3 Extended Floats

CMUCL also has an extension to support double-double-float type. This float format provides extended precision
of about 31 decimal digits, with the same exponent range as double-float. It is completely integrated into CMUCL,
and can be used just like any other floating-point object, including arrays, complex double-double-float’s, and
special functions. With appropriate declarations, no boxing is needed, just like single-float and double-float.

The exponent marker for a double-double float number is “W”, so “1.234w0” is a double-double float num-
ber.

Note that there are a few shortcomings with double-double-float’s:

• There are no equivalents to most-positive-double-float, double-float-positive-infinity, etc. This is because
these are not really well defined for double-double-float’s.

• Underflow and overflow may be prematurely signaled. This is due to how double-double-float’s are im-
plemented.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 10

• Basic arithmetic operations are inlined, so the code size is fairly large.

• double-double-float arithmetic is quite a bit slower than double-float since there is no hardware support
for this type.

• The constant pi is still a double-float instead of a double-double-float. Use ext:dd-pi if you want a double-
double-float value for π.

extensions:double-double-float [float]
The double-double-float type. It is in the EXTENSIONS package.

extensions:dd-pi [Constant]
A double-double-float approximation to π.

2.1.4 Characters

CMUCL implements characters according to Common Lisp: The Language II. The main difference from the first
version is that character bits and font have been eliminated, and the names of the types have been changed.
base-character is the new equivalent of the old string-char. In this implementation, all characters are base
characters (there are no extended characters.) Character codes range between 0 and 255, using the ASCII
encoding. Table 2.1 on this page shows characters recognized by CMUCL.

ASCII Lisp

Name Code Name
Alternatives

nul 0 #\NULL #\NUL
bel 7 #\BELL
bs 8 #\BACKSPACE #\BS
tab 9 #\TAB
lf 10 #\NEWLINE #\NL #\LINEFEED #\LF
ff 11 #\VT #\PAGE #\FORM
cr 13 #\RETURN #\CR

esc 27 #\ESCAPE #\ESC #\ALTMODE #\ALT
sp 32 #\SPACE #\SP
del 127 #\DELETE #\RUBOUT

Table 2.1: Characters recognized by CMUCL

2.1.5 Array Initialization

If no :initial-value is specified, arrays are initialized to zero.

2.1.6 Hash tables

The hash-tables defined by Common Lisp have limited utility because they are limited to testing their keys
using the equality predicates provided by (pre-CLOS) Common Lisp. CMUCL overcomes this limitation by
allowing its users to specify new hash table tests and hashing methods. The hashing method must also be spec-
ified, since the compiler is unable to determine a good hashing function for an arbitrary equality (equivalence)
predicate.

extensions:define-hash-table-test hash-table-test-name test-function hash-function [Function]
The hash-table-test-name must be a symbol. The test-function takes two objects and returns true iff they are

the same. The hash-function takes one object and returns two values: the (positive fixnum) hash value and true
if the hashing depends on pointer values and will have to be redone if the object moves.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 11

To create a hash-table using this new “test” (really, a test/hash-function pair), use (make-hash-table :test
hash-table-test-name . . .).

Note that it is the hash-table-test-name that will be returned by the function hash-table-test, when applied
to a hash-table created using this function.

This function updates *hash-table-tests*, which is now internal.
CMUCL also supports a number of weak hash tables. These weak tables are created using the :weak-p ar-

gument to make-hash-table. Normally, a reference to an object as either the key or value of the hash-table
will prevent that object from being garbage-collected. However, in a weak table, if the only reference is the
hash-table, the object can be collected.

The possible values for :weak-p are listed below. An entry in the table remains if the condition holds

:key The key is referenced elsewhere

:value The value is referenced elsewhere

:key-and-value
Both the key and value are referenced elsewhere

:key-or-value
Either the key or value are referenced elsewhere

T For backward compatibility, this means the same as :key.

If the condition does not hold, the object can be removed from the hash table.
Weak hash tables can only be created if the test is eq or eql. An error is signaled if this is not the case.

make-hash-table &key :test :size :rehash-size :rehash-threshold :weak-p [Function]
Creates a hash-table with the specified properties.

2.2 Default Interrupts for Lisp

CMUCL has several interrupt handlers defined when it starts up, as follows:

SIGINT (↑c)
causes Lisp to enter a break loop. This puts you into the debugger which allows you to look at the
current state of the computation. If you proceed from the break loop, the computation will proceed
from where it was interrupted.

SIGQUIT (↑L)
causes Lisp to do a throw to the top-level. This causes the current computation to be aborted, and
control returned to the top-level read-eval-print loop.

SIGTSTP (↑z)
causes Lisp to suspend execution and return to the Unix shell. If control is returned to Lisp, the
computation will proceed from where it was interrupted.

SIGILL, SIGBUS, SIGSEGV, and SIGFPE
cause Lisp to signal an error.

For keyboard interrupt signals, the standard interrupt character is in parentheses. Your ‘.login’ may set up
different interrupt characters. When a signal is generated, there may be some delay before it is processed
since Lisp cannot be interrupted safely in an arbitrary place. The computation will continue until a safe point is
reached and then the interrupt will be processed. See section 6.8.1, page 124 to define your own signal handlers.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 12

2.3 Implementation-Specific Packages

When CMUCL is first started up, the default package is the common-lisp-user package. The common-lisp-user
package uses the common-lisp and extensions packages. The symbols exported from these three packages can
be referenced without package qualifiers. This section describes packages which have exported interfaces that
may concern users. The numerous internal packages which implement parts of the system are not described
here. Package nicknames are in parenthesis after the full name.

alien, c-call
Export the features of the Alien foreign data structure facility (see section 8, page 134.)

pcl This package contains PCL (Portable CommonLoops), which is a portable implementation of CLOS
(the Common Lisp Object System.) This implements most (but not all) of the features in the CLOS
chapter of Common Lisp: The Language II.

clos-mop (mop)
This package contains an implementation of the CLOS Metaobject Protocol, as per the book The Art
of the Metaobject Protocol.

debug The debug package contains the command-line oriented debugger. It exports utility various func-
tions and switches.

debug-internals
The debug-internals package exports the primitives used to write debuggers. See section 11,
page 158.

extensions (ext)
The extensions packages exports local extensions to Common Lisp that are documented in this
manual. Examples include the save-lisp function and time parsing.

hemlock (ed)
The hemlock package contains all the code to implement Hemlock commands. The hemlock package
currently exports no symbols.

hemlock-internals (hi)
The hemlock-internals package contains code that implements low level primitives and exports
those symbols used to write Hemlock commands.

keyword The keyword package contains keywords (e.g., :start). All symbols in the keyword package are ex-
ported and evaluate to themselves (i.e., the value of the symbol is the symbol itself).

profile The profile package exports a simple run-time profiling facility (see section 5.14, page 115).

common-lisp (cl)
The common-lisp package exports all the symbols defined by Common Lisp: The Language and only
those symbols. Strictly portable Lisp code will depend only on the symbols exported from the
common-lisp package.

unix This package exports system call interfaces to Unix (see section 6, page 119).

system (sys)
The system package contains functions and information necessary for system interfacing. This pack-
age is used by the lisp package and exports several symbols that are necessary to interface to system
code.

xlib The xlib package contains the Common Lisp X interface (CLX) to the X11 protocol. This is mostly
Lisp code with a couple of functions that are defined in C to connect to the server.

wire The wire package exports a remote procedure call facility (see section 9, page 149).

stream The stream package exports the public interface to the simple-streams implementation (see sec-
tion 2.13, page 22).

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 13

2.4 Hierarchical Packages

2.4.1 Introduction

The Common Lisp package system, designed and standardized several years ago, is not hierarchical. Since
Common Lisp was standardized, other languages, including Java and Perl, have evolved namespaces which
are hierarchical. This document describes a hierarchical package naming scheme for Common Lisp. The scheme
was proposed by Franz Inc and implemented in their Allegro Common Lisp product; a compatible implementa-
tion of the naming scheme is implemented in CMUCL. This documentation is based on the Franz Inc. documen-
tation, and is included with permission.

The goals of hierarchical packages in Common Lisp are:

• Reduce collisions with user-defined packages: it is a well-known problem that package names used by the
Lisp implementation and those defined by users can easily conflict. The intent of hierarchical packages is
to reduce such conflicts to a minimum.

• Improve modularity: the current organization of packages in various implementations has grown over
the years and appears somewhat random. Organizing future packages into a hierarchy will help make
the intention of the implementation more clear.

• Foster growth in Common Lisp programs, or modules, available to the CL community: the Perl and Java
communities are able to contribute code to repositories, with minimal fear of collision, because of the
hierarchical nature of the name spaces used by the contributed code. We want the Lisp community to
benefit from shared modules in the same way.

In a nutshell, a dot (.) is used to separate levels in package names, and a leading dot signifies a relative
package name. The choice of dot follows Java. Perl, another language with hierarchical packages, uses a colon
(:) as a delimiter, but the colon is already reserved in Common Lisp. Absolute package names require no
modifications to the underlying Common Lisp implementation. Relative package names require only small
and simple modifications.

2.4.2 Relative Package Names

Relative package names are needed for the same reason as relative pathnames, for brevity and to reduce the
brittleness of absolute names. A relative package name is one that begins with one or more dots. A single dot
means the current package, two dots mean the parent of the current package, and so on.

Table 2.2 presents a number of examples, assuming that the packages named foo, foo.bar, mypack,
mypack.foo, mypack.foo.bar, mypack.foo.baz, mypack.bar, and mypack.bar.baz, have all been
created.

relative name current package absolute name of referenced package
foo any foo
foo.bar any foo.bar
.foo mypack mypack.foo
.foo.bar mypack mypack.foo.bar
..foo mypack.bar mypack.foo
..foo.baz mypack.bar mypack.foo.baz
...foo mypack.bar.baz mypack.foo
. mypack.bar.baz mypack.bar.baz
.. mypack.bar.baz mypack.bar
... mypack.bar.baz mypack

Table 2.2: Examples of hierarchical packages

Additional notes:

1. All packages in the hierarchy must exist.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 14

2. Warning about nicknames: Unless you provide nicknames for your hierarchical packages (and we rec-
ommend against doing so because the number gets quite large), you can only use the names supplied.
You cannot mix in nicknames or alternate names. cl-user is nickname of the common-lisp-user package.
Consider the following:

(defpackage :cl-user.foo)

When the current package (the value of the variable *package*) is common-lisp-user, you might ex-
pect .foo to refer to cl-user.foo, but it does not. It actually refers to the non-existent package
common-lisp-user.foo. Note that the purpose of nicknames is to provide shorter names in place of
the longer names that are designed to be fully descriptive. The hope is that hierarchical packages makes
longer names unnecessary and thus makes nicknames unnecessary.

3. Multiple dots can only appear at the beginning of a package name. For example, foo.bar..baz does
not mean foo.baz – it is invalid. (Of course, it is perfectly legal to name a package foo.bar..baz, but
cl:find-package will not process such a name to find foo.baz in the package hierarchy.)

2.4.3 Compatibility with ANSI Common Lisp

The implementation of hierarchical packages modifies the cl:find-package function, and provides certain auxil-
iary functions, package-parent, package-children, and relative-package-name-to-package, as described in this
section. The function defpackage itself requires no modification.

While the changes to cl:find-package are small and described below, it is an important consideration for
authors who would like their programs to run on a variety of implementations that using hierarchical packages
will work in an implementation without the modifications discussed in this document. We show why after
describing the changes to cl:find-package.

Absolute hierarchical package names require no changes in the underlying Common Lisp implementation.

2.4.3.1 Changes to cl:find-package

Using relative hierarchical package names requires a simple modification of cl:find-package.
In ANSI Common Lisp, cl:find-package, if passed a package object, returns it; if passed a string, cl:find-

package looks for a package with that string as its name or nickname, and returns the package if it finds one,
or returns nil if it does not; if passed a symbol, the symbol name (a string) is extracted and cl:find-package
proceeds as it does with a string.

For implementing hierarchical packages, the behavior when the argument is a package object (return it) does
not change. But when the argument is a string starting with one or more dots not directly naming a package,
cl:find-package will, instead of returning nil, check whether the string can be resolved as naming a relative
package, and if so, return the associated absolute package object. (If the argument is a symbol, the symbol
name is extracted and cl:find-package proceeds as it does with a string argument.)

Note that you should not use leading dots in package names when using hierarchical packages.

2.4.3.2 Using Hierarchical Packages without Modifying cl:find-package

Even without the modifications to cl:find-package, authors need not avoid using relative package names, but
the ability to reuse relative package names is restricted. Consider for example a module foo which is composed
of the my.foo.bar and my.foo.baz packages. In the code for each of the these packages there are relative
package references, ..bar and ..baz.

Implementations that have the new cl:find-package would have :relative-package-names on their
features list (this is the case of CMUCL releases starting from 18d). Then, in the foo module, there would be
definitions of the my.foo.bar and my.foo.baz packages like so:

(defpackage :my.foo.bar
#-relative-package-names (:nicknames #:..bar)
...)

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 15

(defpackage :my.foo.baz
#-relative-package-names (:nicknames #:..baz)
...)

Then, in a #-relative-package-names implementation, the symbol my.foo.bar:blam would be vis-
ible from my.foo.baz as ..bar:blam, just as it would from a #+relative-package-names implementa-
tion.

So, even without the implementation of the augmented cl:find-package, one can still write Common Lisp
code that will work in both types of implementations, but ..bar and ..baz are now used, so you cannot also
have otherpack.foo.bar and otherpack.foo.baz and use ..bar and ..baz as relative names. (The
point of hierarchical packages, of course, is to allow reusing relative package names.)

2.5 Package Locks

CMUCL provides two types of package locks, as an extension to the ANSI Common Lisp standard. The package-
lock protects a package from changes in its structure (the set of exported symbols, its use list, etc). The package-
definition-lock protects the symbols in the package from being redefined due to the execution of a defun, def-
macro, defstruct, deftype or defclass form.

2.5.1 Rationale

Package locks are an aid to program development, by helping to detect inadvertent name collisions and function
redefinitions. They are consistent with the principle that a package “belongs to” its implementor, and that noone
other than the package’s developer should be making or modifying definitions on symbols in that package.
Package locks are compatible with the ANSI Common Lisp standard, which states that the consequences of
redefining functions in the COMMON-LISP package are undefined.

Violation of a package lock leads to a continuable error of type lisp::package-locked-error being signaled.
The user may choose to ignore the lock and proceed, or to abort the computation. Two other restarts are
available, one which disables all locks on all packages, and one to disable only the package-lock or package-
definition-lock that was tripped.

The following transcript illustrates the behaviour seen when attempting to redefine a standard macro in the
COMMON-LISP package, or to redefine a function in one of CMUCL’s implementation-defined packages:

CL-USER> (defmacro 1+ (x) (* x 2))
Attempt to modify the locked package COMMON-LISP, by defining macro 1+

[Condition of type LISP::PACKAGE-LOCKED-ERROR]

Restarts:
0: [continue] Ignore the lock and continue
1: [unlock-package] Disable the package’s definition-lock then continue
2: [unlock-all] Unlock all packages, then continue
3: [abort] Return to Top-Level.

CL-USER> (defun ext:gc () t)
Attempt to modify the locked package EXTENSIONS, by redefining function GC

[Condition of type LISP::PACKAGE-LOCKED-ERROR]

Restarts:
0: [continue] Ignore the lock and continue
1: [unlock-package] Disable package’s definition-lock, then continue
2: [unlock-all] Disable all package locks, then continue
3: [abort] Return to Top-Level.

The following transcript illustrates the behaviour seen when an attempt to modify the structure of a package is made:

CL-USER> (unexport ’load-foreign :ext)
Attempt to modify the locked package EXTENSIONS, by unexporting symbols LOAD-FOREIGN

[Condition of type lisp::package-locked-error]

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 16

Restarts:
0: [continue] Ignore the lock and continue
1: [unlock-package] Disable package’s lock then continue
2: [unlock-all] Unlock all packages, then continue
3: [abort] Return to Top-Level.

The COMMON-LISP package and the CMUCL-specific implementation packages are locked on startup. Users
can lock their own packages by using the ext:package-lock and ext:package-definition-lock accessors.

2.5.2 Disabling package locks

A package’s locks can be enabled or disabled by using the ext:package-lock and ext:package-definition-lock
accessors, as follows:

(setf (ext:package-lock (find-package "UNIX")) nil)
(setf (ext:package-definition-lock (find-package "UNIX")) nil)

ext:package-lock package [Function]
This function is an accessor for a package’s structural lock, which protects it against modifications to its list

of exported symbols.

ext:package-definition-lock package [Function]
This function is an accessor for a package’s definition-lock, which protects symbols in that package from

redefinition. As well as protecting the symbol’s fdefinition from change, attempts to change the symbol’s defi-
nition using defstruct, defclass or deftype will be trapped.

ext:without-package-locks &rest body [Macro]
This macro can be used to execute forms with all package locks (both structure and definition locks) dis-

abled.

ext:unlock-all-packages [Function]
This function disables both structure and definition locks on all currently defined packages. Note that pack-

age locks are reset when CMUCL is restarted, so the effect of this function is limited to the current session.

2.6 The Editor

The ed function invokes the Hemlock editor which is described in Hemlock User’s Manual and Hemlock Command
Implementor’s Manual. Most users at CMU prefer to use Hemlock’s slave Common Lisp mechanism which
provides an interactive buffer for the read-eval-print loop and editor commands for evaluating and compiling
text from a buffer into the slave Common Lisp. Since the editor runs in the Common Lisp, using slaves keeps
users from trashing their editor by developing in the same Common Lisp with Hemlock.

2.7 Garbage Collection

CMUCL uses either a stop-and-copy garbage collector or a generational, mostly copying garbage collector.
Which collector is available depends on the platform and the features of the platform. The stop-and-copy
GC is available on all RISC platforms. The x86 platform supports a conservative stop-and-copy collector, which
is now rarely used, and a generational conservative collector. On the Sparc platform, both the stop-and-copy
GC and the generational GC are available, but the stop-and-copy GC is deprecated in favor of the generational
GC.

The generational GC is available if *features* contains :gencgc.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 17

The following functions invoke the garbage collector or control whether automatic garbage collection is in
effect:

extensions:gc &optional verbose-p [Function]
This function runs the garbage collector. If ext:*gc-verbose* is non-nil, then it invokes ext:*gc-notify-before*

before GC’ing and ext:*gc-notify-after* afterwards.
verbose-p indicates whether GC statistics are printed or not.

extensions:gc-off [Function]
This function inhibits automatic garbage collection. After calling it, the system will not GC unless you call

ext:gc or ext:gc-on.

extensions:gc-on [Function]
This function reinstates automatic garbage collection. If the system would have GC’ed while automatic GC

was inhibited, then this will call ext:gc.

2.7.1 GC Parameters

The following variables control the behavior of the garbage collector:

extensions:*bytes-consed-between-gcs* [Variable]
CMUCL automatically GC’s whenever the amount of memory allocated to dynamic objects exceeds the value

of an internal variable. After each GC, the system sets this internal variable to the amount of dynamic space in
use at that point plus the value of the variable ext:*bytes-consed-between-gcs*. The default value is 2000000.

extensions:*gc-verbose* [Variable]
This variable controls whether ext:gc invokes the functions in ext:*gc-notify-before* and ext:*gc-notify-after*.

If *gc-verbose* is nil, ext:gc foregoes printing any messages. The default value is T.

extensions:*gc-notify-before* [Variable]
This variable’s value is a function that should notify the user that the system is about to GC. It takes one

argument, the amount of dynamic space in use before the GC measured in bytes. The default value of this
variable is a function that prints a message similar to the following:

[GC threshold exceeded with 2,107,124 bytes in use. Commencing GC.]

extensions:*gc-notify-after* [Variable]
This variable’s value is a function that should notify the user when a GC finishes. The function must take

three arguments, the amount of dynamic spaced retained by the GC, the amount of dynamic space freed, and
the new threshold which is the minimum amount of space in use before the next GC will occur. All values are
byte quantities. The default value of this variable is a function that prints a message similar to the following:

[GC completed with 25,680 bytes retained and 2,096,808 bytes freed.]
[GC will next occur when at least 2,025,680 bytes are in use.]

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 18

Note that a garbage collection will not happen at exactly the new threshold printed by the default ext:*gc-
notify-after* function. The system periodically checks whether this threshold has been exceeded, and only then
does a garbage collection.

extensions:*gc-inhibit-hook* [Variable]
This variable’s value is either a function of one argument or nil. When the system has triggered an automatic

GC, if this variable is a function, then the system calls the function with the amount of dynamic space currently
in use (measured in bytes). If the function returns nil, then the GC occurs; otherwise, the system inhibits auto-
matic GC as if you had called ext:gc-off. The writer of this hook is responsible for knowing when automatic GC
has been turned off and for calling or providing a way to call ext:gc-on. The default value of this variable is nil.

extensions:*before-gc-hooks* [Variable]
extensions:*after-gc-hooks* [Variable]

These variables’ values are lists of functions to call before or after any GC occurs. The system provides these
purely for side-effect, and the functions take no arguments.

2.7.2 Generational GC

Generational GC also supports some additional functions and variables to control it.

extensions:gc &key :verbose :gen :full [Function]
This function runs the garbage collector. If ext:*gc-verbose* is non-nil, then it invokes ext:*gc-notify-before*

before GC’ing and ext:*gc-notify-after* afterwards.

verbose Print GC statistics if non-NIL.

gen The number of generations to be collected.

full If non-NIL, a full collection of all generations is performed.

lisp::gencgc-stats generation [Function]
Returns statistics about the generation, as multiple values:

1. Bytes allocated in this generation

2. The GC trigger for this generation. When this many bytes have been allocated, a GC is started automati-
cally.

3. The number of bytes consed between GCs.

4. The number of GCs that have been done on this generation. This is reset to zero when the generation is
raised.

5. The trigger age, which is the maximum number of GCs to perform before this generation is raised.

6. The total number of bytes allocated to this generation.

7. Average age of the objects in this generations. The average age is the cumulative bytes allocated divided
by current number of bytes allocated.

lisp::set-gc-trigger gen trigger [Function]
Sets the GC trigger value for the specified generation.

lisp::set-trigger-age gen trigger-age [Function]
Sets the GC trigger age for the specified generation.

lisp::set-min-mem-age gen min-mem-age [Function]
Sets the minimum average memory age for the specified generation. If the computed memory age is below

this, GC is not performed, which helps prevent a GC when a large number of new live objects have been added
in which case a GC would usually be a waste of time.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 19

2.7.3 Weak Pointers

A weak pointer provides a way to maintain a reference to an object without preventing an object from being
garbage collected. If the garbage collector discovers that the only pointers to an object are weak pointers, then
it breaks the weak pointers and deallocates the object.

extensions:make-weak-pointer object [Function]
extensions:weak-pointer-value weak-pointer [Function]

make-weak-pointer returns a weak pointer to an object. weak-pointer-value follows a weak pointer, returning
the two values: the object pointed to (or nil if broken) and a boolean value which is nil if the pointer has been
broken, and true otherwise.

2.7.4 Finalization

Finalization provides a “hook” that is triggered when the garbage collector reclaims an object. It is usually used
to recover non-Lisp resources that were allocated to implement the finalized Lisp object. For example, when a
unix file-descriptor stream is collected, finalization is used to close the underlying file descriptor.

extensions:finalize object function [Function]
This function registers object for finalization. function is called with no arguments when object is reclaimed.

Normally function will be a closure over the underlying state that needs to be freed, e.g. the unix file descriptor
in the fd-stream case. Note that function must not close over object itself, as this prevents the object from ever
becoming garbage.

extensions:cancel-finalization object [Function]
This function cancel any finalization request for object .

2.8 Describe

describe object &optional stream [Function]
The describe function prints useful information about object on stream, which defaults to *standard-output*.

For any object, describe will print out the type. Then it prints other information based on the type of object .
The types which are presently handled are:

hash-table
describe prints the number of entries currently in the hash table and the number of buckets currently
allocated.

function describe prints a list of the function’s name (if any) and its formal parameters. If the name has
function documentation, then it will be printed. If the function is compiled, then the file where it is
defined will be printed as well.

fixnum describe prints whether the integer is prime or not.

symbol The symbol’s value, properties, and documentation are printed. If the symbol has a function defini-
tion, then the function is described.

If there is anything interesting to be said about some component of the object, describe will invoke itself recur-
sively to describe that object. The level of recursion is indicated by indenting output.

A number of switches can be used to control describe’s behavior.

extensions:*describe-level* [Variable]
The maximum level of recursive description allowed. Initially two.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 20

extensions:*describe-indentation* [Variable]
The number of spaces to indent for each level of recursive description, initially three.

extensions:*describe-print-level* [Variable]
extensions:*describe-print-length* [Variable]

The values of *print-level* and *print-length* during description. Initially two and five.

2.9 The Inspector

CMUCL has both a graphical inspector that uses the X Window System, and a simple terminal-based inspector.

inspect &optional object [Function]
inspect calls the inspector on the optional argument object . If object is unsupplied, inspect immediately

returns nil. Otherwise, the behavior of inspect depends on whether Lisp is running under X. When inspect is
eventually exited, it returns some selected Lisp object.

2.9.1 The Graphical Interface

CMUCL has an interface to Motif which is functionally similar to CLM, but works better in CMUCL. This inter-
face is documented in separate manuals CMUCL Motif Toolkit and Design Notes on the Motif Toolkit, which are
distributed with CMUCL.

This motif interface has been used to write the inspector and graphical debugger. There is also a Lisp
control panel with a simple file management facility, apropos and inspector dialogs, and controls for setting
global options. See the interface and toolkit packages.

interface:lisp-control-panel [Function]
This function creates a control panel for the Lisp process.

interface:*interface-style* [Variable]
When the graphical interface is loaded, this variable controls whether it is used by inspect and the error

system. If the value is :graphics (the default) and the DISPLAY environment variable is defined, the graphical
inspector and debugger will be invoked by inspect or when an error is signalled. Possible values are :graphics
and tty. If the value is :graphics, but there is no X display, then we quietly use the TTY interface.

2.9.2 The TTY Inspector

If X is unavailable, a terminal inspector is invoked. The TTY inspector is a crude interface to describe which
allows objects to be traversed and maintains a history. This inspector prints information about and object and
a numbered list of the components of the object. The command-line based interface is a normal read–eval–print
loop, but an integer n descends into the n’th component of the current object, and symbols with these special
names are interpreted as commands:

U Move back to the enclosing object. As you descend into the components of an object, a stack of all
the objects previously seen is kept. This command pops you up one level of this stack.

Q, E Return the current object from inspect.

R Recompute object display, and print again. Useful if the object may have changed.

D Display again without recomputing.

H, ? Show help message.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 21

2.10 Load

load filename &key :verbose :print :if-does-not-exist
:if-source-newer :contents

[Function]

As in standard Common Lisp, this function loads a file containing source or object code into the running
Lisp. Several CMU extensions have been made to load to conveniently support a variety of program file orga-
nizations. filename may be a wildcard pathname such as ‘*.lisp’, in which case all matching files are loaded.

If filename has a pathname-type (or extension), then that exact file is loaded. If the file has no extension,
then this tells load to use a heuristic to load the “right” file. The *load-source-types* and *load-object-types*
variables below are used to determine the default source and object file types. If only the source or the object
file exists (but not both), then that file is quietly loaded. Similarly, if both the source and object file exist, and the
object file is newer than the source file, then the object file is loaded. The value of the if-source-newer argument
is used to determine what action to take when both the source and object files exist, but the object file is out of
date:

:load-object
The object file is loaded even though the source file is newer.

:load-source
The source file is loaded instead of the older object file.

:compile The source file is compiled and then the new object file is loaded.

:query The user is asked a yes or no question to determine whether the source or object file is loaded.

This argument defaults to the value of ext:*load-if-source-newer* (initially :load-object.)
The contents argument can be used to override the heuristic (based on the file extension) that normally

determines whether to load the file as a source file or an object file. If non-null, this argument must be either
:source or :binary, which forces loading in source and binary mode, respectively. You really shouldn’t ever need
to use this argument.

extensions:*load-source-types* [Variable]
extensions:*load-object-types* [Variable]

These variables are lists of possible pathname-type values for source and object files to be passed to load.
These variables are only used when the file passed to load has no type; in this case, the possible source and
object types are used to default the type in order to determine the names of the source and object files.

extensions:*load-if-source-newer* [Variable]
This variable determines the default value of the if-source-newer argument to load. Its initial value is :load-

object.

2.11 The Reader

2.11.1 Reader Extensions

CMUCL supports an ANSI-compatible extension to enable reading of specialized arrays. Thus

* (setf *print-readably* nil)
NIL

* (make-array ’(2 2) :element-type ’(signed-byte 8))
#2A((0 0) (0 0))

* (setf *print-readably* t)
T

* (make-array ’(2 2) :element-type ’(signed-byte 8))
#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))

* (type-of (read-from-string "#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))"))

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 22

(SIMPLE-ARRAY (SIGNED-BYTE 8) (2 2))

* (setf *print-readably* nil)
NIL

* (type-of (read-from-string "#A((SIGNED-BYTE 8) (2 2) ((0 0) (0 0)))"))
(SIMPLE-ARRAY (SIGNED-BYTE 8) (2 2))

2.11.2 Reader Parameters

extensions:*ignore-extra-close-parentheses* [Variable]
If this variable is t (the default), then the reader merely prints a warning when an extra close parenthesis is

detected (instead of signalling an error.)

2.12 Stream Extensions

sys:read-n-bytes stream buffer start numbytes &optional eof-error-p [Function]
On streams that support it, this function reads multiple bytes of data into a buffer. The buffer must be

a simple-string or (simple-array (unsigned-byte 8) (*)). The argument nbytes specifies the desired number of
bytes, and the return value is the number of bytes actually read.

• If eof-error-p is true, an end-of-file condition is signalled if end-of-file is encountered before count bytes
have been read.

• If eof-error-p is false, read-n-bytes reads as much data is currently available (up to count bytes.) On pipes
or similar devices, this function returns as soon as any data is available, even if the amount read is less
than count and eof has not been hit. See also make-fd-stream (page 123).

2.13 Simple Streams

CMUCL includes a partial implementation of Simple Streams, a protocol that allows user-extensible streams1. The
protocol was proposed by Franz, Inc. and is intended to replace the Gray Streams method of extending streams.
Simple streams are distributed as a CMUCL subsystem, that can be loaded into the image by saying

(require :simple-streams)

Note that CMUCL’s implementation of simple streams is incomplete, and in particular is currently missing
support for the functions read-sequence and write-sequence. Please consult the Allegro Common Lisp documen-
tation for more information on simple streams.

2.14 Running Programs from Lisp

It is possible to run programs from Lisp by using the following function.

extensions:run-program program args &key :env :wait :pty :input
:if-input-does-not-exist
:output :if-output-exists
:error :if-error-exists
:status-hook :before-execve

[Function]

run-program runs program in a child process. Program should be a pathname or string naming the program.
Args should be a list of strings which this passes to program as normal Unix parameters. For no arguments,
specify args as nil. The value returned is either a process structure or nil. The process interface follows the
description of run-program. If run-program fails to fork the child process, it returns nil.

1This implementation was donated by Paul Foley

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 23

Except for sharing file descriptors as explained in keyword argument descriptions, run-program closes all
file descriptors in the child process before running the program. When you are done using a process, call
process-close to reclaim system resources. You only need to do this when you supply :stream for one of :input,
:output, or :error, or you supply :pty non-nil. You can call process-close regardless of whether you must to
reclaim resources without penalty if you feel safer.

run-program accepts the following keyword arguments:

:env This is an a-list mapping keywords and simple-strings. The default is ext:*environment-list*. If :env
is specified, run-program uses the value given and does not combine the environment passed to Lisp
with the one specified.

:wait If non-nil (the default), wait until the child process terminates. If nil, continue running Lisp while
the child process runs.

:pty This should be one of t, nil, or a stream. If specified non-nil, the subprocess executes under a Unix
PTY. If specified as a stream, the system collects all output to this pty and writes it to this stream. If
specified as t, the process-pty slot contains a stream from which you can read the program’s output
and to which you can write input for the program. The default is nil.

:input This specifies how the program gets its input. If specified as a string, it is the name of a file that
contains input for the child process. run-program opens the file as standard input. If specified as
nil (the default), then standard input is the file ‘/dev/null’. If specified as t, the program uses the
current standard input. This may cause some confusion if :wait is nil since two processes may use
the terminal at the same time. If specified as :stream, then the process-input slot contains an output
stream. Anything written to this stream goes to the program as input. :input may also be an input
stream that already contains all the input for the process. In this case run-program reads all the input
from this stream before returning, so this cannot be used to interact with the process.

:if-input-does-not-exist
This specifies what to do if the input file does not exist. The following values are valid: nil (the
default) causes run-program to return nil without doing anything; :create creates the named file; and
:error signals an error.

:output This specifies what happens with the program’s output. If specified as a pathname, it is the name of
a file that contains output the program writes to its standard output. If specified as nil (the default),
all output goes to ‘/dev/null’. If specified as t, the program writes to the Lisp process’s standard
output. This may cause confusion if :wait is nil since two processes may write to the terminal at the
same time. If specified as :stream, then the process-output slot contains an input stream from which
you can read the program’s output.

:if-output-exists
This specifies what to do if the output file already exists. The following values are valid: nil causes
run-program to return nil without doing anything; :error (the default) signals an error; :supersede
overwrites the current file; and :append appends all output to the file.

:error This is similar to :output, except the file becomes the program’s standard error. Additionally, :error
can be :output in which case the program’s error output is routed to the same place specified for
:output. If specified as :stream, the process-error contains a stream similar to the process-output slot
when specifying the :output argument.

:if-error-exists
This specifies what to do if the error output file already exists. It accepts the same values as :if-
output-exists.

:status-hook
This specifies a function to call whenever the process changes status. This is especially useful when
specifying :wait as nil. The function takes the process as a required argument.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 24

:before-execve
This specifies a function to run in the child process before it becomes the program to run. This
is useful for actions such as authenticating the child process without modifying the parent Lisp
process.

2.14.1 Process Accessors

The following functions interface the process returned by run-program:

extensions:process-p thing [Function]
This function returns t if thing is a process. Otherwise it returns nil

extensions:process-pid process [Function]
This function returns the process ID, an integer, for the process.

extensions:process-status process [Function]
This function returns the current status of process, which is one of :running, :stopped, :exited, or :signaled.

extensions:process-exit-code process [Function]
This function returns either the exit code for process, if it is :exited, or the termination signal process if it is

:signaled. The result is undefined for processes that are still alive.

extensions:process-core-dumped process [Function]
This function returns t if someone used a Unix signal to terminate the process and caused it to dump a Unix

core image.

extensions:process-pty process [Function]
This function returns either the two-way stream connected to process’s Unix PTY connection or nil if there

is none.

extensions:process-input process [Function]
extensions:process-output process [Function]
extensions:process-error process [Function]

If the corresponding stream was created, these functions return the input, output or error fd-stream. nil is
returned if there is no stream.

extensions:process-status-hook process [Function]
This function returns the current function to call whenever process’s status changes. This function takes the

process as a required argument. process-status-hook is setf’able.

extensions:process-plist process [Function]
This function returns annotations supplied by users, and it is setf’able. This is available solely for users to

associate information with process without having to build a-lists or hash tables of process structures.

extensions:process-wait process &optional check-for-stopped [Function]
This function waits for process to finish. If check-for-stopped is non-nil, this also returns when process

stops.

extensions:process-kill process signal &optional whom [Function]
This function sends the Unix signal to process. Signal should be the number of the signal or a keyword

with the Unix name (for example, :sigsegv). Whom should be one of the following:

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 25

:pid This is the default, and it indicates sending the signal to process only.

:process-group
This indicates sending the signal to process’s group.

:pty-process-group
This indicates sending the signal to the process group currently in the foreground on the Unix PTY
connected to process. This last option is useful if the running program is a shell, and you wish to
signal the program running under the shell, not the shell itself. If process-pty of process is nil, using
this option is an error.

extensions:process-alive-p process [Function]
This function returns t if process’s status is either :running or :stopped.

extensions:process-close process [Function]
This function closes all the streams associated with process. When you are done using a process, call this to

reclaim system resources.

2.15 Saving a Core Image

A mechanism has been provided to save a running Lisp core image and to later restore it. This is convenient if
you don’t want to load several files into a Lisp when you first start it up. The main problem is the large size of
each saved Lisp image, typically at least 20 megabytes.

extensions:save-lisp file &key :purify :root-structures :init-function
:load-init-file :print-herald :site-init
:process-command-line :batch-mode

[Function]

The save-lisp function saves the state of the currently running Lisp core image in file. The keyword argu-
ments have the following meaning:

:purify If non-nil (the default), the core image is purified before it is saved (see purify (page 26).) This reduces
the amount of work the garbage collector must do when the resulting core image is being run. Also,
if more than one Lisp is running on the same machine, this maximizes the amount of memory that
can be shared between the two processes.

:root-structures
This should be a list of the main entry points in any newly loaded systems. This need not be sup-
plied, but locality and/or GC performance will be better if they are. Meaningless if :purify is nil. See
purify (page 26).

:init-function
This is the function that starts running when the created core file is resumed. The default function
simply invokes the top level read-eval-print loop. If the function returns the lisp will exit.

:load-init-file
If non-NIL, then load an init file; either the one specified on the command line or “‘init.’fasl-type”,
or, if “‘init.’fasl-type” does not exist, init.lisp from the user’s home directory. If the init file is found,
it is loaded into the resumed core file before the read-eval-print loop is entered.

:site-init If non-NIL, the name of the site init file to quietly load. The default is ‘library:site-init’. No
error is signalled if the file does not exist.

:print-herald
If non-NIL (the default), then print out the standard Lisp herald when starting.

:process-command-line
If non-NIL (the default), processes the command line switches and performs the appropriate actions.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 26

:batch-mode
If NIL (the default), then the presence of the -batch command-line switch will invoke batch-mode
processing upon resuming the saved core. If non-NIL, the produced core will always be in batch-
mode, regardless of any command-line switches.

:executable
If non-NIL, an executable image is created. Normally, CMUCL consists of the C runtime along with
a core file image. When :executable is non-NIL, the core file is incorporated into the C runtime, so
one (large) executable is created instead of a new separate core file.

This feature is only available on some platforms. Currently only x86 on Linux and FreeBSD support
this.

To resume a saved file, type:

lisp -core file

extensions:purify file &key :root-structures :environment-name [Function]
This function optimizes garbage collection by moving all currently live objects into non-collected storage.

Once statically allocated, the objects can never be reclaimed, even if all pointers to them are dropped. This
function should generally be called after a large system has been loaded and initialized.

:root-structures
is an optional list of objects which should be copied first to maximize locality. This should be a list of
the main entry points for the resulting core image. The purification process tries to localize symbols,
functions, etc., in the core image so that paging performance is improved. The default value is NIL
which means that Lisp objects will still be localized but probably not as optimally as they could be.

defstruct structures defined with the (:pure t) option are moved into read-only storage, further re-
ducing GC cost. List and vector slots of pure structures are also moved into read-only storage.

:environment-name
is gratuitous documentation for the compacted version of the current global environment (as seen
in c::*info-environment*.) If nil is supplied, then environment compaction is inhibited.

2.16 Pathnames

In Common Lisp quite a few aspects of pathname semantics are left to the implementation.

2.16.1 Unix Pathnames

Unix pathnames are always parsed with a unix-host object as the host and nil as the device. The last two dots (.)
in the namestring mark the type and version, however if the first character is a dot, it is considered part of the
name. If the last character is a dot, then the pathname has the empty-string as its type. The type defaults to nil
and the version defaults to :newest.

(defun parse (x)
(values (pathname-name x) (pathname-type x) (pathname-version x)))

(parse "foo") ⇒ "foo", NIL, :NEWEST
(parse "foo.bar") ⇒ "foo", "bar", :NEWEST
(parse ".foo") ⇒ ".foo", NIL, :NEWEST
(parse ".foo.bar") ⇒ ".foo", "bar", :NEWEST
(parse "..") ⇒ ".", "", :NEWEST
(parse "foo.") ⇒ "foo", "", :NEWEST
(parse "foo.bar.1") ⇒ "foo", "bar", 1
(parse "foo.bar.baz") ⇒ "foo.bar", "baz", :NEWEST

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 27

The directory of pathnames beginning with a slash (or a search-list, see section 2.16.4, page 27) is starts
:absolute, others start with :relative. The .. directory is parsed as :up; there is no namestring for :back:

(pathname-directory "/usr/foo/bar.baz") ⇒ (:ABSOLUTE "usr" "foo")
(pathname-directory "../foo/bar.baz") ⇒ (:RELATIVE :UP "foo")

2.16.2 Wildcard Pathnames

Wildcards are supported in Unix pathnames. If ‘*’ is specified for a part of a pathname, that is parsed as :wild.
‘**’ can be used as a directory name to indicate :wild-inferiors. Filesystem operations treat :wild-inferiors the
same as :wild, but pathname pattern matching (e.g. for logical pathname translation, see section 2.16.3, page 27)
matches any number of directory parts with ‘**’ (see see section 2.17.1, page 29.)

‘*’ embedded in a pathname part matches any number of characters. Similarly, ‘?’ matches exactly one
character, and ‘[a,b]’ matches the characters ‘a’ or ‘b’. These pathname parts are parsed as pattern objects.

Backslash can be used as an escape character in namestring parsing to prevent the next character from being
treated as a wildcard. Note that if typed in a string constant, the backslash must be doubled, since the string
reader also uses backslash as a quote:

(pathname-name "foo*bar") => "foo*bar"

2.16.3 Logical Pathnames

If a namestring begins with the name of a defined logical pathname host followed by a colon, then it will be
parsed as a logical pathname. Both ‘*’ and ‘**’ wildcards are implemented. load-logical-pathname-translations
on name looks for a logical host definition file in ‘library:name.translations’. Note that ‘library:’
designates the search list (see section 2.16.4, page 27) initialized to the CMUCL ‘lib/’ directory, not a logical
pathname. The format of the file is a single list of two-lists of the from and to patterns:

(("foo;*.text" "/usr/ram/foo/*.txt")
("foo;*.lisp" "/usr/ram/foo/*.l"))

2.16.4 Search Lists

Search lists are an extension to Common Lisp pathnames. They serve a function somewhat similar to Common
Lisp logical pathnames, but work more like Unix PATH variables. Search lists are used for two purposes:

• They provide a convenient shorthand for commonly used directory names, and

• They allow the abstract (directory structure independent) specification of file locations in program path-
name constants (similar to logical pathnames.)

Each search list has an associated list of directories (represented as pathnames with no name or type compo-
nent.) The namestring for any relative pathname may be prefixed with “slist :”, indicating that the pathname is
relative to the search list slist (instead of to the current working directory.) Once qualified with a search list, the
pathname is no longer considered to be relative.

When a search list qualified pathname is passed to a file-system operation such as open, load or truename,
each directory in the search list is successively used as the root of the pathname until the file is located. When a
file is written to a search list directory, the file is always written to the first directory in the list.

2.16.5 Predefined Search-Lists

These search-lists are initialized from the Unix environment or when Lisp was built:

default: The current directory at startup.

home: The user’s home directory.

library: The CMUCL ‘lib/’ directory (CMUCLLIB environment variable.)

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 28

path: The Unix command path (PATH environment variable.)

target: The root of the tree where CMUCL was compiled.

It can be useful to redefine these search-lists, for example, ‘library:’ can be augmented to allow logical
pathname translations to be located, and ‘target:’ can be redefined to point to where CMUCL system sources
are locally installed.

2.16.6 Search-List Operations

These operations define and access search-list definitions. A search-list name may be parsed into a pathname
before the search-list is actually defined, but the search-list must be defined before it can actually be used in a
filesystem operation.

extensions:search-list name [Function]
This function returns the list of directories associated with the search list name. If name is not a defined

search list, then an error is signaled. When set with setf, the list of directories is changed to the new value. If
the new value is just a namestring or pathname, then it is interpreted as a one-element list. Note that (unlike
Unix pathnames), search list names are case-insensitive.

extensions:search-list-defined-p name [Function]
extensions:clear-search-list name [Function]

search-list-defined-p returns t if name is a defined search list name, nil otherwise. clear-search-list make the
search list name undefined.

extensions:enumerate-search-list (var pathname {result}) {form}∗ [Macro]
This macro provides an interface to search list resolution. The body forms are executed with var bound to

each successive possible expansion for name. If name does not contain a search-list, then the body is executed
exactly once. Everything is wrapped in a block named nil, so return can be used to terminate early. The result
form (default nil) is evaluated to determine the result of the iteration.

2.16.7 Search List Example

The search list code: can be defined as follows:

(setf (ext:search-list "code:") ’("/usr/lisp/code/"))

It is now possible to use code: as an abbreviation for the directory ‘/usr/lisp/code/’ in all file operations.
For example, you can now specify code:eval.lisp to refer to the file ‘/usr/lisp/code/eval.lisp’.

To obtain the value of a search-list name, use the function search-list as follows:

(ext:search-list name)

Where name is the name of a search list as described above. For example, calling ext:search-list on code: as
follows:

(ext:search-list "code:")

returns the list (”/usr/lisp/code/”).

2.17 Filesystem Operations

CMUCL provides a number of extensions and optional features beyond those required by the Common Lisp
specification.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 29

2.17.1 Wildcard Matching

Unix filesystem operations such as open will accept wildcard pathnames that match a single file (of course,
directory allows any number of matches.) Filesystem operations treat :wild-inferiors the same as :wild.

directory wildname &key :all :check-for-subdirs :truenamep
:follow-links

[Function]

The keyword arguments to this Common Lisp function are a CMUCL extension. The arguments (all default
to t) have the following functions:

:all Include files beginning with dot such as ‘.login’, similar to “ls -a”.

:check-for-subdirs
Test whether files are directories, similar to “ls -F”.

:truenamep
Call truename on each file, which expands out all symbolic links. Note that this option can easily
result in pathnames being returned which have a different directory from the one in the wildname
argument.

:follow-links
Follow symbolic links when searching for matching directories.

extensions:print-directory wildname &optional stream &key :all :verbose
:return-list

[Function]

Print a directory of wildname listing to stream (default *standard-output*.) :all and :verbose both default to
nil and correspond to the “-a” and “-l” options of ‘ls’. Normally this function returns nil, but if :return-list is
true, a list of the matched pathnames are returned.

2.17.2 File Name Completion

extensions:complete-file pathname &key :defaults :ignore-types [Function]
Attempt to complete a file name to the longest unambiguous prefix. If supplied, directory from :defaults is

used as the “working directory” when doing completion. :ignore-types is a list of strings of the pathname types
(a.k.a. extensions) that should be disregarded as possible matches (binary file names, etc.)

extensions:ambiguous-files pathname &optional defaults [Function]
Return a list of pathnames for all the possible completions of pathname with respect to defaults.

2.17.3 Miscellaneous Filesystem Operations

extensions:default-directory [Function]
Return the current working directory as a pathname. If set with setf, set the working directory.

extensions:file-writable name [Function]
This function accepts a pathname and returns t if the current process can write it, and nil otherwise.

extensions:unix-namestring pathname &optional for-input [Function]
This function converts pathname into a string that can be used with UNIX system calls. Search-lists and

wildcards are expanded. for-input controls the treatment of search-lists: when true (the default) and the file
exists anywhere on the search-list, then that absolute pathname is returned; otherwise the first element of the
search-list is used as the directory.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 30

2.18 Time Parsing and Formatting

Functions are provided to allow parsing strings containing time information and printing time in various for-
mats are available.

extensions:parse-time time-string &key :error-on-mismatch :default-seconds
:default-minutes :default-hours
:default-day :default-month
:default-year :default-zone
:default-weekday

[Function]

parse-time accepts a string containing a time (e.g., ”Jan 12, 1952”) and returns the universal time if it is
successful. If it is unsuccessful and the keyword argument :error-on-mismatch is non-nil, it signals an error.
Otherwise it returns nil. The other keyword arguments have the following meaning:

:default-seconds
specifies the default value for the seconds value if one is not provided by time-string. The default
value is 0.

:default-minutes
specifies the default value for the minutes value if one is not provided by time-string. The default
value is 0.

:default-hours
specifies the default value for the hours value if one is not provided by time-string. The default
value is 0.

:default-day
specifies the default value for the day value if one is not provided by time-string. The default value
is the current day.

:default-month
specifies the default value for the month value if one is not provided by time-string. The default
value is the current month.

:default-year
specifies the default value for the year value if one is not provided by time-string. The default value
is the current year.

:default-zone
specifies the default value for the time zone value if one is not provided by time-string. The default
value is the current time zone.

:default-weekday
specifies the default value for the day of the week if one is not provided by time-string. The default
value is the current day of the week.

Any of the above keywords can be given the value :current which means to use the current value as determined
by a call to the operating system.

extensions:format-universal-time dest universal-time
&key :timezone

:style :date-first
:print-seconds :print-meridian
:print-timezone :print-weekday

[Function]

extensions:format-decoded-time dest seconds minutes hours day month year
&key :timezone

:style :date-first
:print-seconds :print-meridian
:print-timezone :print-weekday

[Function]

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 31

format-universal-time formats the time specified by universal-time. format-decoded-time formats the time
specified by seconds, minutes, hours, day , month, and year . Dest is any destination accepted by the format
function. The keyword arguments have the following meaning:

:timezone is an integer specifying the hours west of Greenwich. :timezone defaults to the current time zone.

:style specifies the style to use in formatting the time. The legal values are:

:short specifies to use a numeric date.

:long specifies to format months and weekdays as words instead of numbers.
:abbreviated

is similar to long except the words are abbreviated.
:government

is similar to abbreviated, except the date is of the form “day month year” instead of
“month day, year”.

:date-first if non-nil (default) will place the date first. Otherwise, the time is placed first.

:print-seconds
if non-nil (default) will format the seconds as part of the time. Otherwise, the seconds will be omit-
ted.

:print-meridian
if non-nil (default) will format “AM” or “PM” as part of the time. Otherwise, the “AM” or “PM”
will be omitted.

:print-timezone
if non-nil (default) will format the time zone as part of the time. Otherwise, the time zone will be
omitted.

:print-weekday
if non-nil (default) will format the weekday as part of date. Otherwise, the weekday will be omitted.

2.19 Random Number Generation

Common Lisp includes a random number generator as a standard part of the language; however, the imple-
mentation of the generator is not specified. Two random number generators are available in CMUCL, depending
on the version.

2.19.1 Original Generator

The default random number generator uses a lagged Fibonacci generator given by

z[i] = z[i− 24]− z[i− 55] mod 536870908

where z[i] is the i’th random number. This generator produces small integer-valued numbers. For larger
integer, the small random integers are concatenated to produce larger integers. For floating-point numbers, the
bits from this generator are used as the bits of the floating-point significand.

2.19.2 New Generator

In some versions of CMUCL, the original generator above has been replaced with a subtract-with-borrow gen-
erator combined with a Weyl generator.2 The reason for the change was to use a documented generator which
has passed tests for randomness.

The subtract-with-borrow generator is described by the following equation

z[i] = z[i + 20]− z[i + 5]− b

2The generator described here is available if the feature :new-random is available.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 32

where z[i] is the i’th random number, which is a double-float. All of the indices in this equation are interpreted
modulo 32. The quantity b is carried over from the previous iteration and is either 0 or double-float-epsilon. If
z[i] is positive, b is set to zero. Otherwise, b is set to double-float-epsilon.

To increase the randomness of this generator, this generator is combined with a Weyl generator defined by

x[i] = x[i− 1]− y mod 1,

where y = 7097293079245107× 2−53. Thus, the resulting random number r[i] is

r[i] = (z[i]− x[i]) mod 1

This generator has been tested by Peter VanEynde using Marsaglia’s diehard test suite for random number
generators; this generator passes the test suite.

This generator is designed for generating floating-point random numbers. To obtain integers, the bits from
the significand of the floating-point number are used as the bits of the integer. As many floating-point numbers
as needed are generated to obtain the desired number of bits in the random integer.

For floating-point numbers, this generator can by significantly faster than the original generator.

2.19.3 MT-19937 Generator

On all platforms, this is the preferred generator as indicated by :rand-mt19937 being in *features*. This is a
Lisp implementation of the MT-19937 generator of Makoto Matsumoto and T. Nishimura. We refer the reader
to their paper3 or to their website.

2.20 Lisp Threads

CMUCL supports Lisp threads for the x86 platform.

2.21 Lisp Library

The CMUCL project maintains a collection of useful or interesting programs written by users of our system. The
library is in ‘lib/contrib/’. Two files there that users should read are:

CATALOG.TXT
This file contains a page for each entry in the library. It contains information such as the author,
portability or dependency issues, how to load the entry, etc.

READ-ME.TXT
This file describes the library’s organization and all the possible pieces of information an entry’s
catalog description could contain.

Hemlock has a command Library Entry that displays a list of the current library entries in an editor buffer.
There are mode specific commands that display catalog descriptions and load entries. This is a simple and
convenient way to browse the library.

2.22 Generalized Function Names

ext:define-function-name-syntax name (var) &body body [Macro]
Define lists starting with the symbol name as a new extended function name syntax.
body is executed with var bound to an actual function name of that form, and should return two values:

• A generalized boolean that is true if var is a valid function name.

3“Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator,” ACM Trans. on Modeling and
Computer Simulation, Vol. 8, No. 1, January 1998, pp.3–30

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 33

• A symbol that can be used as a block name in functions whose name is var. (For some sorts of function
names it might make sense to return nil for the block name, or just return one value.)

Users should not define function names starting with a symbol that CMUCL might be using internally. It is
therefore advisable to only define new function names starting with a symbol from a user-defined package.

ext:valid-function-name-p name [Function]
Returns two values:

• True if name is a valid function name.

• A symbol that can be used as a block name in functions whose name is name. This can be nil for some
function names.

2.23 CLOS

2.23.1 Primary Method Errors

The standard requires that an error is signaled when a generic function is called and

• no primary method is applicable to the generic function’s actual arguments, and

• the generic function’s method combination is either the standard method combination or a method com-
bination defined with the short form of define-method-combination. The latter includes the standardized
method combinations like progn, and, etc.

pcl:no-primary-method gf &rest args [Generic Function]
In CMUCL, this generic function is called in the above erroneous cases. The parameter gf is the generic

function being called, and args is a list of actual arguments in the generic function call.

pcl:no-primary-method (gf standard-generic-function) &rest args [Method]
This method signals a continuable error of type pcl:no-primary-method-error.

2.23.2 Slot Type Checking

Declared slot types are used when

• reading slot values with slot-value in methods, or

• setting slots with (setf slot-value) in methods, or

• creating instances with make-instance, when slots are initialized from initforms. This currently depends
on PCL being able to use its internal make-instance optimization, which it usually can.

Example:

(defclass foo ()
((a :type fixnum)))

(defmethod bar ((object foo) value)
(with-slots (a) object

(setf a value)))

(defmethod baz ((object foo))
(< (slot-value object ’a) 10))

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 34

In method bar, and with a suitable safety setting, a type error will occur if value is not a fixnum. In method
baz, a fixnum comparison can be used by the compiler.

pcl::*use-slot-types-p* [Variable]
Slot type checking can be turned off by setting this variable to nil, which can be useful for compiling code

containing incorrect slot type declarations.

2.23.3 Slot Access Optimization

The declaration ext:slots is used for optimizing slot access in methods.

declare (ext:slots specifier*)

specifier ::= (quality class-entry*)
quality ::= SLOT-BOUNDP | INLINE
class-entry ::= class | (class slot-name*)
class ::= the name of a class
slot-name ::= the name of a slot

The slot-boundp quality specifies that all or some slots of a class are always bound.
The inline quality specifies that access to all or some slots of a class should be inlined, using compile-time

knowledge of class layouts.

2.23.3.1 slot-boundp Declaration

Example:

(defclass foo ()
(a b))

(defmethod bar ((x foo))
(declare (ext:slots (slot-boundp foo)))
(list (slot-value x ’a) (slot-value x ’b)))

The slot-boundp declaration in method bar specifies that the slots a and b accessed through parameter x
in the scope of the declaration are always bound, because parameter x is specialized on class foo to which the
slot-boundp declaration applies. The PCL-generated code for the slot-value forms will thus not contain tests for
the slots being bound or not. The consequences are undefined should one of the accessed slots not be bound.

2.23.3.2 inline Declaration

Example:

(defclass foo ()
(a b))

(defmethod bar ((x foo))
(declare (ext:slots (inline (foo a))))
(list (slot-value x ’a) (slot-value x ’b)))

The inline declaration in method bar tells PCL to use compile-time knowledge of slot locations for accessing
slot a of class foo, in the scope of the declaration.

Class foo must be known at compile time for this optimization to be possible. PCL prints a warning and
uses normal slot access If the class is not defined at compile time.

If a class is proclaimed to use inline slot access before it is defined, the class is defined at compile time.
Example:

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 35

(declaim (ext:slots (inline (foo slot-a))))
(defclass foo () ...)
(defclass bar (foo) ...)

Class foo will be defined at compile time because it is declared to use inline slot access; methods accessing
slot slot-a of foo will use inline slot access if otherwise possible. Class bar will be defined at compile time because
its superclass foo is declared to use inline slot access. PCL uses compile-time information from subclasses to
warn about situations where using inline slot access is not possible.

Normal slot access will be used if PCL finds, at method compilation time, that

• class foo has a subclass in which slot a is at a different location, or

• there exists a slot-value-using-class method for foo or a subclass of foo.

When the declaration is used to optimize calls to slot accessor generic functions in methods, as opposed to
slot-value or (setf slot-value), the optimization is additionally not used if

• there exist, at compile time, applicable methods on the reader/writer generic function that are not stan-
dard accessor methods (for instance, there exist around-methods), or

• applicable reader/writer methods access different slots in a class accessed inline, and one of its subclasses.

The consequences are undefined if the compile-time environment is not the same as the run-time environ-
ment in these respects, or if the definition of class foo or any subclass of foo is changed in an incompatible way,
that is, if slot locations change.

The effect of the inline optimization combined with the slot-boundp optimization is that CLOS slot access
becomes as fast as structure slot access, which is an order of magnitude faster than normal CLOS slot access.

pcl::*optimize-inline-slot-access-p* [Variable]
This variable controls if inline slot access optimizations are performed. It is true by default.

2.23.3.3 Automatic Method Recompilation

Methods using inline slot access can be automatically recompiled after class changes. Two declarations control
which methods are automatically recompiled.

declaim (ext:auto-compile specifier*)
declaim (ext:not-auto-compile specifier*)

specifier ::= gf-name | (gf-name qualifier* (specializer*))
gf-name ::= the name of a generic function
qualifier ::= a method qualifier
specializer ::= a method specializer

If no specifier is given, auto-compilation is by default done/not done for all methods of all generic functions
using inline slot access; current default is that it is not done. This global policy can be overridden on a generic
function and method basis. If specifier is a generic function name, it applies to all methods of that generic
function.

Examples:

(declaim (ext:auto-compile foo))
(defmethod foo :around ((x bar)) ...)

The around-method foo will be automatically recompiled because the declamation applies to all methods
with name foo.

(declaim (ext:auto-compile (foo (bar))))
(defmethod foo :around ((x bar)) ...)
(defmethod foo ((x bar)) ...)

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 36

The around-method will not be automatically recompiled, but the primary method will.

(declaim (ext:auto-compile foo))
(declaim (ext:not-auto-compile (foo :around (bar)))
(defmethod foo :around ((x bar)) ...)
(defmethod foo ((x bar)) ...)

The around-method will not be automatically recompiled, because it is explicitly declaimed not to be. The
primary method will be automatically recompiled because the first declamation applies to it.

Auto-recompilation works by recording method bodies using inline slot access. When PCL determines that
a recompilation is necessary, a defmethod form is constructed and evaluated.

Auto-compilation can only be done for methods defined in a null lexical environment. PCL prints a warn-
ing and doesn’t record the method body if a method using inline slot access is defined in a non-null lexical
environment. Instead of doing a recompilation on itself, PCL will then print a warning that the method must
be recompiled manually when classes are changed.

2.23.4 Inlining Methods in Effective Methods

When a generic function is called, an effective method is constructed from applicable methods. The effective
method is called with the original arguments, and itself calls applicable methods according to the generic func-
tion’s method combination. Some of the function call overhead in effective methods can be removed by inlining
methods in effective methods, at the expense of increased code size.

Inlining of methods is controlled by the usual inline declaration. In the following example, both foo methods
shown will be inlined in effective methods:

(declaim (inline (method foo (foo))
(method foo :before (foo))))

(defmethod foo ((x foo)) ...)
(defmethod foo :before ((x foo)) ...)

Please note that this form of inlining has no noticeable effect for effective methods that consist of a primary
method only, which doesn’t have keyword arguments. In such cases, PCL uses the primary method directly for
the effective method.

When the definition of an inlined method is changed, effective methods are not automatically updated
to reflect the change. This is just as it is when inlining normal functions. Different from the normal case is
that users do not have direct access to effective methods, as it would be the case when a function is inlined
somewhere else. Because of this, the function pcl:flush-emf-cache is provided for forcing such an update of
effective methods.

pcl:flush-emf-cache &optional gf [Function]
Flush cached effective method functions. If gf is supplied, it should be a generic function metaobject or the

name of a generic function, and this function flushes all cached effective methods for the given generic function.
If gf is not supplied, all cached effective methods are flushed.

pcl::*inline-methods-in-emfs* [Variable]
If true, the default, perform method inlining as described above. If false, don’t.

2.23.5 Effective Method Precomputation

When a generic function is called, the generic function’s discriminating function computes the set of methods
applicable to actual arguments and constructs an effective method function from applicable methods, using the
generic function’s method combination.

Effective methods can be precomputed at method load time instead of when the generic function is called
depending on the value of pcl:*max-emf-precomputation-methods*.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 37

pcl:**max-emf-precomputation-methods** [Variable]
If nonzero, the default value is 100, precompute effective methods when methods are loaded, and the

method’s generic function has less than the specified number of methods.
If zero, compute effective methods only when the generic function is called.

2.23.6 Sealing

Support for sealing classes and generic functions have been implemented. Please note that this interface is
subject to change.

pcl:seal name (var) &rest specifiers [Macro]
Seal name with respect to the given specifiers; name can be the name of a class or generic-function.
Supported specifiers are :subclasses for classes, which prevents changing subclasses of a class, and :meth-

ods which prevents changing the methods of a generic function.
Sealing violations signal an error of type pcl:sealed-error.

pcl:unseal name-or-object [Function]
Remove seals from name-or-object.

2.23.7 Method Tracing and Profiling

Methods can be traced with trace, using function names of the form (method ¡name¿ ¡qualifiers¿ ¡specializ-
ers¿). Example:

(defmethod foo ((x integer)) x)
(defmethod foo :before ((x integer)) x)

(trace (method foo (integer)))
(trace (method foo :before (integer)))
(untrace (method foo :before (integer)))

trace and untrace also allow a name specifier :methods gf-form for tracing all methods of a generic function:

(trace :methods ’foo)
(untrace :methods ’foo)

Methods can also be specified for the :wherein option to trace. Because this option is a name or a list of
names, methods must be specified as a list. Thus, to trace all calls of foo from the method bar specialized on
integer argument, use

(trace foo :wherein ((method bar (integer))))

Before and after methods are supported as well:

(trace foo :wherein ((method bar :before (integer))))

Method profiling is done analogously to trace:

(defmethod foo ((x integer)) x)
(defmethod foo :before ((x integer)) x)

(profile:profile (method foo (integer)))
(profile:profile (method foo :before (integer)))
(profile:unprofile (method foo :before (integer)))

(profile:profile :methods ’foo)
(profile:unprofile :methods ’foo)

(profile:profile-all :methods t)

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 38

2.23.8 Misc

pcl::*compile-interpreted-methods-p* [Variable]
This variable controls compilation of interpreted method functions, e.g. for methods defined interactively

at the REPL. Default is true, that is, method functions are compiled.

2.24 Differences from ANSI Common Lisp

This section describes some of the known differences between CMUCL and ANSI Common Lisp. Some may be
non-compliance issues; same may be extensions.

2.24.1 Extensions

constantly value &optional val1 val2 &rest more-values [Function]
As an extension, CMUCL allows constantly to accept more than one value which are returned as multiple

values.

2.25 Function Wrappers

Function wrappers, fwrappers for short, are a facility for efficiently encapsulating functions4.
Functions in CMUCL are represented by kernel:fdefn objects. Each fdefn object contains a reference to its

function’s actual code, which we call the function’s primary function.
A function wrapper replaces the primary function in the fdefn object with a function of its own, and records

the original function in an fwrapper object, a funcallable instance. Thus, when the function is called, the fwrap-
per gets called, which in turn might call the primary function, or a previously installed fwrapper that was found
in the fdefn object when the second fwrapper was installed.

Example:

(use-package :fwrappers)

(define-fwrapper foo (x y)
(format t "x = ˜s, y = ˜s, user-data = ˜s˜%"

x y (fwrapper-user-data fwrapper))
(let ((value (call-next-function)))

(format t "value = ˜s˜%" value)
value))

(defun bar (x y)
(+ x y))

(fwrap ’bar #’foo :type ’foo :user-data 42)

(bar 1 2)
=>
x = 1, y = 2, user-data = 42
value = 3
3

4This feature was independently developed, but the interface is modelled after a similar feature in Allegro. Some names, however, have
been changed.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 39

Fwrappers are used in the implementation of trace and profile.
Please note that fdefinition always returns the primary definition of a function; if a function is fwrapped,

fdefinition returns the primary function stored in the innermost fwrapper object. Likewise, if a function is
fwrapped, (setf fdefinition) will set the primary function in the innermost fwrapper.

fwrappers:define-fwrapper name lambda-list &bodybody [Macro]
This macro is like defun, but defines a function named name that can be used as an fwrapper definition.
In body , the symbol fwrapper is bound to the current fwrapper object.
The macro call-next-function can be used to invoke the next fwrapper, or the primary function that is be-

ing fwrapped. When called with no arguments, call-next-function invokes the next function with the original
arguments passed to the fwrapper, unless you modify one of the parameters. When called with arguments,
call-next-function invokes the next function with the given arguments.

fwrappers:fwrap function-name fwrapper &key type user-data [Function]
This function wraps function function-name in an fwrapper fwrapper which was defined with define-

fwrapper.
The value of type, if supplied, is used as an identifying tag that can be used in various other operations.
The value of user-data is stored as user-supplied data in the fwrapper object that is created for the function

encapsulation. User-data is accessible in the body of fwrappers defined with define-fwrapper as (fwrapper-user-
data fwrapper).

Value is the fwrapper object created.

fwrappers:funwrap function-name &key type test [Function]
Remove fwrappers from the function named function-name. If type is supplied, remove fwrappers whose

type is equal to type. If test is supplied, remove fwrappers satisfying test .

fwrappers:find-fwrapper function-name &key type test [Function]
Find an fwrapper of function-name. If type is supplied, find an fwrapper whose type is equal to type. If test

is supplied, find an fwrapper satisfying test .

fwrappers:update-fwrapper fwrapper [Function]
Update the funcallable instance function of the fwrapper object fwrapper from the definition of its function

that was defined with define-fwrapper. This can be used to update fwrappers after changing a define-fwrapper.

fwrappers:update-fwrappers function-name &key type test [Function]
Update fwrappers of function-name; see update-fwrapper. If type is supplied, update fwrappers whose type

is equal to type. If test is supplied, update fwrappers satisfying test .

fwrappers:set-fwrappers function-name fwrappers [Function]
Set function-names’s fwrappers to elements of the list fwrappers, which is assumed to be ordered from

outermost to innermost. fwrappers null means remove all fwrappers.

fwrappers:list-fwrappers function-name [Function]
Return a list of all fwrappers of function-name, ordered from outermost to innermost.

fwrappers:push-fwrapper fwrapper function-name [Function]
Prepend fwrapper fwrapper to the definition of function-name. Signal an error if function-name is an unde-

fined function.

fwrappers:delete-fwrapper fwrapper function-name [Function]

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 40

Remove fwrapper fwrapper from the definition of function-name. Signal an error if function-name is an
undefined function.

fwrappers:do-fwrappers (var fdefn &optionalresult) &bodybody [Macro]
Evaluate body with var bound to consecutive fwrappers of fdefn. Return result at the end. Note that fdefn

must be an fdefn object. You can use kernel:fdefn-or-lose, for instance, to get the fdefn object from a function
name.

2.26 Dynamic-Extent Declarations

Note: As of the 19a release, dynamic-extent is unfortunately disabled by default. It is known to cause some issues with
CLX and Hemlock. The cause is not known, but causes random errors and brokeness. Enable at your own risk. However,
it is safe enough to build all of CMUCL without problems.

On x86 and sparc, CMUCL can exploit dynamic-extent declarations by allocating objects on the stack instead
of the heap.

You can tell CMUCL to trust or not trust dynamic-extent declarations by setting the variable *trust-dynamic-
extent-declarations* .

ext:*trust-dynamic-extent-declarations* [Variable]
If the value of *trust-dynamic-extent-declarations* is NIL, dynamic-extent declarations are effectively ig-

nored.
If the value of this variable is a function, the function is called with four arguments to determine if a dynamic-

extent declaration should be trusted. The arguments are the safety, space, speed, and debug settings at the point
where the dynamic-extent declaration is used. If the function returns true, the declaration is trusted, otherwise
it is not trusted.

In all other cases, dynamic-extent declarations are trusted.
Please note that stack-allocation is inherently unsafe. If you make a mistake, and a stack-allocated object or

part of it escapes, CMUCL is likely to crash, or format your hard disk.

2.26.1 &rest argument lists

Rest argument lists can be allocated on the stack by declaring the rest argument variable dynamic-extent. Ex-
amples:

(defun foo (x &rest rest)
(declare (dynamic-extent rest))
...)

(defun bar ()
(lambda (&rest rest)

(declare (dynamic-extent rest))
...))

2.26.2 Closures

Closures for local functions can be allocated on the stack if the local function is declared dynamic-extent, and
the closure appears as an argument in the call of a named function. In the example:

(defun foo (x)
(flet ((bar () x))

(declare (dynamic-extent #’bar))
(baz #’bar)))

the closure passed to function baz is allocated on the stack. Likewise in the example:

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 41

(defun foo (x)
(flet ((bar () x))

(baz #’bar)
(locally (declare (dynamic-extent #’bar))

(baz #’bar))))

Stack-allocation of closures can also automatically take place when calling certain known CL functions tak-
ing function arguments, for example some or find-if.

2.26.3 list, list*, and cons

New conses allocated by list, list*, or cons which are used to initialize variables can be allocated from the stack
if the variables are declared dynamic-extent. In the case of cons, only the outermost cons cell is allocated from
the stack; this is an arbitrary restriction.

(let ((x (list 1 2))
(y (list* 1 2 x))
(z (cons 1 (cons 2 nil))))

(declare (dynamic-extent x y z))
...
(setq x (list 2 3))
...)

Please note that the setq of x in the example program assigns to x a list that is allocated from the heap. This
is another arbitrary restriction that exists because other Lisps behave that way.

2.27 Modular Arithmetic

This section is mostly taken, with permission, from the documentation for SBCL.
Some numeric functions have a property: N lower bits of the result depend only on N lower bits of (all

or some) arguments. If the compiler sees an expression of form (logand exp mask), where exp is a tree of
such “good” functions and mask is known to be of type (unsigned-byte w), where w is a ”good” width, all
intermediate results will be cut to w bits (but it is not done for variables and constants!). This often results in an
ability to use simple machine instructions for the functions.

Consider an example.

(defun i (x y)
(declare (type (unsigned-byte 32) x y))
(ldb (byte 32 0) (logxor x (lognot y))))

The result of (lognot y) will be negative and of type (signed-byte 33), so a naive implementation on a 32-bit
platform is unable to use 32-bit arithmetic here. But modular arithmetic optimizer is able to do it: because
the result is cut down to 32 bits, the compiler will replace logxor and lognot with versions cutting results to
32 bits, and because terminals (here—expressions x and y) are also of type (unsigned-byte 32), 32-bit machine
arithmetic can be used.

Currently “good” functions are +, -, *; logand, logior, logxor, lognot and their combinations; and ash with the
positive second argument. “Good” widths are 32 on HPPA, MIPS, PPC, Sparc and X86 and 64 on Alpha. While
it is possible to support smaller widths as well, currently it is not implemented.

A more extensive description of modular arithmetic can be found in the paper “Efficient Hardware Arith-
metic in Common Lisp” by Alexey Dejneka, and Christophe Rhodes, to be published.

2.28 Extension to REQUIRE

The behavior of require when called with only one argument is implementation-defined. In CMUCL, functions
from the list *module-provider-functions* are called in order with the stringified module name as the argument.
The first function to return non-NIL is assumed to have loaded the module.

CHAPTER 2. DESIGN CHOICES AND EXTENSIONS 42

By default the functions module-provide-cmucl-defmodule and module-provide- cmucl-library are on this list
of functions, in that order.

ext:*module-provider-functions* [Variable]
This is a list of functions taking a single argument. require calls each function in turn with the stringified

module name. The first function to return non-NIL indicates that the module has been loaded. The remaining
functions, if any, are not called.

To add new providers, push the new provider function onto the beginning of this list.

ext:defmodule name &rest files [Macro]
Defines a module by registering the files that need to be loaded when the module is required. If name is a

symbol, its print name is used after downcasing it.

ext:module-provide-cmucl-defmodule module-name [Function]
This function is the module-provider for modules registered by a ext:defmodule form.

ext:module-provide-cmucl-library module-name [Function]
This function is the module-provider for CMUCL’s libraries, including Gray streams, simple streams, CLX,

CLM, Hemlock, etc.
This function causes a file to be loaded whose name is formed by merging the search-list “modules:” and

the concatenation of module-name with the suffix “-LIBRARY”. Note that both the module-name and the suffix
are each, separately, converted from :case :common to :case :local. This merged name will be probed with both
a .lisp and .fasl extensions, calling LOAD if it exists.

Chapter 3

The Debugger

by Robert MacLachlan

3.1 Debugger Introduction

The CMUCL debugger is unique in its level of support for source-level debugging of compiled code. Although
some other debuggers allow access of variables by name, this seems to be the first Common Lisp debugger that:

• Tells you when a variable doesn’t have a value because it hasn’t been initialized yet or has already been
deallocated, or

• Can display the precise source location corresponding to a code location in the debugged program.

These features allow the debugging of compiled code to be made almost indistinguishable from interpreted
code debugging.

The debugger is an interactive command loop that allows a user to examine the function call stack. The
debugger is invoked when:

• A serious-condition is signaled, and it is not handled, or

• error is called, and the condition it signals is not handled, or

• The debugger is explicitly invoked with the Common Lisp break or debug functions.

Note: there are two debugger interfaces in CMUCL: the TTY debugger (described below) and the Motif debugger. Since
the difference is only in the user interface, much of this chapter also applies to the Motif version. See section 2.9.1, page 20
for a very brief discussion of the graphical interface.

When you enter the TTY debugger, it looks something like this:

Error in function CAR.
Wrong type argument, 3, should have been of type LIST.

Restarts:
0: Return to Top-Level.

Debug (type H for help)

(CAR 3)
0]

The first group of lines describe what the error was that put us in the debugger. In this case car was called
on 3. After Restarts: is a list of all the ways that we can restart execution after this error. In this case, the
only option is to return to top-level. After printing its banner, the debugger prints the current frame and the
debugger prompt.

43

CHAPTER 3. THE DEBUGGER 44

3.2 The Command Loop

The debugger is an interactive read-eval-print loop much like the normal top-level, but some symbols are
interpreted as debugger commands instead of being evaluated. A debugger command starts with the symbol
name of the command, possibly followed by some arguments on the same line. Some commands prompt for
additional input. Debugger commands can be abbreviated by any unambiguous prefix: help can be typed as h,
he, etc. For convenience, some commands have ambiguous one-letter abbreviations: f for frame.

The package is not significant in debugger commands; any symbol with the name of a debugger command
will work. If you want to show the value of a variable that happens also to be the name of a debugger command,
you can use the list-locals command or the debug:var function, or you can wrap the variable in a progn to hide
it from the command loop.

The debugger prompt is “frame]”, where frame is the number of the current frame. Frames are num-
bered starting from zero at the top (most recent call), increasing down to the bottom. The current frame is
the frame that commands refer to. The current frame also provides the lexical environment for evaluation of
non-command forms.

The debugger evaluates forms in the lexical environment of the functions being debugged. The debugger
can only access variables. You can’t go or return-from into a function, and you can’t call local functions. Spe-
cial variable references are evaluated with their current value (the innermost binding around the debugger
invocation)—you don’t get the value that the special had in the current frame. See section 3.4, page 47 for more
information on debugger variable access.

3.3 Stack Frames

A stack frame is the run-time representation of a call to a function; the frame stores the state that a function
needs to remember what it is doing. Frames have:

• Variables (see section 3.4, page 47), which are the values being operated on, and

• Arguments to the call (which are really just particularly interesting variables), and

• A current location (see section 3.5, page 48), which is the place in the program where the function was
running when it stopped to call another function, or because of an interrupt or error.

3.3.1 Stack Motion

These commands move to a new stack frame and print the name of the function and the values of its arguments
in the style of a Lisp function call:

up Move up to the next higher frame. More recent function calls are considered to be higher on the
stack.

down Move down to the next lower frame.

top Move to the highest frame.

bottom Move to the lowest frame.

frame [n] Move to the frame with the specified number. Prompts for the number if not supplied.

3.3.2 How Arguments are Printed

A frame is printed to look like a function call, but with the actual argument values in the argument positions.
So the frame for this call in the source:

(myfun (+ 3 4) ’a)

would look like this:

(MYFUN 7 A)

CHAPTER 3. THE DEBUGGER 45

All keyword and optional arguments are displayed with their actual values; if the corresponding argument
was not supplied, the value will be the default. So this call:

(subseq "foo" 1)

would look like this:

(SUBSEQ "foo" 1 3)

And this call:

(string-upcase "test case")

would look like this:

(STRING-UPCASE "test case" :START 0 :END NIL)

The arguments to a function call are displayed by accessing the argument variables. Although those vari-
ables are initialized to the actual argument values, they can be set inside the function; in this case the new value
will be displayed.

&rest arguments are handled somewhat differently. The value of the rest argument variable is displayed as
the spread-out arguments to the call, so:

(format t "˜A is a ˜A." "This" ’test)

would look like this:

(FORMAT T "˜A is a ˜A." "This" ’TEST)

Rest arguments cause an exception to the normal display of keyword arguments in functions that have both
&rest and &key arguments. In this case, the keyword argument variables are not displayed at all; the rest arg is
displayed instead. So for these functions, only the keywords actually supplied will be shown, and the values
displayed will be the argument values, not values of the (possibly modified) variables.

If the variable for an argument is never referenced by the function, it will be deleted. The variable value is
then unavailable, so the debugger prints #<unused-arg> instead of the value. Similarly, if for any of a number
of reasons (described in more detail in section 3.4) the value of the variable is unavailable or not known to be
available, then #<unavailable-arg> will be printed instead of the argument value.

Printing of argument values is controlled by *debug-print-level* and *debug-print-length* (page 56).

3.3.3 Function Names

If a function is defined by defun, labels, or flet, then the debugger will print the actual function name after the
open parenthesis, like:

(STRING-UPCASE "test case" :START 0 :END NIL)
((SETF AREF) #\a "for" 1)

Otherwise, the function name is a string, and will be printed in quotes:

("DEFUN MYFUN" BAR)
("DEFMACRO DO" (DO ((I 0 (1+ I))) ((= I 13))) NIL)
("SETQ *GC-NOTIFY-BEFORE*")

This string name is derived from the defmumble form that encloses or expanded into the lambda, or the
outermost enclosing form if there is no defmumble.

CHAPTER 3. THE DEBUGGER 46

3.3.4 Funny Frames

Sometimes the evaluator introduces new functions that are used to implement a user function, but are not
directly specified in the source. The main place this is done is for checking argument type and syntax. Usually
these functions do their thing and then go away, and thus are not seen on the stack in the debugger. But when
you get some sort of error during lambda-list processing, you end up in the debugger on one of these funny
frames.

These funny frames are flagged by printing “[keyword]” after the parentheses. For example, this call:

(car ’a ’b)

will look like this:

(CAR 2 A) [:EXTERNAL]

And this call:

(string-upcase "test case" :end)

would look like this:

("DEFUN STRING-UPCASE" "test case" 335544424 1) [:OPTIONAL]

As you can see, these frames have only a vague resemblance to the original call. Fortunately, the error
message displayed when you enter the debugger will usually tell you what problem is (in these cases, too
many arguments and odd keyword arguments.) Also, if you go down the stack to the frame for the calling
function, you can display the original source (see section 3.5, page 48.)

With recursive or block compiled functions (see section 5.7, page 94), an :EXTERNAL frame may appear
before the frame representing the first call to the recursive function or entry to the compiled block. This is a
consequence of the way the compiler does block compilation: there is nothing odd with your program. You will
also see :CLEANUP frames during the execution of unwind-protect cleanup code. Note that inline expansion
and open-coding affect what frames are present in the debugger, see sections 3.6 and 4.8.

3.3.5 Debug Tail Recursion

Both the compiler and the interpreter are “properly tail recursive.” If a function call is in a tail-recursive position,
the stack frame will be deallocated at the time of the call, rather than after the call returns. Consider this backtrace:

(BAR ...)
(FOO ...)

Because of tail recursion, it is not necessarily the case that FOO directly called BAR. It may be that FOO called
some other function FOO2 which then called BAR tail-recursively, as in this example:

(defun foo ()
...
(foo2 ...)
...)

(defun foo2 (...)
...
(bar ...))

(defun bar (...)
...)

Usually the elimination of tail-recursive frames makes debugging more pleasant, since theses frames are
mostly uninformative. If there is any doubt about how one function called another, it can usually be eliminated
by finding the source location in the calling frame (section 3.5.)

The elimination of tail-recursive frames can be prevented by disabling tail-recursion optimization, which
happens when the debug optimization quality is greater than 2 (see section 3.6, page 50.)

For a more thorough discussion of tail recursion, see section 5.5, page 90.

CHAPTER 3. THE DEBUGGER 47

3.3.6 Unknown Locations and Interrupts

The debugger operates using special debugging information attached to the compiled code. This debug infor-
mation tells the debugger what it needs to know about the locations in the code where the debugger can be
invoked. If the debugger somehow encounters a location not described in the debug information, then it is said
to be unknown. If the code location for a frame is unknown, then some variables may be inaccessible, and the
source location cannot be precisely displayed.

There are three reasons why a code location could be unknown:

• There is inadequate debug information due to the value of the debug optimization quality. See section 3.6,
page 50.

• The debugger was entered because of an interrupt such as Ĉ.

• A hardware error such as “bus error” occurred in code that was compiled unsafely due to the value of the
safety optimization quality. See section 4.7.1, page 69.

In the last two cases, the values of argument variables are accessible, but may be incorrect. See section 3.4.1,
page 48 for more details on when variable values are accessible.

It is possible for an interrupt to happen when a function call or return is in progress. The debugger may
then flame out with some obscure error or insist that the bottom of the stack has been reached, when the real
problem is that the current stack frame can’t be located. If this happens, return from the interrupt and try again.

When running interpreted code, all locations should be known. However, an interrupt might catch some
subfunction of the interpreter at an unknown location. In this case, you should be able to go up the stack a
frame or two and reach an interpreted frame which can be debugged.

3.4 Variable Access

There are three ways to access the current frame’s local variables in the debugger. The simplest is to type the
variable’s name into the debugger’s read-eval-print loop. The debugger will evaluate the variable reference as
though it had appeared inside that frame.

The debugger doesn’t really understand lexical scoping; it has just one namespace for all the variables in
a function. If a symbol is the name of multiple variables in the same function, then the reference appears
ambiguous, even though lexical scoping specifies which value is visible at any given source location. If the
scopes of the two variables are not nested, then the debugger can resolve the ambiguity by observing that only
one variable is accessible.

When there are ambiguous variables, the evaluator assigns each one a small integer identifier. The debug:var
function and the list-locals command use this identifier to distinguish between ambiguous variables:

list-locals {prefix}
This command prints the name and value of all variables in the current frame whose name has
the specified prefix . prefix may be a string or a symbol. If no prefix is given, then all available
variables are printed. If a variable has a potentially ambiguous name, then the name is printed with
a “#identifier” suffix, where identifier is the small integer used to make the name unique.

debug:var name &optional identifier [Function]
This function returns the value of the variable in the current frame with the specified name. If supplied,

identifier determines which value to return when there are ambiguous variables.
When name is a symbol, it is interpreted as the symbol name of the variable, i.e. the package is significant. If

name is an uninterned symbol (gensym), then return the value of the uninterned variable with the same name.
If name is a string, debug:var interprets it as the prefix of a variable name, and must unambiguously complete
to the name of a valid variable.

This function is useful mainly for accessing the value of uninterned or ambiguous variables, since most
variables can be evaluated directly.

CHAPTER 3. THE DEBUGGER 48

3.4.1 Variable Value Availability

The value of a variable may be unavailable to the debugger in portions of the program where Common Lisp
says that the variable is defined. If a variable value is not available, the debugger will not let you read or write
that variable. With one exception, the debugger will never display an incorrect value for a variable. Rather than
displaying incorrect values, the debugger tells you the value is unavailable.

The one exception is this: if you interrupt (e.g., with Ĉ) or if there is an unexpected hardware error such
as “bus error” (which should only happen in unsafe code), then the values displayed for arguments to the
interrupted frame might be incorrect.1 This exception applies only to the interrupted frame: any frame farther
down the stack will be fine.

The value of a variable may be unavailable for these reasons:

• The value of the debug optimization quality may have omitted debug information needed to determine
whether the variable is available. Unless a variable is an argument, its value will only be available when
debug is at least 2.

• The compiler did lifetime analysis and determined that the value was no longer needed, even though its
scope had not been exited. Lifetime analysis is inhibited when the debug optimization quality is 3.

• The variable’s name is an uninterned symbol (gensym). To save space, the compiler only dumps debug
information about uninterned variables when the debug optimization quality is 3.

• The frame’s location is unknown (see section 3.3.6, page 47) because the debugger was entered due to an
interrupt or unexpected hardware error. Under these conditions the values of arguments will be available,
but might be incorrect. This is the exception above.

• The variable was optimized out of existence. Variables with no reads are always optimized away, even
in the interpreter. The degree to which the compiler deletes variables will depend on the value of the
compile-speed optimization quality, but most source-level optimizations are done under all compilation
policies.

Since it is especially useful to be able to get the arguments to a function, argument variables are treated
specially when the speed optimization quality is less than 3 and the debug quality is at least 1. With this
compilation policy, the values of argument variables are almost always available everywhere in the function,
even at unknown locations. For non-argument variables, debug must be at least 2 for values to be available,
and even then, values are only available at known locations.

3.4.2 Note On Lexical Variable Access

When the debugger command loop establishes variable bindings for available variables, these variable bindings
have lexical scope and dynamic extent.2 You can close over them, but such closures can’t be used as upward
funargs.

You can also set local variables using setq, but if the variable was closed over in the original source and
never set, then setting the variable in the debugger may not change the value in all the functions the variable is
defined in. Another risk of setting variables is that you may assign a value of a type that the compiler proved
the variable could never take on. This may result in bad things happening.

3.5 Source Location Printing

One of CMUCL’s unique capabilities is source level debugging of compiled code. These commands display the
source location for the current frame:

source {context}
This command displays the file that the current frame’s function was defined from (if it was defined
from a file), and then the source form responsible for generating the code that the current frame was

1Since the location of an interrupt or hardware error will always be an unknown location (see section 3.3.6, page 47), non-argument
variable values will never be available in the interrupted frame.

2The variable bindings are actually created using the Common Lisp symbol-macrolet special form.

CHAPTER 3. THE DEBUGGER 49

executing. If context is specified, then it is an integer specifying the number of enclosing levels of
list structure to print.

vsource {context}
This command is identical to source, except that it uses the global values of *print-level* and
print-length instead of the debugger printing control variables *debug-print-level* and *debug-
print-length*.

The source form for a location in the code is the innermost list present in the original source that encloses
the form responsible for generating that code. If the actual source form is not a list, then some enclosing list
will be printed. For example, if the source form was a reference to the variable *some-random-special*, then
the innermost enclosing evaluated form will be printed. Here are some possible enclosing forms:

(let ((a *some-random-special*))
...)

(+ *some-random-special* ...)

If the code at a location was generated from the expansion of a macro or a source-level compiler opti-
mization, then the form in the original source that expanded into that code will be printed. Suppose the file
‘/usr/me/mystuff.lisp’ looked like this:

(defmacro mymac ()
’(myfun))

(defun foo ()
(mymac)
...)

If foo has called myfun, and is waiting for it to return, then the source command would print:

; File: /usr/me/mystuff.lisp

(MYMAC)

Note that the macro use was printed, not the actual function call form, (myfun).
If enclosing source is printed by giving an argument to source or vsource, then the actual source form is

marked by wrapping it in a list whose first element is #:***HERE***. In the previous example, source 1 would
print:

; File: /usr/me/mystuff.lisp

(DEFUN FOO ()
(#:***HERE***
(MYMAC))

...)

3.5.1 How the Source is Found

If the code was defined from Common Lisp by compile or eval, then the source can always be reliably located. If
the code was defined from a fasl file created by compile-file, then the debugger gets the source forms it prints by
reading them from the original source file. This is a potential problem, since the source file might have moved
or changed since the time it was compiled.

The source file is opened using the truename of the source file pathname originally given to the compiler.
This is an absolute pathname with all logical names and symbolic links expanded. If the file can’t be located
using this name, then the debugger gives up and signals an error.

If the source file can be found, but has been modified since the time it was compiled, the debugger prints
this warning:

CHAPTER 3. THE DEBUGGER 50

; File has been modified since compilation:
; filename
; Using form offset instead of character position.

where filename is the name of the source file. It then proceeds using a robust but not foolproof heuristic for
locating the source. This heuristic works if:

• No top-level forms before the top-level form containing the source have been added or deleted, and

• The top-level form containing the source has not been modified much. (More precisely, none of the list
forms beginning before the source form have been added or deleted.)

If the heuristic doesn’t work, the displayed source will be wrong, but will probably be near the actual source.
If the “shape” of the top-level form in the source file is too different from the original form, then an error will
be signaled. When the heuristic is used, the the source location commands are noticeably slowed.

Source location printing can also be confused if (after the source was compiled) a read-macro you used in
the code was redefined to expand into something different, or if a read-macro ever returns the same eq list
twice. If you don’t define read macros and don’t use ## in perverted ways, you don’t need to worry about this.

3.5.2 Source Location Availability

Source location information is only available when the debug optimization quality is at least 2. If source location
information is unavailable, the source commands will give an error message.

If source location information is available, but the source location is unknown because of an interrupt or
unexpected hardware error (see section 3.3.6, page 47), then the command will print:

Unknown location: using block start.

and then proceed to print the source location for the start of the basic block enclosing the code location. It’s a
bit complicated to explain exactly what a basic block is, but here are some properties of the block start location:

• The block start location may be the same as the true location.

• The block start location will never be later in the the program’s flow of control than the true location.

• No conditional control structures (such as if, cond, or) will intervene between the block start and the
true location (but note that some conditionals present in the original source could be optimized away.)
Function calls do not end basic blocks.

• The head of a loop will be the start of a block.

• The programming language concept of “block structure” and the Common Lisp block special form are
totally unrelated to the compiler’s basic block.

In other words, the true location lies between the printed location and the next conditional (but watch out
because the compiler may have changed the program on you.)

3.6 Compiler Policy Control

The compilation policy specified by optimize declarations affects the behavior seen in the debugger. The de-
bug quality directly affects the debugger by controlling the amount of debugger information dumped. Other
optimization qualities have indirect but observable effects due to changes in the way compilation is done.

Unlike the other optimization qualities (which are compared in relative value to evaluate tradeoffs), the
debug optimization quality is directly translated to a level of debug information. This absolute interpretation
allows the user to count on a particular amount of debug information being available even when the values of
the other qualities are changed during compilation. These are the levels of debug information that correspond
to the values of the debug quality:

0 Only the function name and enough information to allow the stack to be parsed.

CHAPTER 3. THE DEBUGGER 51

> 0 Any level greater than 0 gives level 0 plus all argument variables. Values will only be accessible if
the argument variable is never set and speed is not 3. CMUCL allows any real value for optimiza-
tion qualities. It may be useful to specify 0.5 to get backtrace argument display without argument
documentation.

1 Level 1 provides argument documentation (printed arglists) and derived argument/result type in-
formation. This makes describe more informative, and allows the compiler to do compile-time
argument count and type checking for any calls compiled at run-time.

2 Level 1 plus all interned local variables, source location information, and lifetime information that
tells the debugger when arguments are available (even when speed is 3 or the argument is set.) This
is the default.

> 2 Any level greater than 2 gives level 2 and in addition disables tail-call optimization, so that the
backtrace will contain frames for all invoked functions, even those in tail positions.

3 Level 2 plus all uninterned variables. In addition, lifetime analysis is disabled (even when speed
is 3), ensuring that all variable values are available at any known location within the scope of the
binding. This has a speed penalty in addition to the obvious space penalty.

As you can see, if the speed quality is 3, debugger performance is degraded. This effect comes from the elim-
ination of argument variable special-casing (see section 3.4.1, page 48.) Some degree of speed/debuggability
tradeoff is unavoidable, but the effect is not too drastic when debug is at least 2.

In addition to inline and notinline declarations, the relative values of the speed and space qualities also
change whether functions are inline expanded (see section 5.8, page 98.) If a function is inline expanded, then
there will be no frame to represent the call, and the arguments will be treated like any other local variable.
Functions may also be “semi-inline”, in which case there is a frame to represent the call, but the call is to an
optimized local version of the function, not to the original function.

3.7 Exiting Commands

These commands get you out of the debugger.

quit Throw to top level.

restart {n}
Invokes the nth restart case as displayed by the error command. If n is not specified, the available
restart cases are reported.

go Calls continue on the condition given to debug. If there is no restart case named continue, then an
error is signaled.

abort Calls abort on the condition given to debug. This is useful for popping debug command loop levels
or aborting to top level, as the case may be.

3.8 Information Commands

Most of these commands print information about the current frame or function, but a few show general infor-
mation.

help, ? Displays a synopsis of debugger commands.

describe Calls describe on the current function, displays number of local variables, and indicates whether
the function is compiled or interpreted.

print Displays the current function call as it would be displayed by moving to this frame.

CHAPTER 3. THE DEBUGGER 52

vprint (or pp) {verbosity}
Displays the current function call using *print-level* and *print-length* instead of *debug-print-level*
and *debug-print-length*. verbosity is a small integer (default 2) that controls other dimensions of
verbosity.

error Prints the condition given to invoke-debugger and the active proceed cases.

backtrace {n}

Displays all the frames from the current to the bottom. Only shows n frames if specified. The
printing is controlled by *debug-print-level* and *debug-print-length*.

3.9 Breakpoint Commands

CMUCL supports setting of breakpoints inside compiled functions and stepping of compiled code. Breakpoints
can only be set at at known locations (see section 3.3.6, page 47), so these commands are largely useless unless
the debug optimize quality is at least 2 (see section 3.6, page 50). These commands manipulate breakpoints:

breakpoint location {option value}∗
Set a breakpoint in some function. location may be an integer code location number (as displayed
by list-locations) or a keyword. The keyword can be used to indicate setting a breakpoint at the
function start (:start, :s) or function end (:end, :e). The breakpoint command has :condition, :break,
:print and :function options which work similarly to the trace options.

list-locations (or ll) {function}
List all the code locations in the current frame’s function, or in function if it is supplied. The display
format is the code location number, a colon and then the source form for that location:

3: (1- N)

If consecutive locations have the same source, then a numeric range like 3-5: will be printed. For
example, a default function call has a known location both immediately before and after the call,
which would result in two code locations with the same source. The listed function becomes the
new default function for breakpoint setting (via the breakpoint) command.

list-breakpoints (or lb)
List all currently active breakpoints with their breakpoint number.

delete-breakpoint (or db) {number}
Delete a breakpoint specified by its breakpoint number. If no number is specified, delete all break-
points.

step Step to the next possible breakpoint location in the current function. This always steps over function
calls, instead of stepping into them

3.9.1 Breakpoint Example

Consider this definition of the factorial function:

(defun ! (n)
(if (zerop n)

1
(* n (! (1- n)))))

This debugger session demonstrates the use of breakpoints:

common-lisp-user> (break) ; Invoke debugger

Break

CHAPTER 3. THE DEBUGGER 53

Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT] Return to Top-Level.

Debug (type H for help)

(INTERACTIVE-EVAL (BREAK))
0] ll #’!
0: #’(LAMBDA (N) (BLOCK ! (IF # 1 #)))
1: (ZEROP N)
2: (* N (! (1- N)))
3: (1- N)
4: (! (1- N))
5: (* N (! (1- N)))
6: #’(LAMBDA (N) (BLOCK ! (IF # 1 #)))
0] br 2
(* N (! (1- N)))
1: 2 in !
Added.
0] q

common-lisp-user> (! 10) ; Call the function

Breakpoint hit

Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT] Return to Top-Level.

Debug (type H for help)

(! 10) ; We are now in first call (arg 10) before the multiply
Source: (* N (! (1- N)))
3] st

Step

(! 10) ; We have finished evaluation of (1- n)
Source: (1- N)
3] st

Breakpoint hit

Restarts:
0: [CONTINUE] Return from BREAK.
1: [ABORT] Return to Top-Level.

Debug (type H for help)

(! 9) ; We hit the breakpoint in the recursive call
Source: (* N (! (1- N)))
3]

CHAPTER 3. THE DEBUGGER 54

3.10 Function Tracing

The tracer causes selected functions to print their arguments and their results whenever they are called. Options
allow conditional printing of the trace information and conditional breakpoints on function entry or exit.

trace {option global-value}∗ {name {option value}∗ }∗ [Macro]
trace is a debugging tool that prints information when specified functions are called. In its simplest form:

(trace name-1 name-2 ...)

trace causes a printout on *trace-output* each time that one of the named functions is entered or returns (the
names are not evaluated.) Trace output is indented according to the number of pending traced calls, and this
trace depth is printed at the beginning of each line of output. Printing verbosity of arguments and return values
is controlled by *debug-print-level* and *debug-print-length*.

Local functions defined by flet and labels can be traced using the syntax (flet f f1 f2 ...) or (labels f f1 f2 ...)
where f is the flet or labels function we want to trace and f1, f2, are the functions containing the local function
f. Invidiual methods can also be traced using the syntax (method name qualifiers specializers). See 2.23.7 for
more information.

If no names or options are are given, trace returns the list of all currently traced functions, *traced-function-
list*.

Trace options can cause the normal printout to be suppressed, or cause extra information to be printed.
Each option is a pair of an option keyword and a value form. Options may be interspersed with function
names. Options only affect tracing of the function whose name they appear immediately after. Global options
are specified before the first name, and affect all functions traced by a given use of trace. If an already traced
function is traced again, any new options replace the old options. The following options are defined:

:condition form, :condition-after form, :condition-all form
If :condition is specified, then trace does nothing unless form evaluates to true at the time of the call.
:condition-after is similar, but suppresses the initial printout, and is tested when the function returns.
:condition-all tries both before and after.

:wherein names
If specified, names is a function name or list of names. trace does nothing unless a call to one of
those functions encloses the call to this function (i.e. it would appear in a backtrace.) Anonymous
functions have string names like ”DEFUN FOO”. Individual methods can also be traced. See sec-
tion 2.23.7.

:wherein-only names
If specified, this is just like :wherein, but trace produces output only if the immediate caller of the
traced function is one of the functions listed in names.

:break form, :break-after form, :break-all form
If specified, and form evaluates to true, then the debugger is invoked at the start of the function, at
the end of the function, or both, according to the respective option.

:print form, :print-after form, :print-all form
In addition to the usual printout, the result of evaluating form is printed at the start of the function,
at the end of the function, or both, according to the respective option. Multiple print options cause
multiple values to be printed.

:function function-form
This is a not really an option, but rather another way of specifying what function to trace. The
function-form is evaluated immediately, and the resulting function is traced.

:encapsulate {:default — t — nil}
In CMUCL, tracing can be done either by temporarily redefining the function name (encapsulation),
or using breakpoints. When breakpoints are used, the function object itself is destructively modified
to cause the tracing action. The advantage of using breakpoints is that tracing works even when the
function is anonymously called via funcall.

CHAPTER 3. THE DEBUGGER 55

When :encapsulate is true, tracing is done via encapsulation. :default is the default, and means to
use encapsulation for interpreted functions and funcallable instances, breakpoints otherwise. When
encapsulation is used, forms are not evaluated in the function’s lexical environment, but debug:arg
can still be used.

Note that if you trace using :encapsulate, you will only get a trace or breakpoint at the outermost
call to the traced function, not on recursive calls.

In the case of functions where the known return convention is used to optimize, encapsulation may be
necessary in order to make tracing work at all. The symptom of this occurring is an error stating

Error in function foo: :FUNCTION-END breakpoints are
currently unsupported for the known return convention.

in such cases we recommend using (trace foo :encapsulate t)
:condition, :break and :print forms are evaluated in the lexical environment of the called function; debug:var

and debug:arg can be used. The -after and -all forms are evaluated in the null environment.

untrace &rest function-names [Macro]
This macro turns off tracing for the specified functions, and removes their names from *traced-function-list*.

If no function-names are given, then all currently traced functions are untraced.

extensions:*traced-function-list* [Variable]
A list of function names maintained and used by trace, untrace, and untrace-all. This list should contain the

names of all functions currently being traced.

extensions:*max-trace-indentation* [Variable]
The maximum number of spaces which should be used to indent trace printout. This variable is initially set

to 40.

debug:*trace-encapsulate-package-names* [Variable]
A list of package names. Functions from these packages are traced using encapsulation instead of function-

end breakpoints. This list should at least include those packages containing functions used directly or indirectly
in the implementation of trace.

3.10.1 Encapsulation Functions

The encapsulation functions provide a mechanism for intercepting the arguments and results of a function.
encapsulate changes the function definition of a symbol, and saves it so that it can be restored later. The
new definition normally calls the original definition. The Common Lisp fdefinition function always returns the
original definition, stripping off any encapsulation.

The original definition of the symbol can be restored at any time by the unencapsulate function. encapsulate
and unencapsulate allow a symbol to be multiply encapsulated in such a way that different encapsulations can
be completely transparent to each other.

Each encapsulation has a type which may be an arbitrary lisp object. If a symbol has several encapsulations
of different types, then any one of them can be removed without affecting more recent ones. A symbol may
have more than one encapsulation of the same type, but only the most recent one can be undone.

extensions:encapsulate symbol type body [Function]
Saves the current definition of symbol , and replaces it with a function which returns the result of evaluating

the form, body . Type is an arbitrary lisp object which is the type of encapsulation.
When the new function is called, the following variables are bound for the evaluation of body :

CHAPTER 3. THE DEBUGGER 56

extensions:argument-list
A list of the arguments to the function.

extensions:basic-definition
The unencapsulated definition of the function.

The unencapsulated definition may be called with the original arguments by including the form

(apply extensions:basic-definition extensions:argument-list)

encapsulate always returns symbol .

extensions:unencapsulate symbol type [Function]
Undoes symbol ’s most recent encapsulation of type type. Type is compared with eq. Encapsulations of

other types are left in place.

extensions:encapsulated-p symbol type [Function]
Returns t if symbol has an encapsulation of type type. Returns nil otherwise. type is compared with eq.

3.11 Specials

These are the special variables that control the debugger action.

debug:*debug-print-level* [Variable]
debug:*debug-print-length* [Variable]

print-level and *print-length* are bound to these values during the execution of some debug commands.
When evaluating arbitrary expressions in the debugger, the normal values of *print-level* and *print-length* are
in effect. These variables are initially set to 3 and 5, respectively.

Chapter 4

The Compiler

4.1 Compiler Introduction

This chapter contains information about the compiler that every CMUCL user should be familiar with. Chapter
5 goes into greater depth, describing ways to use more advanced features.

The CMUCL compiler (also known as Python, not to be confused with the programming language of the
same name) has many features that are seldom or never supported by conventional Common Lisp compilers:

• Source level debugging of compiled code (see chapter 3.)

• Type error compiler warnings for type errors detectable at compile time.

• Compiler error messages that provide a good indication of where the error appeared in the source.

• Full run-time checking of all potential type errors, with optimization of type checks to minimize the cost.

• Scheme-like features such as proper tail recursion and extensive source-level optimization.

• Advanced tuning and optimization features such as comprehensive efficiency notes, flow analysis, and
untagged number representations (see chapter 5.)

4.2 Calling the Compiler

Functions may be compiled using compile, compile-file, or compile-from-stream.

compile name &optional definition [Function]
This function compiles the function whose name is name. If name is nil, the compiled function object is

returned. If definition is supplied, it should be a lambda expression that is to be compiled and then placed in the
function cell of name. As per the proposed X3J13 cleanup “compile-argument-problems”, definition may also
be an interpreted function.

The return values are as per the proposed X3J13 cleanup “compiler-diagnostics”. The first value is the
function name or function object. The second value is nil if no compiler diagnostics were issued, and t otherwise.
The third value is nil if no compiler diagnostics other than style warnings were issued. A non-nil value indicates
that there were “serious” compiler diagnostics issued, or that other conditions of type error or warning (but not
style-warning) were signaled during compilation.

compile-file input-pathname &key :output-file :error-file :trace-file
:error-output :verbose :print :progress
:load :block-compile :entry-points
:byte-compile

[Function]

The CMUCL compile-file is extended through the addition of several new keywords and an additional inter-
pretation of input-pathname:

57

CHAPTER 4. THE COMPILER 58

input-pathname
If this argument is a list of input files, rather than a single input pathname, then all the source files
are compiled into a single object file. In this case, the name of the first file is used to determine the
default output file names. This is especially useful in combination with block-compile.

:output-file
This argument specifies the name of the output file. t gives the default name, nil suppresses the
output file.

:error-file A listing of all the error output is directed to this file. If there are no errors, then no error file is
produced (and any existing error file is deleted.) t gives ”name.err” (the default), and nil suppresses
the output file.

:error-output
If t (the default), then error output is sent to *error-output*. If a stream, then output is sent to that
stream instead. If nil, then error output is suppressed. Note that this error output is in addition to
(but the same as) the output placed in the error-file.

:verbose If t (the default), then the compiler prints to error output at the start and end of compilation of each
file. See *compile-verbose* (page 58).

:print If t (the default), then the compiler prints to error output when each function is compiled. See
compile-print (page 58).

:progress If t (default nil), then the compiler prints to error output progress information about the phases
of compilation of each function. This is a CMUCL extension that is useful mainly in large block
compilations. See *compile-progress* (page 58).

:trace-file If t, several of the intermediate representations (including annotated assembly code) are dumped
out to this file. t gives ”name.trace”. Trace output is off by default. See section 5.12.5, page 111.

:load If t, load the resulting output file.

:block-compile
Controls the compile-time resolution of function calls. By default, only self-recursive calls are re-
solved, unless an ext:block-start declaration appears in the source file. See section 5.7.3, page 95.

:entry-points
If non-null, then this is a list of the names of all functions in the file that should have global defini-
tions installed (because they are referenced in other files.) See section 5.7.3, page 95.

:byte-compile
If t, compiling to a compact interpreted byte code is enabled. Possible values are t, nil, and :maybe
(the default.) See *byte-compile-default* (page 101) and See section 5.9, page 100.

The return values are as per the proposed X3J13 cleanup “compiler-diagnostics”. The first value from
compile-file is the truename of the output file, or nil if the file could not be created. The interpretation of the
second and third values is described above for compile.

compile-verbose [Variable]
compile-print [Variable]
compile-progress [Variable]

These variables determine the default values for the :verbose, :print and :progress arguments to compile-file.

extensions:compile-from-stream input-stream &key :error-stream
:trace-stream
:block-compile :entry-points
:byte-compile

[Function]

This function is similar to compile-file, but it takes all its arguments as streams. It reads Common Lisp code
from input-stream until end of file is reached, compiling into the current environment. This function returns the
same two values as the last two values of compile. No output files are produced.

CHAPTER 4. THE COMPILER 59

4.3 Compilation Units

CMUCL supports the with-compilation-unit macro added to the language by the X3J13 “with-compilation-unit”
compiler cleanup issue. This provides a mechanism for eliminating spurious undefined warnings when there
are forward references across files, and also provides a standard way to access compiler extensions.

with-compilation-unit ({key value}∗) {form}∗ [Macro]
This macro evaluates the forms in an environment that causes warnings for undefined variables, functions

and types to be delayed until all the forms have been evaluated. Each keyword value is an evaluated form.
These keyword options are recognized:

:override If uses of with-compilation-unit are dynamically nested, the outermost use will take precedence, sup-
pressing printing of undefined warnings by inner uses. However, when the override option is true
this shadowing is inhibited; an inner use will print summary warnings for the compilations within
the inner scope.

:optimize This is a CMUCL extension that specifies of the “global” compilation policy for the dynamic extent
of the body. The argument should evaluate to an optimize declare form, like:

(optimize (speed 3) (safety 0))

See section 4.7.1, page 69

:optimize-interface
Similar to :optimize, but specifies the compilation policy for function interfaces (argument count and
type checking) for the dynamic extent of the body. See section 4.7.2, page 70.

:context-declarations
This is a CMUCL extension that pattern-matches on function names, automatically splicing in any
appropriate declarations at the head of the function definition. See section 5.7.5, page 96.

4.3.1 Undefined Warnings

Warnings about undefined variables, functions and types are delayed until the end of the current compilation
unit. The compiler entry functions (compile, etc.) implicitly use with-compilation-unit, so undefined warnings
will be printed at the end of the compilation unless there is an enclosing with-compilation-unit. In order the gain
the benefit of this mechanism, you should wrap a single with-compilation-unit around the calls to compile-file,
i.e.:

(with-compilation-unit ()
(compile-file "file1")
(compile-file "file2")
...)

Unlike for functions and types, undefined warnings for variables are not suppressed when a definition (e.g.
defvar) appears after the reference (but in the same compilation unit.) This is because doing special declarations
out of order just doesn’t work—although early references will be compiled as special, bindings will be done
lexically.

Undefined warnings are printed with full source context (see section 4.4, page 60), which tremendously sim-
plifies the problem of finding undefined references that resulted from macroexpansion. After printing detailed
information about the undefined uses of each name, with-compilation-unit also prints summary listings of the
names of all the undefined functions, types and variables.

undefined-warning-limit [Variable]
This variable controls the number of undefined warnings for each distinct name that are printed with full

source context when the compilation unit ends. If there are more undefined references than this, then they are
condensed into a single warning:

CHAPTER 4. THE COMPILER 60

Warning: count more uses of undefined function name.

When the value is 0, then the undefined warnings are not broken down by name at all: only the summary
listing of undefined names is printed.

4.4 Interpreting Error Messages

One of Python’s unique features is the level of source location information it provides in error messages. The
error messages contain a lot of detail in a terse format, to they may be confusing at first. Error messages will be
illustrated using this example program:

(defmacro zoq (x)
‘(roq (ploq (+ ,x 3))))

(defun foo (y)
(declare (symbol y))
(zoq y))

The main problem with this program is that it is trying to add 3 to a symbol. Note also that the functions roq
and ploq aren’t defined anywhere.

4.4.1 The Parts of the Error Message

The compiler will produce this warning:

File: /usr/me/stuff.lisp
In: DEFUN FOO

(ZOQ Y)
--> ROQ PLOQ +
==>

Y
Warning: Result is a SYMBOL, not a NUMBER.

In this example we see each of the six possible parts of a compiler error message:

File: /usr/me/stuff.lisp
This is the file that the compiler read the relevant code from. The file name is displayed because
it may not be immediately obvious when there is an error during compilation of a large system,
especially when with-compilation-unit is used to delay undefined warnings.

In: DEFUN FOO
This is the definition or top-level form responsible for the error. It is obtained by taking the first two
elements of the enclosing form whose first element is a symbol beginning with “DEF”. If there is no
enclosing def mumble, then the outermost form is used. If there are multiple def mumbles, then they
are all printed from the out in, separated by =>’s. In this example, the problem was in the defun for
foo.

(ZOQ Y) This is the original source form responsible for the error. Original source means that the form directly
appeared in the original input to the compiler, i.e. in the lambda passed to compile or the top-level
form read from the source file. In this example, the expansion of the zoq macro was responsible for
the error.

–> ROQ PLOQ +
This is the processing path that the compiler used to produce the errorful code. The processing path
is a representation of the evaluated forms enclosing the actual source that the compiler encountered
when processing the original source. The path is the first element of each form, or the form itself
if the form is not a list. These forms result from the expansion of macros or source-to-source trans-
formation done by the compiler. In this example, the enclosing evaluated forms are the calls to roq,
ploq and +. These calls resulted from the expansion of the zoq macro.

CHAPTER 4. THE COMPILER 61

==> Y This is the actual source responsible for the error. If the actual source appears in the explanation,
then we print the next enclosing evaluated form, instead of printing the actual source twice. (This is
the form that would otherwise have been the last form of the processing path.) In this example, the
problem is with the evaluation of the reference to the variable y.

Warning: Result is a SYMBOL, not a NUMBER.
This is the explanation the problem. In this example, the problem is that y evaluates to a symbol, but
is in a context where a number is required (the argument to +).

Note that each part of the error message is distinctively marked:

• File: and In: mark the file and definition, respectively.

• The original source is an indented form with no prefix.

• Each line of the processing path is prefixed with –>.

• The actual source form is indented like the original source, but is marked by a preceding ==> line. This is
like the “macroexpands to” notation used in Common Lisp: The Language.

• The explanation is prefixed with the error severity (see section 4.4.4, page 63), either Error:, Warning:, or
Note:.

Each part of the error message is more specific than the preceding one. If consecutive error messages are for
nearby locations, then the front part of the error messages would be the same. In this case, the compiler omits
as much of the second message as in common with the first. For example:

File: /usr/me/stuff.lisp
In: DEFUN FOO

(ZOQ Y)
--> ROQ
==>

(PLOQ (+ Y 3))
Warning: Undefined function: PLOQ

==>
(ROQ (PLOQ (+ Y 3)))

Warning: Undefined function: ROQ

In this example, the file, definition and original source are identical for the two messages, so the compiler
omits them in the second message. If consecutive messages are entirely identical, then the compiler prints only
the first message, followed by:

[Last message occurs repeats times]

where repeats is the number of times the message was given.
If the source was not from a file, then no file line is printed. If the actual source is the same as the original

source, then the processing path and actual source will be omitted. If no forms intervene between the original
source and the actual source, then the processing path will also be omitted.

4.4.2 The Original and Actual Source

The original source displayed will almost always be a list. If the actual source for an error message is a symbol,
the original source will be the immediately enclosing evaluated list form. So even if the offending symbol does
appear in the original source, the compiler will print the enclosing list and then print the symbol as the actual
source (as though the symbol were introduced by a macro.)

When the actual source is displayed (and is not a symbol), it will always be code that resulted from the
expansion of a macro or a source-to-source compiler optimization. This is code that did not appear in the
original source program; it was introduced by the compiler.

Keep in mind that when the compiler displays a source form in an error message, it always displays the
most specific (innermost) responsible form. For example, compiling this function:

CHAPTER 4. THE COMPILER 62

(defun bar (x)
(let (a)

(declare (fixnum a))
(setq a (foo x))
a))

gives this error message:

In: DEFUN BAR
(LET (A) (DECLARE (FIXNUM A)) (SETQ A (FOO X)) A)

Warning: The binding of A is not a FIXNUM:
NIL

This error message is not saying “there’s a problem somewhere in this let”—it is saying that there is a
problem with the let itself. In this example, the problem is that a’s nil initial value is not a fixnum.

4.4.3 The Processing Path

The processing path is mainly useful for debugging macros, so if you don’t write macros, you can ignore the
processing path. Consider this example:

(defun foo (n)
(dotimes (i n *undefined*)))

Compiling results in this error message:

In: DEFUN FOO
(DOTIMES (I N *UNDEFINED*))

--> DO BLOCK LET TAGBODY RETURN-FROM
==>

(PROGN *UNDEFINED*)
Warning: Undefined variable: *UNDEFINED*

Note that do appears in the processing path. This is because dotimes expands into:

(do ((i 0 (1+ i)) (#:g1 n))
((>= i #:g1) *undefined*)

(declare (type unsigned-byte i)))

The rest of the processing path results from the expansion of do:

(block nil
(let ((i 0) (#:g1 n))

(declare (type unsigned-byte i))
(tagbody (go #:g3)
#:g2 (psetq i (1+ i))
#:g3 (unless (>= i #:g1) (go #:g2))

(return-from nil (progn *undefined*)))))

In this example, the compiler descended into the block, let, tagbody and return-from to reach the progn
printed as the actual source. This is a place where the “actual source appears in explanation” rule was applied.
The innermost actual source form was the symbol *undefined* itself, but that also appeared in the explanation,
so the compiler backed out one level.

CHAPTER 4. THE COMPILER 63

4.4.4 Error Severity

There are three levels of compiler error severity:

Error This severity is used when the compiler encounters a problem serious enough to prevent normal
processing of a form. Instead of compiling the form, the compiler compiles a call to error. Errors are
used mainly for signaling syntax errors. If an error happens during macroexpansion, the compiler
will handle it. The compiler also handles and attempts to proceed from read errors.

Warning Warnings are used when the compiler can prove that something bad will happen if a portion of
the program is executed, but the compiler can proceed by compiling code that signals an error at
runtime if the problem has not been fixed:

• Violation of type declarations, or

• Function calls that have the wrong number of arguments or malformed keyword argument
lists, or

• Referencing a variable declared ignore, or unrecognized declaration specifiers.

In the language of the Common Lisp standard, these are situations where the compiler can de-
termine that a situation with undefined consequences or that would cause an error to be signaled
would result at runtime.

Note Notes are used when there is something that seems a bit odd, but that might reasonably appear in
correct programs.

Note that the compiler does not fully conform to the proposed X3J13 “compiler-diagnostics” cleanup. Er-
rors, warnings and notes mostly correspond to errors, warnings and style-warnings, but many things that
the cleanup considers to be style-warnings are printed as warnings rather than notes. Also, warnings, style-
warnings and most errors aren’t really signaled using the condition system.

4.4.5 Errors During Macroexpansion

The compiler handles errors that happen during macroexpansion, turning them into compiler errors. If you
want to debug the error (to debug a macro), you can set *break-on-signals* to error. For example, this definition:

(defun foo (e l)
(do ((current l (cdr current))

((atom current) nil))
(when (eq (car current) e) (return current))))

gives this error:

In: DEFUN FOO
(DO ((CURRENT L #) (# NIL)) (WHEN (EQ # E) (RETURN CURRENT)))

Error: (during macroexpansion)

Error in function LISP::DO-DO-BODY.
DO step variable is not a symbol: (ATOM CURRENT)

4.4.6 Read Errors

The compiler also handles errors while reading the source. For example:

Error: Read error at 2:
"(,/\foo)"

Error in function LISP::COMMA-MACRO.
Comma not inside a backquote.

CHAPTER 4. THE COMPILER 64

The “at 2” refers to the character position in the source file at which the error was signaled, which is generally
immediately after the erroneous text. The next line, “(,/\foo)”, is the line in the source that contains the error file
position. The “/\ ” indicates the error position within that line (in this example, immediately after the offending
comma.)

When in Hemlock (or any other EMACS-like editor), you can go to a character position with:

M-< C-u position C-f

Note that if the source is from a Hemlock buffer, then the position is relative to the start of the compiled
region or defun, not the file or buffer start.

After printing a read error message, the compiler attempts to recover from the error by backing up to the
start of the enclosing top-level form and reading again with *read-suppress* true. If the compiler can recover
from the error, then it substitutes a call to cerror for the unreadable form and proceeds to compile the rest of the
file normally.

If there is a read error when the file position is at the end of the file (i.e., an unexpected EOF error), then the
error message looks like this:

Error: Read error in form starting at 14:
"(defun test ()"

Error in function LISP::FLUSH-WHITESPACE.
EOF while reading #<Stream for file "/usr/me/test.lisp">

In this case, “starting at 14” indicates the character position at which the compiler started reading, i.e. the
position before the start of the form that was missing the closing delimiter. The line ”(defun test ()” is first line
after the starting position that the compiler thinks might contain the unmatched open delimiter.

4.4.7 Error Message Parameterization

There is some control over the verbosity of error messages. See also *undefined-warning-limit* (page 59),
efficiency-note-limit and *efficiency-note-cost-threshold* (page 114).

enclosing-source-cutoff [Variable]
This variable specifies the number of enclosing actual source forms that are printed in full, rather than in

the abbreviated processing path format. Increasing the value from its default of 1 allows you to see more of the
guts of the macroexpanded source, which is useful when debugging macros.

error-print-length [Variable]
error-print-level [Variable]

These variables are the print level and print length used in printing error messages. The default values are
5 and 3. If null, the global values of *print-level* and *print-length* are used.

extensions:def-source-context name lambda-list {form}∗ [Macro]
This macro defines how to extract an abbreviated source context from the named form when it appears

in the compiler input. lambda-list is a defmacro style lambda-list used to parse the arguments. The body
should return a list of subforms that can be printed on about one line. There are predefined methods for
defstruct, defmethod, etc. If no method is defined, then the first two subforms are returned. Note that this
facility implicitly determines the string name associated with anonymous functions.

CHAPTER 4. THE COMPILER 65

4.5 Types in Python

A big difference between Python and all other Common Lisp compilers is the approach to type checking and
amount of knowledge about types:

• Python treats type declarations much differently that other Lisp compilers do. Python doesn’t blindly
believe type declarations; it considers them assertions about the program that should be checked.

• Python also has a tremendously greater knowledge of the Common Lisp type system than other compil-
ers. Support is incomplete only for the not, and and satisfies types.

See also sections 5.2 and 5.3.

4.5.1 Compile Time Type Errors

If the compiler can prove at compile time that some portion of the program cannot be executed without a type
error, then it will give a warning at compile time. It is possible that the offending code would never actually
be executed at run-time due to some higher level consistency constraint unknown to the compiler, so a type
warning doesn’t always indicate an incorrect program. For example, consider this code fragment:

(defun raz (foo)
(let ((x (case foo

(:this 13)
(:that 9)
(:the-other 42))))

(declare (fixnum x))
(foo x)))

Compilation produces this warning:

In: DEFUN RAZ
(CASE FOO (:THIS 13) (:THAT 9) (:THE-OTHER 42))

--> LET COND IF COND IF COND IF
==>

(COND)
Warning: This is not a FIXNUM:

NIL

In this case, the warning is telling you that if foo isn’t any of :this, :that or :the-other, then x will be initialized
to nil, which the fixnum declaration makes illegal. The warning will go away if ecase is used instead of case,
or if :the-other is changed to t.

This sort of spurious type warning happens moderately often in the expansion of complex macros and in
inline functions. In such cases, there may be dead code that is impossible to correctly execute. The compiler
can’t always prove this code is dead (could never be executed), so it compiles the erroneous code (which will
always signal an error if it is executed) and gives a warning.

extensions:required-argument [Function]
This function can be used as the default value for keyword arguments that must always be supplied. Since it

is known by the compiler to never return, it will avoid any compile-time type warnings that would result from
a default value inconsistent with the declared type. When this function is called, it signals an error indicating
that a required keyword argument was not supplied. This function is also useful for defstruct slot defaults
corresponding to required arguments. See section 5.2.5, page 76.

Although this function is a CMUCL extension, it is relatively harmless to use it in otherwise portable code,
since you can easily define it yourself:

(defun required-argument ()
(error "A required keyword argument was not supplied."))

CHAPTER 4. THE COMPILER 66

Type warnings are inhibited when the extensions:inhibit-warnings optimization quality is 3 (see section 4.7,
page 69.) This can be used in a local declaration to inhibit type warnings in a code fragment that has spurious
warnings.

4.5.2 Precise Type Checking

With the default compilation policy, all type assertions1 are precisely checked. Precise checking means that the
check is done as though typep had been called with the exact type specifier that appeared in the declaration.
Python uses policy to determine whether to trust type assertions (see section 4.7, page 69). Type assertions
from declarations are indistinguishable from the type assertions on arguments to built-in functions. In Python,
adding type declarations makes code safer.

If a variable is declared to be (integer 3 17), then its value must always always be an integer between 3 and
17. If multiple type declarations apply to a single variable, then all the declarations must be correct; it is as
though all the types were intersected producing a single and type specifier.

Argument type declarations are automatically enforced. If you declare the type of a function argument, a
type check will be done when that function is called. In a function call, the called function does the argument
type checking, which means that a more restrictive type assertion in the calling function (e.g., from the) may be
lost.

The types of structure slots are also checked. The value of a structure slot must always be of the type
indicated in any :type slot option.2 Because of precise type checking, the arguments to slot accessors are checked
to be the correct type of structure.

In traditional Common Lisp compilers, not all type assertions are checked, and type checks are not precise.
Traditional compilers blindly trust explicit type declarations, but may check the argument type assertions for
built-in functions. Type checking is not precise, since the argument type checks will be for the most general type
legal for that argument. In many systems, type declarations suppress what little type checking is being done,
so adding type declarations makes code unsafe. This is a problem since it discourages writing type declarations
during initial coding. In addition to being more error prone, adding type declarations during tuning also loses
all the benefits of debugging with checked type assertions.

To gain maximum benefit from Python’s type checking, you should always declare the types of function
arguments and structure slots as precisely as possible. This often involves the use of or, member and other
list-style type specifiers. Paradoxically, even though adding type declarations introduces type checks, it usually
reduces the overall amount of type checking. This is especially true for structure slot type declarations.

Python uses the safety optimization quality (rather than presence or absence of declarations) to choose one
of three levels of run-time type error checking: see section 4.7.1, page 69. See section 5.2, page 75 for more
information about types in Python.

4.5.3 Weakened Type Checking

When the value for the speed optimization quality is greater than safety, and safety is not 0, then type checking
is weakened to reduce the speed and space penalty. In structure-intensive code this can double the speed, yet
still catch most type errors. Weakened type checks provide a level of safety similar to that of “safe” code in
other Common Lisp compilers.

A type check is weakened by changing the check to be for some convenient supertype of the asserted type.
For example, (integer 3 17) is changed to fixnum, (simple-vector 17) to simple-vector, and structure types are
changed to structure. A complex check like:

(or node hunk (member :foo :bar :baz))

will be omitted entirely (i.e., the check is weakened to *.) If a precise check can be done for no extra cost, then
no weakening is done.

Although weakened type checking is similar to type checking done by other compilers, it is sometimes safer
and sometimes less safe. Weakened checks are done in the same places is precise checks, so all the preceding

1There are a few circumstances where a type declaration is discarded rather than being used as type assertion. This doesn’t affect safety
much, since such discarded declarations are also not believed to be true by the compiler.

2The initial value need not be of this type as long as the corresponding argument to the constructor is always supplied, but this will
cause a compile-time type warning unless required-argument is used.

CHAPTER 4. THE COMPILER 67

discussion about where checking is done still applies. Weakened checking is sometimes somewhat unsafe
because although the check is weakened, the precise type is still input into type inference. In some contexts this
will result in type inferences not justified by the weakened check, and hence deletion of some type checks that
would be done by conventional compilers.

For example, if this code was compiled with weakened checks:

(defstruct foo
(a nil :type simple-string))

(defstruct bar
(a nil :type single-float))

(defun myfun (x)
(declare (type bar x))
(* (bar-a x) 3.0))

and myfun was passed a foo, then no type error would be signaled, and we would try to multiply a simple-
vector as though it were a float (with unpredictable results.) This is because the check for bar was weakened to
structure, yet when compiling the call to bar-a, the compiler thinks it knows it has a bar.

Note that normally even weakened type checks report the precise type in error messages. For example, if
myfun’s bar check is weakened to structure, and the argument is nil, then the error will be:

Type-error in MYFUN:
NIL is not of type BAR

However, there is some speed and space cost for signaling a precise error, so the weakened type is reported
if the speed optimization quality is 3 or debug quality is less than 1:

Type-error in MYFUN:
NIL is not of type STRUCTURE

See section 4.7.1, page 69 for further discussion of the optimize declaration.

4.6 Getting Existing Programs to Run

Since Python does much more comprehensive type checking than other Lisp compilers, Python will detect type
errors in many programs that have been debugged using other compilers. These errors are mostly incorrect
declarations, although compile-time type errors can find actual bugs if parts of the program have never been
tested.

Some incorrect declarations can only be detected by run-time type checking. It is very important to initially
compile programs with full type checks and then test this version. After the checking version has been tested,
then you can consider weakening or eliminating type checks. This applies even to previously debugged
programs. Python does much more type inference than other Common Lisp compilers, so believing an incorrect
declaration does much more damage.

The most common problem is with variables whose initial value doesn’t match the type declaration. Incor-
rect initial values will always be flagged by a compile-time type error, and they are simple to fix once located.
Consider this code fragment:

(prog (foo)
(declare (fixnum foo))
(setq foo ...)
...)

Here the variable foo is given an initial value of nil, but is declared to be a fixnum. Even if it is never read,
the initial value of a variable must match the declared type. There are two ways to fix this problem. Change the
declaration:

CHAPTER 4. THE COMPILER 68

(prog (foo)
(declare (type (or fixnum null) foo))
(setq foo ...)
...)

or change the initial value:

(prog ((foo 0))
(declare (fixnum foo))
(setq foo ...)
...)

It is generally preferable to change to a legal initial value rather than to weaken the declaration, but some-
times it is simpler to weaken the declaration than to try to make an initial value of the appropriate type.

Another declaration problem occasionally encountered is incorrect declarations on defmacro arguments.
This probably usually happens when a function is converted into a macro. Consider this macro:

(defmacro my-1+ (x)
(declare (fixnum x))
‘(the fixnum (1+ ,x)))

Although legal and well-defined Common Lisp, this meaning of this definition is almost certainly not what
the writer intended. For example, this call is illegal:

(my-1+ (+ 4 5))

The call is illegal because the argument to the macro is (+ 4 5), which is a list, not a fixnum. Because of
macro semantics, it is hardly ever useful to declare the types of macro arguments. If you really want to assert
something about the type of the result of evaluating a macro argument, then put a the in the expansion:

(defmacro my-1+ (x)
‘(the fixnum (1+ (the fixnum ,x))))

In this case, it would be stylistically preferable to change this macro back to a function and declare it inline.
Macros have no efficiency advantage over inline functions when using Python. See section 5.8, page 98.

Some more subtle problems are caused by incorrect declarations that can’t be detected at compile time.
Consider this code:

(do ((pos 0 (position #\a string :start (1+ pos))))
((null pos))

(declare (fixnum pos))
...)

Although pos is almost always a fixnum, it is nil at the end of the loop. If this example is compiled with full
type checks (the default), then running it will signal a type error at the end of the loop. If compiled without
type checks, the program will go into an infinite loop (or perhaps position will complain because (1+ nil) isn’t
a sensible start.) Why? Because if you compile without type checks, the compiler just quietly believes the type
declaration. Since pos is always a fixnum, it is never nil, so (null pos) is never true, and the loop exit test is
optimized away. Such errors are sometimes flagged by unreachable code notes (see section 5.4.5, page 87), but
it is still important to initially compile any system with full type checks, even if the system works fine when
compiled using other compilers.

In this case, the fix is to weaken the type declaration to (or fixnum null).3 Note that there is usually little
performance penalty for weakening a declaration in this way. Any numeric operations in the body can still
assume the variable is a fixnum, since nil is not a legal numeric argument. Another possible fix would be to say:

3Actually, this declaration is totally unnecessary in Python, since it already knows position returns a non-negative fixnum or nil.

CHAPTER 4. THE COMPILER 69

(do ((pos 0 (position #\a string :start (1+ pos))))
((null pos))

(let ((pos pos))
(declare (fixnum pos))
...))

This would be preferable in some circumstances, since it would allow a non-standard representation to be
used for the local pos variable in the loop body (see section 5.11.3.)

In summary, remember that all values that a variable ever has must be of the declared type, and that you
should test using safe code initially.

4.7 Compiler Policy

The policy is what tells the compiler how to compile a program. This is logically (and often textually) distinct
from the program itself. Broad control of policy is provided by the optimize declaration; other declarations and
variables control more specific aspects of compilation.

4.7.1 The Optimize Declaration

The optimize declaration recognizes six different qualities. The qualities are conceptually independent aspects
of program performance. In reality, increasing one quality tends to have adverse effects on other qualities. The
compiler compares the relative values of qualities when it needs to make a trade-off; i.e., if speed is greater than
safety, then improve speed at the cost of safety.

The default for all qualities (except debug) is 1. Whenever qualities are equal, ties are broken according to
a broad idea of what a good default environment is supposed to be. Generally this downplays speed, compile-
speed and space in favor of safety and debug. Novice and casual users should stick to the default policy.
Advanced users often want to improve speed and memory usage at the cost of safety and debuggability.

If the value for a quality is 0 or 3, then it may have a special interpretation. A value of 0 means “totally
unimportant”, and a 3 means “ultimately important.” These extreme optimization values enable “heroic” com-
pilation strategies that are not always desirable and sometimes self-defeating. Specifying more than one quality
as 3 is not desirable, since it doesn’t tell the compiler which quality is most important.

These are the optimization qualities:

speed How fast the program should is run. speed 3 enables some optimizations that hurt debuggability.

compilation-speed
How fast the compiler should run. Note that increasing this above safety weakens type checking.

space How much space the compiled code should take up. Inline expansion is mostly inhibited when
space is greater than speed. A value of 0 enables promiscuous inline expansion. Wide use of a 0
value is not recommended, as it may waste so much space that run time is slowed. See section 5.8,
page 98 for a discussion of inline expansion.

debug How debuggable the program should be. The quality is treated differently from the other qualities:
each value indicates a particular level of debugger information; it is not compared with the other
qualities. See section 3.6, page 50 for more details.

safety How much error checking should be done. If speed, space or compilation-speed is more important
than safety, then type checking is weakened (see section 4.5.3, page 66). If safety if 0, then no run
time error checking is done. In addition to suppressing type checks, 0 also suppresses argument
count checking, unbound-symbol checking and array bounds checks.

extensions:inhibit-warnings
This is a CMUCL extension that determines how little (or how much) diagnostic output should be
printed during compilation. This quality is compared to other qualities to determine whether to
print style notes and warnings concerning those qualities. If speed is greater than inhibit-warnings,
then notes about how to improve speed will be printed, etc. The default value is 1, so raising the

CHAPTER 4. THE COMPILER 70

value for any standard quality above its default enables notes for that quality. If inhibit-warnings is 3,
then all notes and most non-serious warnings are inhibited. This is useful with declare to suppress
warnings about unavoidable problems.

4.7.2 The Optimize-Interface Declaration

The extensions:optimize-interface declaration is identical in syntax to the optimize declaration, but it specifies
the policy used during compilation of code the compiler automatically generates to check the number and
type of arguments supplied to a function. It is useful to specify this policy separately, since even thoroughly
debugged functions are vulnerable to being passed the wrong arguments. The optimize-interface declaration
can specify that arguments should be checked even when the general optimize policy is unsafe.

Note that this argument checking is the checking of user-supplied arguments to any functions defined
within the scope of the declaration, not the checking of arguments to Common Lisp primitives that appear
in those definitions.

The idea behind this declaration is that it allows the definition of functions that appear fully safe to other
callers, but that do no internal error checking. Of course, it is possible that arguments may be invalid in ways
other than having incorrect type. Functions compiled unsafely must still protect themselves against things like
user-supplied array indices that are out of bounds and improper lists. See also the :context-declarations option
to with-compilation-unit (page 59).

4.8 Open Coding and Inline Expansion

Since Common Lisp forbids the redefinition of standard functions4, the compiler can have special knowledge of
these standard functions embedded in it. This special knowledge is used in various ways (open coding, inline
expansion, source transformation), but the implications to the user are basically the same:

• Attempts to redefine standard functions may be frustrated, since the function may never be called. Al-
though it is technically illegal to redefine standard functions, users sometimes want to implicitly redefine
these functions when they are debugging using the trace macro. Special-casing of standard functions can
be inhibited using the notinline declaration.

• The compiler can have multiple alternate implementations of standard functions that implement different
trade-offs of speed, space and safety. This selection is based on the compiler policy, see section 4.7, page 69.

When a function call is open coded, inline code whose effect is equivalent to the function call is substituted
for that function call. When a function call is closed coded, it is usually left as is, although it might be turned into
a call to a different function with different arguments. As an example, if nthcdr were to be open coded, then

(nthcdr 4 foobar)

might turn into

(cdr (cdr (cdr (cdr foobar))))

or even

(do ((i 0 (1+ i))
(list foobar (cdr foobar)))

((= i 4) list))

If nth is closed coded, then

(nth x l)

might stay the same, or turn into something like:

4See the proposed X3J13 “lisp-symbol-redefinition” cleanup.

CHAPTER 4. THE COMPILER 71

(car (nthcdr x l))

In general, open coding sacrifices space for speed, but some functions (such as car) are so simple that they
are always open-coded. Even when not open-coded, a call to a standard function may be transformed into a
different function call (as in the last example) or compiled as static call. Static function call uses a more efficient
calling convention that forbids redefinition.

Chapter 5

Advanced Compiler Use and Efficiency
Hints

by Robert MacLachlan

5.1 Advanced Compiler Introduction

In CMUCL, as with any language on any computer, the path to efficient code starts with good algorithms and
sensible programming techniques, but to avoid inefficiency pitfalls, you need to know some of this implemen-
tation’s quirks and features. This chapter is mostly a fairly long and detailed overview of what optimizations
Python does. Although there are the usual negative suggestions of inefficient features to avoid, the main em-
phasis is on describing the things that programmers can count on being efficient.

The optimizations described here can have the effect of speeding up existing programs written in conven-
tional styles, but the potential for new programming styles that are clearer and less error-prone is at least as
significant. For this reason, several sections end with a discussion of the implications of these optimizations for
programming style.

5.1.1 Types

Python’s support for types is unusual in three major ways:

• Precise type checking encourages the specific use of type declarations as a form of run-time consistency
checking. This speeds development by localizing type errors and giving more meaningful error messages.
See section 4.5.2, page 66. Python produces completely safe code; optimized type checking maintains
reasonable efficiency on conventional hardware (see section 5.3.6, page 83.)

• Comprehensive support for the Common Lisp type system makes complex type specifiers useful. Using
type specifiers such as or and member has both efficiency and robustness advantages. See section 5.2,
page 75.

• Type inference eliminates the need for some declarations, and also aids compile-time detection of type
errors. Given detailed type declarations, type inference can often eliminate type checks and enable more
efficient object representations and code sequences. Checking all types results in fewer type checks. See
sections 5.3 and 5.11.2.

5.1.2 Optimization

The main barrier to efficient Lisp programs is not that there is no efficient way to code the program in Lisp, but
that it is difficult to arrive at that efficient coding. Common Lisp is a highly complex language, and usually has
many semantically equivalent “reasonable” ways to code a given problem. It is desirable to make all of these
equivalent solutions have comparable efficiency so that programmers don’t have to waste time discovering the
most efficient solution.

72

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 73

Source level optimization increases the number of efficient ways to solve a problem. This effect is much
larger than the increase in the efficiency of the “best” solution. Source level optimization transforms the orig-
inal program into a more efficient (but equivalent) program. Although the optimizer isn’t doing anything the
programmer couldn’t have done, this high-level optimization is important because:

• The programmer can code simply and directly, rather than obfuscating code to please the compiler.

• When presented with a choice of similar coding alternatives, the programmer can chose whichever hap-
pens to be most convenient, instead of worrying about which is most efficient.

Source level optimization eliminates the need for macros to optimize their expansion, and also increases the
effectiveness of inline expansion. See sections 5.4 and 5.8.

Efficient support for a safer programming style is the biggest advantage of source level optimization. Exist-
ing tuned programs typically won’t benefit much from source optimization, since their source has already been
optimized by hand. However, even tuned programs tend to run faster under Python because:

• Low level optimization and register allocation provides modest speedups in any program.

• Block compilation and inline expansion can reduce function call overhead, but may require some program
restructuring. See sections 5.8, 5.6 and 5.7.

• Efficiency notes will point out important type declarations that are often missed even in highly tuned
programs. See section 5.13, page 112.

• Existing programs can be compiled safely without prohibitive speed penalty, although they would be
faster and safer with added declarations. See section 5.3.6, page 83.

• The context declaration mechanism allows both space and runtime of large systems to be reduced without
sacrificing robustness by semi-automatically varying compilation policy without addition any optimize
declarations to the source. See section 5.7.5, page 96.

• Byte compilation can be used to dramatically reduce the size of code that is not speed-critical. See sec-
tion 5.9, page 100

5.1.3 Function Call

The sort of symbolic programs generally written in Common Lisp often favor recursion over iteration, or have
inner loops so complex that they involve multiple function calls. Such programs spend a larger fraction of
their time doing function calls than is the norm in other languages; for this reason Common Lisp implementa-
tions strive to make the general (or full) function call as inexpensive as possible. Python goes beyond this by
providing two good alternatives to full call:

• Local call resolves function references at compile time, allowing better calling sequences and optimization
across function calls. See section 5.6, page 91.

• Inline expansion totally eliminates call overhead and allows many context dependent optimizations. This
provides a safe and efficient implementation of operations with function semantics, eliminating the need
for error-prone macro definitions or manual case analysis. Although most Common Lisp implementations
support inline expansion, it becomes a more powerful tool with Python’s source level optimization. See
sections 5.4 and 5.8.

Generally, Python provides simple implementations for simple uses of function call, rather than having only
a single calling convention. These features allow a more natural programming style:

• Proper tail recursion. See section 5.5, page 90

• Relatively efficient closures.

• A funcall that is as efficient as normal named call.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 74

• Calls to local functions such as from labels are optimized:

– Control transfer is a direct jump.

– The closure environment is passed in registers rather than heap allocated.

– Keyword arguments and multiple values are implemented more efficiently.

See section 5.6, page 91.

5.1.4 Representation of Objects

Sometimes traditional Common Lisp implementation techniques compare so poorly to the techniques used in
other languages that Common Lisp can become an impractical language choice. Terrible inefficiencies appear
in number-crunching programs, since Common Lisp numeric operations often involve number-consing and
generic arithmetic. Python supports efficient natural representations for numbers (and some other types), and
allows these efficient representations to be used in more contexts. Python also provides good efficiency notes
that warn when a crucial declaration is missing.

See section 5.11.2 for more about object representations and numeric types. Also see section 5.13, page 112
about efficiency notes.

5.1.5 Writing Efficient Code

Writing efficient code that works is a complex and prolonged process. It is important not to get so involved in
the pursuit of efficiency that you lose sight of what the original problem demands. Remember that:

• The program should be correct—it doesn’t matter how quickly you get the wrong answer.

• Both the programmer and the user will make errors, so the program must be robust—it must detect errors
in a way that allows easy correction.

• A small portion of the program will consume most of the resources, with the bulk of the code being vir-
tually irrelevant to efficiency considerations. Even experienced programmers familiar with the problem
area cannot reliably predict where these “hot spots” will be.

The best way to get efficient code that is still worth using, is to separate coding from tuning. During coding,
you should:

• Use a coding style that aids correctness and robustness without being incompatible with efficiency.

• Choose appropriate data structures that allow efficient algorithms and object representations (see sec-
tion 5.10, page 101). Try to make interfaces abstract enough so that you can change to a different repre-
sentation if profiling reveals a need.

• Whenever you make an assumption about a function argument or global data structure, add consistency
assertions, either with type declarations or explicit uses of assert, ecase, etc.

During tuning, you should:

• Identify the hot spots in the program through profiling (section 5.14.)

• Identify inefficient constructs in the hot spot with efficiency notes, more profiling, or manual inspection
of the source. See sections 5.12 and 5.13.

• Add declarations and consider the application of optimizations. See sections 5.6, 5.8 and 5.11.2.

• If all else fails, consider algorithm or data structure changes. If you did a good job coding, changes will
be easy to introduce.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 75

5.2 More About Types in Python

This section goes into more detail describing what types and declarations are recognized by Python. The area
where Python differs most radically from previous Common Lisp compilers is in its support for types:

• Precise type checking helps to find bugs at run time.

• Compile-time type checking helps to find bugs at compile time.

• Type inference minimizes the need for generic operations, and also increases the efficiency of run time
type checking and the effectiveness of compile time type checking.

• Support for detailed types provides a wealth of opportunity for operation-specific type inference and
optimization.

5.2.1 More Types Meaningful

Common Lisp has a very powerful type system, but conventional Common Lisp implementations typically
only recognize the small set of types special in that implementation. In these systems, there is an unfortunate
paradox: a declaration for a relatively general type like fixnum will be recognized by the compiler, but a highly
specific declaration such as (integer 3 17) is totally ignored.

This is obviously a problem, since the user has to know how to specify the type of an object in the way the
compiler wants it. A very minimal (but rarely satisfied) criterion for type system support is that it be no worse
to make a specific declaration than to make a general one. Python goes beyond this by exploiting a number of
advantages obtained from detailed type information.

Using more restrictive types in declarations allows the compiler to do better type inference and more
compile-time type checking. Also, when type declarations are considered to be consistency assertions that
should be verified (conditional on policy), then complex types are useful for making more detailed assertions.

Python “understands” the list-style or, member, function, array and number type specifiers. Understanding
means that:

• If the type contains more information than is used in a particular context, then the extra information is
simply ignored, rather than derailing type inference.

• In many contexts, the extra information from these type specifier is used to good effect. In particular,
type checking in Python is precise, so these complex types can be used in declarations to make interesting
assertions about functions and data structures (see section 4.5.2, page 66.) More specific declarations also
aid type inference and reduce the cost for type checking.

For related information, see section 5.11, page 103 for numeric types, and section 5.10.3 for array types.

5.2.2 Canonicalization

When given a type specifier, Python will often rewrite it into a different (but equivalent) type. This is the
mechanism that Python uses for detecting type equivalence. For example, in Python’s canonical representation,
these types are equivalent:

(or list (member :end)) ≡ (or cons (member nil :end))

This has two implications for the user:

• The standard symbol type specifiers for atom, null, fixnum, etc., are in no way magical. The null type is
actually defined to be (member nil), list is (or cons null), and fixnum is (signed-byte 30).

• When the compiler prints out a type, it may not look like the type specifier that originally appeared in the
program. This is generally not a problem, but it must be taken into consideration when reading compiler
error messages.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 76

5.2.3 Member Types

The member type specifier can be used to represent “symbolic” values, analogous to the enumerated types of
Pascal. For example, the second value of find-symbol has this type:

(member :internal :external :inherited nil)

Member types are very useful for expressing consistency constraints on data structures, for example:

(defstruct ice-cream
(flavor :vanilla :type (member :vanilla :chocolate :strawberry)))

Member types are also useful in type inference, as the number of members can sometimes be pared down to
one, in which case the value is a known constant.

5.2.4 Union Types

The or (union) type specifier is understood, and is meaningfully applied in many contexts. The use of or allows
assertions to be made about types in dynamically typed programs. For example:

(defstruct box
(next nil :type (or box null))
(top :removed :type (or box-top (member :removed))))

The type assertion on the top slot ensures that an error will be signaled when there is an attempt to store an
illegal value (such as :rmoved.) Although somewhat weak, these union type assertions provide a useful input
into type inference, allowing the cost of type checking to be reduced. For example, this loop is safely compiled
with no type checks:

(defun find-box-with-top (box)
(declare (type (or box null) box))
(do ((current box (box-next current)))

((null current))
(unless (eq (box-top current) :removed)

(return current))))

Union types are also useful in type inference for representing types that are partially constrained. For ex-
ample, the result of this expression:

(if foo
(logior x y)
(list x y))

can be expressed as (or integer cons).

5.2.5 The Empty Type

The type nil is also called the empty type, since no object is of type nil. The union of no types, (or), is also
empty. Python’s interpretation of an expression whose type is nil is that the expression never yields any value,
but rather fails to terminate, or is thrown out of. For example, the type of a call to error or a use of return
is nil. When the type of an expression is empty, compile-time type warnings about its value are suppressed;
presumably somebody else is signaling an error. If a function is declared to have return type nil, but does in fact
return, then (in safe compilation policies) a “NIL Function returned” error will be signaled. See also the function
required-argument (page 65).

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 77

5.2.6 Function Types

function types are understood in the restrictive sense, specifying:

• The argument syntax that the function must be called with. This is information about what argument
counts are acceptable, and which keyword arguments are recognized. In Python, warnings about argu-
ment syntax are a consequence of function type checking.

• The types of the argument values that the caller must pass. If the compiler can prove that some argument
to a call is of a type disallowed by the called function’s type, then it will give a compile-time type warning.
In addition to being used for compile-time type checking, these type assertions are also used as output
type assertions in code generation. For example, if foo is declared to have a fixnum argument, then the 1+
in (foo (1+ x)) is compiled with knowledge that the result must be a fixnum.

• The types the values that will be bound to argument variables in the function’s definition. Declaring a
function’s type with ftype implicitly declares the types of the arguments in the definition. Python checks
for consistency between the definition and the ftype declaration. Because of precise type checking, an
error will be signaled when a function is called with an argument of the wrong type.

• The type of return value(s) that the caller can expect. This information is a useful input to type inference.
For example, if a function is declared to return a fixnum, then when a call to that function appears in an
expression, the expression will be compiled with knowledge that the call will return a fixnum.

• The type of return value(s) that the definition must return. The result type in an ftype declaration is
treated like an implicit the wrapped around the body of the definition. If the definition returns a value of
the wrong type, an error will be signaled. If the compiler can prove that the function returns the wrong
type, then it will give a compile-time warning.

This is consistent with the new interpretation of function types and the ftype declaration in the proposed
X3J13 “function-type-argument-type-semantics” cleanup. Note also, that if you don’t explicitly declare the type
of a function using a global ftype declaration, then Python will compute a function type from the definition,
providing a degree of inter-routine type inference, see section 5.3.3, page 81.

5.2.7 The Values Declaration

CMUCL supports the values declaration as an extension to Common Lisp. The syntax of the declaration is
(values type1 type2. . .typen). This declaration is semantically equivalent to a the form wrapped around the
body of the special form in which the values declaration appears. The advantage of values over the is purely
syntactic—it doesn’t introduce more indentation. For example:

(defun foo (x)
(declare (values single-float))
(ecase x

(:this ...)
(:that ...)
(:the-other ...)))

is equivalent to:

(defun foo (x)
(the single-float

(ecase x
(:this ...)
(:that ...)
(:the-other ...))))

and

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 78

(defun floor (number &optional (divisor 1))
(declare (values integer real))
...)

is equivalent to:

(defun floor (number &optional (divisor 1))
(the (values integer real)

...))

In addition to being recognized by lambda (and hence by defun), the values declaration is recognized by all
the other special forms with bodies and declarations: let, let*, labels and flet. Macros with declarations usually
splice the declarations into one of the above forms, so they will accept this declaration too, but the exact effect
of a values declaration will depend on the macro.

If you declare the types of all arguments to a function, and also declare the return value types with values,
you have described the type of the function. Python will use this argument and result type information to
derive a function type that will then be applied to calls of the function (see section 5.2.6, page 77.) This provides
a way to declare the types of functions that is much less syntactically awkward than using the ftype declaration
with a function type specifier.

Although the values declaration is non-standard, it is relatively harmless to use it in otherwise portable
code, since any warning in non-CMU implementations can be suppressed with the standard declaration procla-
mation.

5.2.8 Structure Types

Because of precise type checking, structure types are much better supported by Python than by conventional
compilers:

• The structure argument to structure accessors is precisely checked—if you call foo-a on a bar, an error will
be signaled.

• The types of slot values are precisely checked—if you pass the wrong type argument to a constructor or a
slot setter, then an error will be signaled.

This error checking is tremendously useful for detecting bugs in programs that manipulate complex data
structures.

An additional advantage of checking structure types and enforcing slot types is that the compiler can safely
believe slot type declarations. Python effectively moves the type checking from the slot access to the slot setter
or constructor call. This is more efficient since caller of the setter or constructor often knows the type of the
value, entirely eliminating the need to check the value’s type. Consider this example:

(defstruct coordinate
(x nil :type single-float)
(y nil :type single-float))

(defun make-it ()
(make-coordinate :x 1.0 :y 1.0))

(defun use-it (it)
(declare (type coordinate it))
(sqrt (expt (coordinate-x it) 2) (expt (coordinate-y it) 2)))

make-it and use-it are compiled with no checking on the types of the float slots, yet use-it can use single-float
arithmetic with perfect safety. Note that make-coordinate must still check the values of x and y unless the call
is block compiled or inline expanded (see section 5.6, page 91.) But even without this advantage, it is almost
always more efficient to check slot values on structure initialization, since slots are usually written once and
read many times.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 79

5.2.9 The Freeze-Type Declaration

The extensions:freeze-type declaration is a CMUCL extension that enables more efficient compilation of user-
defined types by asserting that the definition is not going to change. This declaration may only be used globally
(with declaim or proclaim). Currently freeze-type only affects structure type testing done by typep, typecase,
etc. Here is an example:

(declaim (freeze-type foo bar))

This asserts that the types foo and bar and their subtypes are not going to change. This allows more efficient
type testing, since the compiler can open-code a test for all possible subtypes, rather than having to examine
the type hierarchy at run-time.

5.2.10 Type Restrictions

Avoid use of the and, not and satisfies types in declarations, since type inference has problems with them. When
these types do appear in a declaration, they are still checked precisely, but the type information is of limited use
to the compiler. and types are effective as long as the intersection can be canonicalized to a type that doesn’t
use and. For example:

(and fixnum unsigned-byte)

is fine, since it is the same as:

(integer 0 most-positive-fixnum)

but this type:

(and symbol (not (member :end)))

will not be fully understood by type interference since the and can’t be removed by canonicalization.
Using any of these type specifiers in a type test with typep or typecase is fine, since as tests, these types can

be translated into the and macro, the not function or a call to the satisfies predicate.

5.2.11 Type Style Recommendations

Python provides good support for some currently unconventional ways of using the Common Lisp type system.
With Python, it is desirable to make declarations as precise as possible, but type inference also makes some
declarations unnecessary. Here are some general guidelines for maximum robustness and efficiency:

• Declare the types of all function arguments and structure slots as precisely as possible (while avoiding
not, and and satisfies). Put these declarations in during initial coding so that type assertions can find bugs
for you during debugging.

• Use the member type specifier where there are a small number of possible symbol values, for example:
(member :red :blue :green).

• Use the or type specifier in situations where the type is not certain, but there are only a few possibilities,
for example: (or list vector).

• Declare integer types with the tightest bounds that you can, such as (integer 3 7).

• Define deftype or defstruct types before they are used. Definition after use is legal (producing no “unde-
fined type” warnings), but type tests and structure operations will be compiled much less efficiently.

• Use the extensions:freeze-type declaration to speed up type testing for structure types which won’t have
new subtypes added later. See section 5.2.9, page 79

• In addition to declaring the array element type and simpleness, also declare the dimensions if they are
fixed, for example:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 80

(simple-array single-float (1024 1024))

This bounds information allows array indexing for multi-dimensional arrays to be compiled much more
efficiently, and may also allow array bounds checking to be done at compile time. See section 5.10.3,
page 102.

• Avoid use of the the declaration within expressions. Not only does it clutter the code, but it is also almost
worthless under safe policies. If the need for an output type assertion is revealed by efficiency notes dur-
ing tuning, then you can consider the, but it is preferable to constrain the argument types more, allowing
the compiler to prove the desired result type.

• Don’t bother declaring the type of let or other non-argument variables unless the type is non-obvious. If
you declare function return types and structure slot types, then the type of a variable is often obvious both
to the programmer and to the compiler. An important case where the type isn’t obvious, and a declaration
is appropriate, is when the value for a variable is pulled out of untyped structure (e.g., the result of car),
or comes from some weakly typed function, such as read.

• Declarations are sometimes necessary for integer loop variables, since the compiler can’t always prove
that the value is of a good integer type. These declarations are best added during tuning, when an effi-
ciency note indicates the need.

5.3 Type Inference

Type inference is the process by which the compiler tries to figure out the types of expressions and variables,
given an inevitable lack of complete type information. Although Python does much more type inference than
most Common Lisp compilers, remember that the more precise and comprehensive type declarations are, the
more type inference will be able to do.

5.3.1 Variable Type Inference

The type of a variable is the union of the types of all the definitions. In the degenerate case of a let, the type
of the variable is the type of the initial value. This inferred type is intersected with any declared type, and is
then propagated to all the variable’s references. The types of multiple-value-bind variables are similarly inferred
from the types of the individual values of the values form.

If multiple type declarations apply to a single variable, then all the declarations must be correct; it is as
though all the types were intersected producing a single and type specifier. In this example:

(defmacro my-dotimes ((var count) &body body)
‘(do ((,var 0 (1+ ,var)))

((>= ,var ,count))
(declare (type (integer 0 *) ,var))
,@body))

(my-dotimes (i ...)
(declare (fixnum i))
...)

the two declarations for i are intersected, so i is known to be a non-negative fixnum.
In practice, this type inference is limited to lets and local functions, since the compiler can’t analyze all the

calls to a global function. But type inference works well enough on local variables so that it is often unnecessary
to declare the type of local variables. This is especially likely when function result types and structure slot types
are declared. The main areas where type inference breaks down are:

• When the initial value of a variable is a untyped expression, such as (car x), and

• When the type of one of the variable’s definitions is a function of the variable’s current value, as in: (setq
x (1+ x))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 81

5.3.2 Local Function Type Inference

The types of arguments to local functions are inferred in the same was as any other local variable; the type is
the union of the argument types across all the calls to the function, intersected with the declared type. If there
are any assignments to the argument variables, the type of the assigned value is unioned in as well.

The result type of a local function is computed in a special way that takes tail recursion (see section 5.5,
page 90) into consideration. The result type is the union of all possible return values that aren’t tail-recursive
calls. For example, Python will infer that the result type of this function is integer:

(defun ! (n res)
(declare (integer n res))
(if (zerop n)

res
(! (1- n) (* n res))))

Although this is a rather obvious result, it becomes somewhat less trivial in the presence of mutual tail
recursion of multiple functions. Local function result type inference interacts with the mechanisms for ensuring
proper tail recursion mentioned in section 5.6.5.

5.3.3 Global Function Type Inference

As described in section 5.2.6, a global function type (ftype) declaration places implicit type assertions on the
call arguments, and also guarantees the type of the return value. So wherever a call to a declared function
appears, there is no doubt as to the types of the arguments and return value. Furthermore, Python will infer
a function type from the function’s definition if there is no ftype declaration. Any type declarations on the
argument variables are used as the argument types in the derived function type, and the compiler’s best guess
for the result type of the function is used as the result type in the derived function type.

This method of deriving function types from the definition implicitly assumes that functions won’t be rede-
fined at run-time. Consider this example:

(defun foo-p (x)
(let ((res (and (consp x) (eq (car x) ’foo))))

(format t "It is ˜:[not ˜;˜]foo." res)))

(defun frob (it)
(if (foo-p it)

(setf (cadr it) ’yow!)
(1+ it)))

Presumably, the programmer really meant to return res from foo-p, but he seems to have forgotten. When
he tries to call do (frob (list ’foo nil)), frob will flame out when it tries to add to a cons. Realizing his error, he
fixes foo-p and recompiles it. But when he retries his test case, he is baffled because the error is still there. What
happened in this example is that Python proved that the result of foo-p is null, and then proceeded to optimize
away the setf in frob.

Fortunately, in this example, the error is detected at compile time due to notes about unreachable code (see
section 5.4.5, page 87.) Still, some users may not want to worry about this sort of problem during incremental
development, so there is a variable to control deriving function types.

extensions:*derive-function-types* [Variable]
If true (the default), argument and result type information derived from compilation of defuns is used when

compiling calls to that function. If false, only information from ftype proclamations will be used.

5.3.4 Operation Specific Type Inference

Many of the standard Common Lisp functions have special type inference procedures that determine the result
type as a function of the argument types. For example, the result type of aref is the array element type. Here
are some other examples of type inferences:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 82

(logand x #xFF) ⇒ (unsigned-byte 8)

(+ (the (integer 0 12) x) (the (integer 0 1) y)) ⇒ (integer 0 13)

(ash (the (unsigned-byte 16) x) -8) ⇒ (unsigned-byte 8)

5.3.5 Dynamic Type Inference

Python uses flow analysis to infer types in dynamically typed programs. For example:

(ecase x
(list (length x))
...)

Here, the compiler knows the argument to length is a list, because the call to length is only done when x is a
list. The most significant efficiency effect of inference from assertions is usually in type check optimization.

Dynamic type inference has two inputs: explicit conditionals and implicit or explicit type assertions. Flow
analysis propagates these constraints on variable type to any code that can be executed only after passing
though the constraint. Explicit type constraints come from ifs where the test is either a lexical variable or a
function of lexical variables and constants, where the function is either a type predicate, a numeric comparison
or eq.

If there is an eq (or eql) test, then the compiler will actually substitute one argument for the other in the true
branch. For example:

(when (eq x :yow!) (return x))

becomes:

(when (eq x :yow!) (return :yow!))

This substitution is done when one argument is a constant, or one argument has better type information than
the other. This transformation reveals opportunities for constant folding or type-specific optimizations. If the
test is against a constant, then the compiler can prove that the variable is not that constant value in the false
branch, or (not (member :yow!)) in the example above. This can eliminate redundant tests, for example:

(if (eq x nil)
...
(if x a b))

is transformed to this:

(if (eq x nil)
...
a)

Variables appearing as if tests are interpreted as (not (eq var nil)) tests. The compiler also converts = into eql
where possible. It is difficult to do inference directly on = since it does implicit coercions.

When there is an explicit < or > test on numeric variables, the compiler makes inferences about the ranges
the variables can assume in the true and false branches. This is mainly useful when it proves that the values
are small enough in magnitude to allow open-coding of arithmetic operations. For example, in many uses of
dotimes with a fixnum repeat count, the compiler proves that fixnum arithmetic can be used.

Implicit type assertions are quite common, especially if you declare function argument types. Dynamic
inference from implicit type assertions sometimes helps to disambiguate programs to a useful degree, but is
most noticeable when it detects a dynamic type error. For example:

(defun foo (x)
(+ (car x) x))

results in this warning:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 83

In: DEFUN FOO
(+ (CAR X) X)

==>
X

Warning: Result is a LIST, not a NUMBER.

Note that Common Lisp’s dynamic type checking semantics make dynamic type inference useful even in
programs that aren’t really dynamically typed, for example:

(+ (car x) (length x))

Here, x presumably always holds a list, but in the absence of a declaration the compiler cannot assume x is a
list simply because list-specific operations are sometimes done on it. The compiler must consider the program
to be dynamically typed until it proves otherwise. Dynamic type inference proves that the argument to length
is always a list because the call to length is only done after the list-specific car operation.

5.3.6 Type Check Optimization

Python backs up its support for precise type checking by minimizing the cost of run-time type checking. This
is done both through type inference and though optimizations of type checking itself.

Type inference often allows the compiler to prove that a value is of the correct type, and thus no type check
is necessary. For example:

(defstruct foo a b c)
(defstruct link

(foo (required-argument) :type foo)
(next nil :type (or link null)))

(foo-a (link-foo x))

Here, there is no need to check that the result of link-foo is a foo, since it always is. Even when some type
checks are necessary, type inference can often reduce the number:

(defun test (x)
(let ((a (foo-a x))

(b (foo-b x))
(c (foo-c x)))

...))

In this example, only one (foo-p x) check is needed. This applies to a lesser degree in list operations, such as:

(if (eql (car x) 3) (cdr x) y)

Here, we only have to check that x is a list once.
Since Python recognizes explicit type tests, code that explicitly protects itself against type errors has little

introduced overhead due to implicit type checking. For example, this loop compiles with no implicit checks
checks for car and cdr:

(defun memq (e l)
(do ((current l (cdr current)))

((atom current) nil)
(when (eq (car current) e) (return current))))

Python reduces the cost of checks that must be done through an optimization called complementing. A
complemented check for type is simply a check that the value is not of the type (not type). This is only in-
teresting when something is known about the actual type, in which case we can test for the complement of
(and known-type (not type)), or the difference between the known type and the assertion. An example:

(link-foo (link-next x))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 84

Here, we change the type check for link-foo from a test for foo to a test for:

(not (and (or foo null) (not foo)))

or more simply (not null). This is probably the most important use of complementing, since the situation is
fairly common, and a null test is much cheaper than a structure type test.

Here is a more complicated example that illustrates the combination of complementing with dynamic type
inference:

(defun find-a (a x)
(declare (type (or link null) x))
(do ((current x (link-next current)))

((null current) nil)
(let ((foo (link-foo current)))

(when (eq (foo-a foo) a) (return foo)))))

This loop can be compiled with no type checks. The link test for link-foo and link-next is complemented to
(not null), and then deleted because of the explicit null test. As before, no check is necessary for foo-a, since
the link-foo is always a foo. This sort of situation shows how precise type checking combined with precise
declarations can actually result in reduced type checking.

5.4 Source Optimization

This section describes source-level transformations that Python does on programs in an attempt to make them
more efficient. Although source-level optimizations can make existing programs more efficient, the biggest
advantage of this sort of optimization is that it makes it easier to write efficient programs. If a clean, straightfor-
ward implementation is can be transformed into an efficient one, then there is no need for tricky and dangerous
hand optimization.

5.4.1 Let Optimization

The primary optimization of let variables is to delete them when they are unnecessary. Whenever the value
of a let variable is a constant, a constant variable or a constant (local or non-notinline) function, the variable is
deleted, and references to the variable are replaced with references to the constant expression. This is useful
primarily in the expansion of macros or inline functions, where argument values are often constant in any
given call, but are in general non-constant expressions that must be bound to preserve order of evaluation.
Let variable optimization eliminates the need for macros to carefully avoid spurious bindings, and also makes
inline functions just as efficient as macros.

A particularly interesting class of constant is a local function. Substituting for lexical variables that are
bound to a function can substantially improve the efficiency of functional programming styles, for example:

(let ((a #’(lambda (x) (zow x))))
(funcall a 3))

effectively transforms to:

(zow 3)

This transformation is done even when the function is a closure, as in:

(let ((a (let ((y (zug)))
#’(lambda (x) (zow x y)))))

(funcall a 3))

becoming:

(zow 3 (zug))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 85

A constant variable is a lexical variable that is never assigned to, always keeping its initial value. When-
ever possible, avoid setting lexical variables—instead bind a new variable to the new value. Except for loop
variables, it is almost always possible to avoid setting lexical variables. This form:

(let ((x (f x)))
...)

is more efficient than this form:

(setq x (f x))
...

Setting variables makes the program more difficult to understand, both to the compiler and to the program-
mer. Python compiles assignments at least as efficiently as any other Common Lisp compiler, but most let
optimizations are only done on constant variables.

Constant variables with only a single use are also optimized away, even when the initial value is not con-
stant.1 For example, this expansion of incf:

(let ((#:g3 (+ x 1)))
(setq x #:G3))

becomes:

(setq x (+ x 1))

The type semantics of this transformation are more important than the elimination of the variable itself. Con-
sider what happens when x is declared to be a fixnum; after the transformation, the compiler can compile the
addition knowing that the result is a fixnum, whereas before the transformation the addition would have to
allow for fixnum overflow.

Another variable optimization deletes any variable that is never read. This causes the initial value and any
assigned values to be unused, allowing those expressions to be deleted if they have no side-effects.

Note that a let is actually a degenerate case of local call (see section 5.6.2, page 92), and that let optimization
can be done on calls that weren’t created by a let. Also, local call allows an applicative style of iteration that is
totally assignment free.

5.4.2 Constant Folding

Constant folding is an optimization that replaces a call of constant arguments with the constant result of that
call. Constant folding is done on all standard functions for which it is legal. Inline expansion allows folding of
any constant parts of the definition, and can be done even on functions that have side-effects.

It is convenient to rely on constant folding when programming, as in this example:

(defconstant limit 42)

(defun foo ()
(... (1- limit) ...))

Constant folding is also helpful when writing macros or inline functions, since it usually eliminates the need to
write a macro that special-cases constant arguments.

Constant folding of a user defined function is enabled by the extensions:constant-function proclamation. In
this example:

(declaim (ext:constant-function myfun))
(defun myexp (x y)

(declare (single-float x y))
(exp (* (log x) y)))

... (myexp 3.0 1.3) ...

The call to myexp is constant-folded to 4.1711674.
1The source transformation in this example doesn’t represent the preservation of evaluation order implicit in the compiler’s internal

representation. Where necessary, the back end will reintroduce temporaries to preserve the semantics.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 86

5.4.3 Unused Expression Elimination

If the value of any expression is not used, and the expression has no side-effects, then it is deleted. As with con-
stant folding, this optimization applies most often when cleaning up after inline expansion and other optimiza-
tions. Any function declared an extensions:constant-function is also subject to unused expression elimination.

Note that Python will eliminate parts of unused expressions known to be side-effect free, even if there are
other unknown parts. For example:

(let ((a (list (foo) (bar))))
(if t

(zow)
(raz a)))

becomes:

(progn (foo) (bar))
(zow)

5.4.4 Control Optimization

The most important optimization of control is recognizing when an if test is known at compile time, then delet-
ing the if, the test expression, and the unreachable branch of the if. This can be considered a special case of
constant folding, although the test doesn’t have to be truly constant as long as it is definitely not nil. Note also,
that type inference propagates the result of an if test to the true and false branches, see section 5.3.5, page 82.

A related if optimization is this transformation:2

(if (if a b c) x y)

into:

(if a
(if b x y)
(if c x y))

The opportunity for this sort of optimization usually results from a conditional macro. For example:

(if (not a) x y)

is actually implemented as this:

(if (if a nil t) x y)

which is transformed to this:

(if a
(if nil x y)
(if t x y))

which is then optimized to this:

(if a y x)

Note that due to Python’s internal representations, the if—if situation will be recognized even if other forms are
wrapped around the inner if, like:

(if (let ((g ...))
(loop

...
(return (not g))
...))

x y)

In Python, all the Common Lisp macros really are macros, written in terms of if, block and tagbody, so user-
defined control macros can be just as efficient as the standard ones. Python emits basic blocks using a heuristic
that minimizes the number of unconditional branches. The code in a tagbody will not be emitted in the order it
appeared in the source, so there is no point in arranging the code to make control drop through to the target.

2Note that the code for x and y isn’t actually replicated.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 87

5.4.5 Unreachable Code Deletion

Python will delete code whenever it can prove that the code can never be executed. Code becomes unreachable
when:

• An if is optimized away, or

• There is an explicit unconditional control transfer such as go or return-from, or

• The last reference to a local function is deleted (or there never was any reference.)

When code that appeared in the original source is deleted, the compiler prints a note to indicate a possible
problem (or at least unnecessary code.) For example:

(defun foo ()
(if t

(write-line "True.")
(write-line "False.")))

will result in this note:

In: DEFUN FOO
(WRITE-LINE "False.")

Note: Deleting unreachable code.

It is important to pay attention to unreachable code notes, since they often indicate a subtle type error. For
example:

(defstruct foo a b)

(defun lose (x)
(let ((a (foo-a x))

(b (if x (foo-b x) :none)))
...))

results in this note:

In: DEFUN LOSE
(IF X (FOO-B X) :NONE)

==>
:NONE

Note: Deleting unreachable code.

The :none is unreachable, because type inference knows that the argument to foo-a must be a foo, and thus can’t
be nil. Presumably the programmer forgot that x could be nil when he wrote the binding for a.

Here is an example with an incorrect declaration:

(defun count-a (string)
(do ((pos 0 (position #\a string :start (1+ pos)))

(count 0 (1+ count)))
((null pos) count)

(declare (fixnum pos))))

This time our note is:

In: DEFUN COUNT-A
(DO ((POS 0 #) (COUNT 0 #))

((NULL POS) COUNT)
(DECLARE (FIXNUM POS)))

--> BLOCK LET TAGBODY RETURN-FROM PROGN
==>

COUNT
Note: Deleting unreachable code.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 88

The problem here is that pos can never be null since it is declared a fixnum.
It takes some experience with unreachable code notes to be able to tell what they are trying to say. In non-

obvious cases, the best thing to do is to call the function in a way that should cause the unreachable code to be
executed. Either you will get a type error, or you will find that there truly is no way for the code to be executed.

Not all unreachable code results in a note:

• A note is only given when the unreachable code textually appears in the original source. This prevents
spurious notes due to the optimization of macros and inline functions, but sometimes also foregoes a note
that would have been useful.

• Since accurate source information is not available for non-list forms, there is an element of heuristic in
determining whether or not to give a note about an atom. Spurious notes may be given when a macro or
inline function defines a variable that is also present in the calling function. Notes about nil and t are never
given, since it is too easy to confuse these constants in expanded code with ones in the original source.

• Notes are only given about code unreachable due to control flow. There is no note when an expression is
deleted because its value is unused, since this is a common consequence of other optimizations.

Somewhat spurious unreachable code notes can also result when a macro inserts multiple copies of its
arguments in different contexts, for example:

(defmacro t-and-f (var form)
‘(if ,var ,form ,form))

(defun foo (x)
(t-and-f x (if x "True." "False.")))

results in these notes:

In: DEFUN FOO
(IF X "True." "False.")

==>
"False."

Note: Deleting unreachable code.

==>
"True."

Note: Deleting unreachable code.

It seems like it has deleted both branches of the if, but it has really deleted one branch in one copy, and the
other branch in the other copy. Note that these messages are only spurious in not satisfying the intent of the
rule that notes are only given when the deleted code appears in the original source; there is always some code
being deleted when a unreachable code note is printed.

5.4.6 Multiple Values Optimization

Within a function, Python implements uses of multiple values particularly efficiently. Multiple values can
be kept in arbitrary registers, so using multiple values doesn’t imply stack manipulation and representation
conversion. For example, this code:

(let ((a (if x (foo x) u))
(b (if x (bar x) v)))

...)

is actually more efficient written this way:

(multiple-value-bind
(a b)
(if x

(values (foo x) (bar x))
(values u v))

...)

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 89

Also, see section 5.6.5, page 94 for information on how local call provides efficient support for multiple
function return values.

5.4.7 Source to Source Transformation

The compiler implements a number of operation-specific optimizations as source-to-source transformations.
You will often see unfamiliar code in error messages, for example:

(defun my-zerop () (zerop x))

gives this warning:

In: DEFUN MY-ZEROP
(ZEROP X)

==>
(= X 0)

Warning: Undefined variable: X

The original zerop has been transformed into a call to =. This transformation is indicated with the same ==>
used to mark macro and function inline expansion. Although it can be confusing, display of the transformed
source is important, since warnings are given with respect to the transformed source. This a more obscure
example:

(defun foo (x) (logand 1 x))

gives this efficiency note:

In: DEFUN FOO
(LOGAND 1 X)

==>
(LOGAND C::Y C::X)

Note: Forced to do static-function Two-arg-and (cost 53).
Unable to do inline fixnum arithmetic (cost 1) because:
The first argument is a INTEGER, not a FIXNUM.
etc.

Here, the compiler commuted the call to logand, introducing temporaries. The note complains that the first
argument is not a fixnum, when in the original call, it was the second argument. To make things more confusing,
the compiler introduced temporaries called c::x and c::y that are bound to y and 1, respectively.

You will also notice source-to-source optimizations when efficiency notes are enabled (see section 5.13,
page 112.) When the compiler is unable to do a transformation that might be possible if there was more in-
formation, then an efficiency note is printed. For example, my-zerop above will also give this efficiency note:

In: DEFUN FOO
(ZEROP X)

==>
(= X 0)

Note: Unable to optimize because:
Operands might not be the same type, so can’t open code.

5.4.8 Style Recommendations

Source level optimization makes possible a clearer and more relaxed programming style:

• Don’t use macros purely to avoid function call. If you want an inline function, write it as a function and
declare it inline. It’s clearer, less error-prone, and works just as well.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 90

• Don’t write macros that try to “optimize” their expansion in trivial ways such as avoiding binding vari-
ables for simple expressions. The compiler does these optimizations too, and is less likely to make a
mistake.

• Make use of local functions (i.e., labels or flet) and tail-recursion in places where it is clearer. Local function
call is faster than full call.

• Avoid setting local variables when possible. Binding a new let variable is at least as efficient as setting an
existing variable, and is easier to understand, both for the compiler and the programmer.

• Instead of writing similar code over and over again so that it can be hand customized for each use, define
a macro or inline function, and let the compiler do the work.

5.5 Tail Recursion

A call is tail-recursive if nothing has to be done after the the call returns, i.e. when the call returns, the returned
value is immediately returned from the calling function. In this example, the recursive call to myfun is tail-
recursive:

(defun myfun (x)
(if (oddp (random x))

(isqrt x)
(myfun (1- x))))

Tail recursion is interesting because it is form of recursion that can be implemented much more efficiently
than general recursion. In general, a recursive call requires the compiler to allocate storage on the stack at
run-time for every call that has not yet returned. This memory consumption makes recursion unacceptably
inefficient for representing repetitive algorithms having large or unbounded size. Tail recursion is the special
case of recursion that is semantically equivalent to the iteration constructs normally used to represent repeti-
tion in programs. Because tail recursion is equivalent to iteration, tail-recursive programs can be compiled as
efficiently as iterative programs.

So why would you want to write a program recursively when you can write it using a loop? Well, the main
answer is that recursion is a more general mechanism, so it can express some solutions simply that are awkward
to write as a loop. Some programmers also feel that recursion is a stylistically preferable way to write loops
because it avoids assigning variables. For example, instead of writing:

(defun fun1 (x)
something-that-uses-x)

(defun fun2 (y)
something-that-uses-y)

(do ((x something (fun2 (fun1 x))))
(nil))

You can write:

(defun fun1 (x)
(fun2 something-that-uses-x))

(defun fun2 (y)
(fun1 something-that-uses-y))

(fun1 something)

The tail-recursive definition is actually more efficient, in addition to being (arguably) clearer. As the number
of functions and the complexity of their call graph increases, the simplicity of using recursion becomes com-
pelling. Consider the advantages of writing a large finite-state machine with separate tail-recursive functions
instead of using a single huge prog.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 91

It helps to understand how to use tail recursion if you think of a tail-recursive call as a psetq that assigns
the argument values to the called function’s variables, followed by a go to the start of the called function. This
makes clear an inherent efficiency advantage of tail-recursive call: in addition to not having to allocate a stack
frame, there is no need to prepare for the call to return (e.g., by computing a return PC.)

Is there any disadvantage to tail recursion? Other than an increase in efficiency, the only way you can
tell that a call has been compiled tail-recursively is if you use the debugger. Since a tail-recursive call has no
stack frame, there is no way the debugger can print out the stack frame representing the call. The effect is that
backtrace will not show some calls that would have been displayed in a non-tail-recursive implementation. In
practice, this is not as bad as it sounds—in fact it isn’t really clearly worse, just different. See section 3.3.5,
page 46 for information about the debugger implications of tail recursion, and how to turn it off for the sake of
more conservative backtrace information.

In order to ensure that tail-recursion is preserved in arbitrarily complex calling patterns across separately
compiled functions, the compiler must compile any call in a tail-recursive position as a tail-recursive call. This is
done regardless of whether the program actually exhibits any sort of recursive calling pattern. In this example,
the call to fun2 will always be compiled as a tail-recursive call:

(defun fun1 (x)
(fun2 x))

So tail recursion doesn’t necessarily have anything to do with recursion as it is normally thought of. See
section 5.6.4, page 93 for more discussion of using tail recursion to implement loops.

5.5.1 Tail Recursion Exceptions

Although Python is claimed to be “properly” tail-recursive, some might dispute this, since there are situations
where tail recursion is inhibited:

• When the call is enclosed by a special binding, or

• When the call is enclosed by a catch or unwind-protect, or

• When the call is enclosed by a block or tagbody and the block name or go tag has been closed over.

These dynamic extent binding forms inhibit tail recursion because they allocate stack space to represent the
binding. Shallow-binding implementations of dynamic scoping also require cleanup code to be evaluated when
the scope is exited.

In addition, optimization of tail-recursive calls is inhibited when the debug optimization quality is greater
than 2 (see section 3.6, page 50.)

5.6 Local Call

Python supports two kinds of function call: full call and local call. Full call is the standard calling convention;
its late binding and generality make Common Lisp what it is, but create unavoidable overheads. When the
compiler can compile the calling function and the called function simultaneously, it can use local call to avoid
some of the overhead of full call. Local call is really a collection of compilation strategies. If some aspect of call
overhead is not needed in a particular local call, then it can be omitted. In some cases, local call can be totally
free. Local call provides two main advantages to the user:

• Local call makes the use of the lexical function binding forms flet and labels much more efficient. A local
call is always faster than a full call, and in many cases is much faster.

• Local call is a natural approach to block compilation, a compilation technique that resolves function ref-
erences at compile time. Block compilation speeds function call, but increases compilation times and
prevents function redefinition.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 92

5.6.1 Self-Recursive Calls

Local call is used when a function defined by defun calls itself. For example:

(defun fact (n)
(if (zerop n)

1
(* n (fact (1- n)))))

This use of local call speeds recursion, but can also complicate debugging, since trace will only show the
first call to fact, and not the recursive calls. This is because the recursive calls directly jump to the start of the
function, and don’t indirect through the symbol-function. Self-recursive local call is inhibited when the :block-
compile argument to compile-file is nil (see section 5.7.3, page 95.)

5.6.2 Let Calls

Because local call avoids unnecessary call overheads, the compiler internally uses local call to implement some
macros and special forms that are not normally thought of as involving a function call. For example, this let:

(let ((a (foo))
(b (bar)))

...)

is internally represented as though it was macroexpanded into:

(funcall #’(lambda (a b)
...)

(foo)
(bar))

This implementation is acceptable because the simple cases of local call (equivalent to a let) result in good
code. This doesn’t make let any more efficient, but does make local calls that are semantically the same as let
much more efficient than full calls. For example, these definitions are all the same as far as the compiler is
concerned:

(defun foo ()
...some other stuff...
(let ((a something))

...some stuff...))

(defun foo ()
(flet ((localfun (a)

...some stuff...))
...some other stuff...
(localfun something)))

(defun foo ()
(let ((funvar #’(lambda (a)

...some stuff...)))
...some other stuff...
(funcall funvar something)))

Although local call is most efficient when the function is called only once, a call doesn’t have to be equivalent
to a let to be more efficient than full call. All local calls avoid the overhead of argument count checking and
keyword argument parsing, and there are a number of other advantages that apply in many common situations.
See section 5.4.1, page 84 for a discussion of the optimizations done on let calls.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 93

5.6.3 Closures

Local call allows for much more efficient use of closures, since the closure environment doesn’t need to be allo-
cated on the heap, or even stored in memory at all. In this example, there is no penalty for localfun referencing
a and b:

(defun foo (a b)
(flet ((localfun (x)

(1+ (* a b x))))
(if (= a b)

(localfun (- x))
(localfun x))))

In local call, the compiler effectively passes closed-over values as extra arguments, so there is no need for you
to “optimize” local function use by explicitly passing in lexically visible values. Closures may also be subject to
let optimization (see section 5.4.1, page 84.)

Note: indirect value cells are currently always allocated on the heap when a variable is both assigned to
(with setq or setf) and closed over, regardless of whether the closure is a local function or not. This is another
reason to avoid setting variables when you don’t have to.

5.6.4 Local Tail Recursion

Tail-recursive local calls are particularly efficient, since they are in effect an assignment plus a control transfer.
Scheme programmers write loops with tail-recursive local calls, instead of using the imperative go and setq.
This has not caught on in the Common Lisp community, since conventional Common Lisp compilers don’t
implement local call. In Python, users can choose to write loops such as:

(defun ! (n)
(labels ((loop (n total)

(if (zerop n)
total
(loop (1- n) (* n total)))))

(loop n 1)))

extensions:iterate name ({(var initial-value)}∗) {declaration}∗ {form}∗ [Macro]
This macro provides syntactic sugar for using labels to do iteration. It creates a local function name with

the specified vars as its arguments and the declarations and forms as its body. This function is then called with
the initial-values, and the result of the call is return from the macro.

Here is our factorial example rewritten using iterate:

(defun ! (n)
(iterate loop

((n n)
(total 1))

(if (zerop n)
total
(loop (1- n) (* n total)))))

The main advantage of using iterate over do is that iterate naturally allows stepping to be done differently
depending on conditionals in the body of the loop. iterate can also be used to implement algorithms that aren’t
really iterative by simply doing a non-tail call. For example, the standard recursive definition of factorial can
be written like this:

(iterate fact
((n n))

(if (zerop n)
1
(* n (fact (1- n)))))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 94

5.6.5 Return Values

One of the more subtle costs of full call comes from allowing arbitrary numbers of return values. This overhead
can be avoided in local calls to functions that always return the same number of values. For efficiency reasons
(as well as stylistic ones), you should write functions so that they always return the same number of values.
This may require passing extra nil arguments to values in some cases, but the result is more efficient, not less so.

When efficiency notes are enabled (see section 5.13, page 112), and the compiler wants to use known values
return, but can’t prove that the function always returns the same number of values, then it will print a note like
this:

In: DEFUN GRUE
(DEFUN GRUE (X) (DECLARE (FIXNUM X)) (COND (# #) (# NIL) (T #)))

Note: Return type not fixed values, so can’t use known return convention:
(VALUES (OR (INTEGER -536870912 -1) NULL) &REST T)

In order to implement proper tail recursion in the presence of known values return (see section 5.5, page 90),
the compiler sometimes must prove that multiple functions all return the same number of values. When this
can’t be proven, the compiler will print a note like this:

In: DEFUN BLUE
(DEFUN BLUE (X) (DECLARE (FIXNUM X)) (COND (# #) (# #) (# #) (T #)))

Note: Return value count mismatch prevents known return from
these functions:

BLUE
SNOO

See section 5.11.10, page 109 for the interaction between local call and the representation of numeric types.

5.7 Block Compilation

Block compilation allows calls to global functions defined by defun to be compiled as local calls. The function
call can be in a different top-level form than the defun, or even in a different file.

In addition, block compilation allows the declaration of the entry points to the block compiled portion. An
entry point is any function that may be called from outside of the block compilation. If a function is not an
entry point, then it can be compiled more efficiently, since all calls are known at compile time. In particular, if
a function is only called in one place, then it will be let converted. This effectively inline expands the function,
but without the code duplication that results from defining the function normally and then declaring it inline.

The main advantage of block compilation is that it it preserves efficiency in programs even when (for read-
ability and syntactic convenience) they are broken up into many small functions. There is absolutely no over-
head for calling a non-entry point function that is defined purely for modularity (i.e. called only in one place.)

Block compilation also allows the use of non-descriptor arguments and return values in non-trivial pro-
grams (see section 5.11.10, page 109).

5.7.1 Block Compilation Semantics

The effect of block compilation can be envisioned as the compiler turning all the defuns in the block compilation
into a single labels form:

(declaim (start-block fun1 fun3))

(defun fun1 ()
...)

(defun fun2 ()
...
(fun1)
...)

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 95

(defun fun3 (x)
(if x

(fun1)
(fun2)))

(declaim (end-block))

becomes:

(labels ((fun1 ()
...)

(fun2 ()
...
(fun1)
...)

(fun3 (x)
(if x

(fun1)
(fun2))))

(setf (fdefinition ’fun1) #’fun1)
(setf (fdefinition ’fun3) #’fun3))

Calls between the block compiled functions are local calls, so changing the global definition of fun1 will have
no effect on what fun2 does; fun2 will keep calling the old fun1.

The entry points fun1 and fun3 are still installed in the symbol-function as the global definitions of the func-
tions, so a full call to an entry point works just as before. However, fun2 is not an entry point, so it is not globally
defined. In addition, fun2 is only called in one place, so it will be let converted.

5.7.2 Block Compilation Declarations

The extensions:start-block and extensions:end-block declarations allow fine-grained control of block compila-
tion. These declarations are only legal as a global declarations (declaim or proclaim).
The start-block declaration has this syntax:

(start-block {entry-point-name}∗)

When processed by the compiler, this declaration marks the start of block compilation, and specifies the entry
points to that block. If no entry points are specified, then all functions are made into entry points. If already
block compiling, then the compiler ends the current block and starts a new one.
The end-block declaration has no arguments:

(end-block)

The end-block declaration ends a block compilation unit without starting a new one. This is useful mainly when
only a portion of a file is worth block compiling.

5.7.3 Compiler Arguments

The :block-compile and :entry-points arguments to extensions:compile-from-stream and compile-file (page 57)
provide overall control of block compilation, and allow block compilation without requiring modification of
the program source.

There are three possible values of the :block-compile argument:

nil Do no compile-time resolution of global function names, not even for self-recursive calls. This in-
hibits any start-block declarations appearing in the file, allowing all functions to be incrementally
redefined.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 96

t Start compiling in block compilation mode. This is mainly useful for block compiling small files that
contain no start-block declarations. See also the :entry-points argument.

:specified Start compiling in form-at-a-time mode, but exploit any start-block declarations and compile self-
recursive calls as local calls. Normally :specified is the default for this argument (see *block-compile-
default* (page 96).)

The :entry-points argument can be used in conjunction with :block-compile t to specify the entry-points to a
block-compiled file. If not specified or nil, all global functions will be compiled as entry points. When :block-
compile is not t, this argument is ignored.

block-compile-default [Variable]
This variable determines the default value for the :block-compile argument to compile-file and compile-from-

stream. The initial value of this variable is :specified, but nil is sometimes useful for totally inhibiting block
compilation.

5.7.4 Practical Difficulties

The main problem with block compilation is that the compiler uses large amounts of memory when it is block
compiling. This places an upper limit on the amount of code that can be block compiled as a unit. To make
best use of block compilation, it is necessary to locate the parts of the program containing many internal calls,
and then add the appropriate start-block declarations. When writing new code, it is a good idea to put in block
compilation declarations from the very beginning, since writing block declarations correctly requires accurate
knowledge of the program’s function call structure. If you want to initially develop code with full incremental
redefinition, you can compile with *block-compile-default* (page 96) set to nil.

Note if a defun appears in a non-null lexical environment, then calls to it cannot be block compiled.
Unless files are very small, it is probably impractical to block compile multiple files as a unit by specifying

a list of files to compile-file. Semi-inline expansion (see section 5.8.2, page 99) provides another way to extend
block compilation across file boundaries.

5.7.5 Context Declarations

CMUCL has a context-sensitive declaration mechanism which is useful because it allows flexible control of the
compilation policy in large systems without requiring changes to the source files. The primary use of this
feature is to allow the exported interfaces of a system to be compiled more safely than the system internals. The
context used is the name being defined and the kind of definition (function, macro, etc.)

The :context-declarations option to with-compilation-unit (page 59) has dynamic scope, affecting all compila-
tion done during the evaluation of the body. The argument to this option should evaluate to a list of lists of the
form:

(context-spec {declare-form}+)

In the indicated context, the specified declare forms are inserted at the head of each definition. The declare
forms for all contexts that match are appended together, with earlier declarations getting precedence over later
ones. A simple example:

:context-declarations
’((:external (declare (optimize (safety 2)))))

This will cause all functions that are named by external symbols to be compiled with safety 2.
The full syntax of context specs is:

:internal, :external
True if the symbol is internal (external) in its home package.

:uninterned
True if the symbol has no home package.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 97

(:package {package-name}∗)
True if the symbol’s home package is in any of the named packages (false if uninterned.)

:anonymous
True if the function doesn’t have any interesting name (not defmacro, defun, labels or flet).

:macro, :function
:macro is a global (defmacro) macro. :function is anything else.

:local, :global
:local is a labels or flet. :global is anything else.

(:or {context-spec}∗)
True when any supplied context-spec is true.

(:and {context-spec}∗)
True only when all supplied context-specs are true.

(:not {context-spec}∗)
True when context-spec is false.

(:member {name}∗)
True when the defined name is one of these names (equal test.)

(:match {pattern}∗)
True when any of the patterns is a substring of the name. The name is wrapped with $’s, so “$FOO”
matches names beginning with “FOO”, etc.

5.7.6 Context Declaration Example

Here is a more complex example of with-compilation-unit options:

:optimize ’(optimize (speed 2) (space 2) (inhibit-warnings 2)
(debug 1) (safety 0))

:optimize-interface ’(optimize-interface (safety 1) (debug 1))
:context-declarations
’(((:or :external (:and (:match "%") (:match "SET")))

(declare (optimize-interface (safety 2))))
((:or (:and :external :macro)

(:match "$PARSE-"))
(declare (optimize (safety 2)))))

The optimize and extensions:optimize-interface declarations (see section 4.7.1, page 69) set up the global compi-
lation policy. The bodies of functions are to be compiled completely unsafe (safety 0), but argument count and
weakened argument type checking is to be done when a function is called (speed 2 safety 1).

The first declaration specifies that all functions that are external or whose names contain both “%” and
“SET” are to be compiled compiled with completely safe interfaces (safety 2). The reason for this particular
:match rule is that setf inverse functions in this system tend to have both strings in their name somewhere. We
want setf inverses to be safe because they are implicitly called by users even though their name is not exported.

The second declaration makes external macros or functions whose names start with “PARSE-” have safe
bodies (as well as interfaces). This is desirable because a syntax error in a macro may cause a type error inside
the body. The :match rule is used because macros often have auxiliary functions whose names begin with this
string.

This particular example is used to build part of the standard CMUCL system. Note however, that context
declarations must be set up according to the needs and coding conventions of a particular system; different
parts of CMUCL are compiled with different context declarations, and your system will probably need its own
declarations. In particular, any use of the :match option depends on naming conventions used in coding.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 98

5.8 Inline Expansion

Python can expand almost any function inline, including functions with keyword arguments. The only restric-
tions are that keyword argument keywords in the call must be constant, and that global function definitions
(defun) must be done in a null lexical environment (not nested in a let or other binding form.) Local functions
(flet) can be inline expanded in any environment. Combined with Python’s source-level optimization, inline ex-
pansion can be used for things that formerly required macros for efficient implementation. In Python, macros
don’t have any efficiency advantage, so they need only be used where a macro’s syntactic flexibility is required.

Inline expansion is a compiler optimization technique that reduces the overhead of a function call by simply
not doing the call: instead, the compiler effectively rewrites the program to appear as though the definition
of the called function was inserted at each call site. In Common Lisp, this is straightforwardly expressed by
inserting the lambda corresponding to the original definition:

(proclaim ’(inline my-1+))
(defun my-1+ (x) (+ x 1))

(my-1+ someval) ⇒ ((lambda (x) (+ x 1)) someval)

When the function expanded inline is large, the program after inline expansion may be substantially larger
than the original program. If the program becomes too large, inline expansion hurts speed rather than helping
it, since hardware resources such as physical memory and cache will be exhausted. Inline expansion is called
for:

• When profiling has shown that a relatively simple function is called so often that a large amount of time
is being wasted in the calling of that function (as opposed to running in that function.) If a function is
complex, it will take a long time to run relative the time spent in call, so the speed advantage of inline
expansion is diminished at the same time the space cost of inline expansion is increased. Of course, if a
function is rarely called, then the overhead of calling it is also insignificant.

• With functions so simple that they take less space to inline expand than would be taken to call the function
(such as my-1+ above.) It would require intimate knowledge of the compiler to be certain when inline
expansion would reduce space, but it is generally safe to inline expand functions whose definition is a
single function call, or a few calls to simple Common Lisp functions.

In addition to this speed/space tradeoff from inline expansion’s avoidance of the call, inline expansion
can also reveal opportunities for optimization. Python’s extensive source-level optimization can make use of
context information from the caller to tremendously simplify the code resulting from the inline expansion of a
function.

The main form of caller context is local information about the actual argument values: what the argument
types are and whether the arguments are constant. Knowledge about argument types can eliminate run-time
type tests (e.g., for generic arithmetic.) Constant arguments in a call provide opportunities for constant folding
optimization after inline expansion.

A hidden way that constant arguments are often supplied to functions is through the defaulting of unsup-
plied optional or keyword arguments. There can be a huge efficiency advantage to inline expanding functions
that have complex keyword-based interfaces, such as this definition of the member function:

(proclaim ’(inline member))
(defun member (item list &key

(key #’identity)
(test #’eql testp)
(test-not nil notp))

(do ((list list (cdr list)))
((null list) nil)

(let ((car (car list)))
(if (cond (testp

(funcall test item (funcall key car)))
(notp
(not (funcall test-not item (funcall key car))))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 99

(t
(funcall test item (funcall key car))))

(return list)))))

After inline expansion, this call is simplified to the obvious code:

(member a l :key #’foo-a :test #’char=) ⇒

(do ((list list (cdr list)))
((null list) nil)

(let ((car (car list)))
(if (char= item (foo-a car))

(return list))))

In this example, there could easily be more than an order of magnitude improvement in speed. In addition to
eliminating the original call to member, inline expansion also allows the calls to char= and foo-a to be open-
coded. We go from a loop with three tests and two calls to a loop with one test and no calls.

See section 5.4, page 84 for more discussion of source level optimization.

5.8.1 Inline Expansion Recording

Inline expansion requires that the source for the inline expanded function to be available when calls to the
function are compiled. The compiler doesn’t remember the inline expansion for every function, since that would
take an excessive about of space. Instead, the programmer must tell the compiler to record the inline expansion
before the definition of the inline expanded function is compiled. This is done by globally declaring the function
inline before the function is defined, by using the inline and extensions:maybe-inline (see section 5.8.3, page 100)
declarations.

In addition to recording the inline expansion of inline functions at the time the function is compiled, compile-
file also puts the inline expansion in the output file. When the output file is loaded, the inline expansion is made
available for subsequent compilations; there is no need to compile the definition again to record the inline
expansion.

If a function is declared inline, but no expansion is recorded, then the compiler will give an efficiency note
like:

Note: MYFUN is declared inline, but has no expansion.

When you get this note, check that the inline declaration and the definition appear before the calls that are
to be inline expanded. This note will also be given if the inline expansion for a defun could not be recorded
because the defun was in a non-null lexical environment.

5.8.2 Semi-Inline Expansion

Python supports semi-inline functions. Semi-inline expansion shares a single copy of a function across all the
calls in a component by converting the inline expansion into a local function (see section 5.6, page 91.) This
takes up less space when there are multiple calls, but also provides less opportunity for context dependent op-
timization. When there is only one call, the result is identical to normal inline expansion. Semi-inline expansion
is done when the space optimization quality is 0, and the function has been declared extensions:maybe-inline.

This mechanism of inline expansion combined with local call also allows recursive functions to be inline
expanded. If a recursive function is declared inline, calls will actually be compiled semi-inline. Although
recursive functions are often so complex that there is little advantage to semi-inline expansion, it can still be
useful in the same sort of cases where normal inline expansion is especially advantageous, i.e. functions where
the calling context can help a lot.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 100

5.8.3 The Maybe-Inline Declaration

The extensions:maybe-inline declaration is a CMUCL extension. It is similar to inline, but indicates that inline
expansion may sometimes be desirable, rather than saying that inline expansion should almost always be done.
When used in a global declaration, extensions:maybe-inline causes the expansion for the named functions to
be recorded, but the functions aren’t actually inline expanded unless space is 0 or the function is eventually
(perhaps locally) declared inline.

Use of the extensions:maybe-inline declaration followed by the defun is preferable to the standard idiom of:

(proclaim ’(inline myfun))
(defun myfun () ...)
(proclaim ’(notinline myfun))

;;; Any calls to myfun here are not inline expanded.

(defun somefun ()
(declare (inline myfun))
;;
;; Calls to myfun here are inline expanded.
...)

The problem with using notinline in this way is that in Common Lisp it does more than just suppress inline
expansion, it also forbids the compiler to use any knowledge of myfun until a later inline declaration overrides
the notinline. This prevents compiler warnings about incorrect calls to the function, and also prevents block
compilation.

The extensions:maybe-inline declaration is used like this:

(proclaim ’(extensions:maybe-inline myfun))
(defun myfun () ...)

;;; Any calls to myfun here are not inline expanded.

(defun somefun ()
(declare (inline myfun))
;;
;; Calls to myfun here are inline expanded.
...)

(defun someotherfun ()
(declare (optimize (space 0)))
;;
;; Calls to myfun here are expanded semi-inline.
...)

In this example, the use of extensions:maybe-inline causes the expansion to be recorded when the defun for
somefun is compiled, and doesn’t waste space through doing inline expansion by default. Unlike notinline, this
declaration still allows the compiler to assume that the known definition really is the one that will be called
when giving compiler warnings, and also allows the compiler to do semi-inline expansion when the policy is
appropriate.

When the goal is merely to control whether inline expansion is done by default, it is preferable to use
extensions:maybe-inline rather than notinline. The notinline declaration should be reserved for those special
occasions when a function may be redefined at run-time, so the compiler must be told that the obvious defini-
tion of a function is not necessarily the one that will be in effect at the time of the call.

5.9 Byte Coded Compilation

Python supports byte compilation to reduce the size of Lisp programs by allowing functions to be compiled
more compactly. Byte compilation provides an extreme speed/space tradeoff: byte code is typically six times

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 101

more compact than native code, but runs fifty times (or more) slower. This is about ten times faster than the
standard interpreter, which is itself considered fast in comparison to other Common Lisp interpreters.

Large Lisp systems (such as CMUCL itself) often have large amounts of user-interface code, compile-time
(macro) code, debugging code, or rarely executed special-case code. This code is a good target for byte compi-
lation: very little time is spent running in it, but it can take up quite a bit of space. Straight-line code with many
function calls is much more suitable than inner loops.

When byte-compiling, the compiler compiles about twice as fast, and can produce a hardware independent
object file (‘.bytef’ type.) This file can be loaded like a normal fasl file on any implementation of CMUCL with
the same byte-ordering.

The decision to byte compile or native compile can be done on a per-file or per-code-object basis. The :byte-
compile argument to compile-file (page 57) has these possible values:

nil Don’t byte compile anything in this file.

t Byte compile everything in this file and produce a processor-independent ‘.bytef’ file.

:maybe Produce a normal fasl file, but byte compile any functions for which the speed optimization quality
is 0 and the debug quality is not greater than 1.

extensions:*byte-compile-top-level* [Variable]
If this variable is true (the default) and the :byte-compile argument to compile-file is :maybe, then byte

compile top-level code (code outside of any defun, defmethod, etc.)

extensions:*byte-compile-default* [Variable]
This variable determines the default value for the :byte-compile argument to compile-file, initially :maybe.

5.10 Object Representation

A somewhat subtle aspect of writing efficient Common Lisp programs is choosing the correct data structures
so that the underlying objects can be implemented efficiently. This is partly because of the need for multiple
representations for a given value (see section 5.11.2, page 104), but is also due to the sheer number of object
types that Common Lisp has built in. The number of possible representations complicates the choice of a good
representation because semantically similar objects may vary in their efficiency depending on how the program
operates on them.

5.10.1 Think Before You Use a List

Although Lisp’s creator seemed to think that it was for LISt Processing, the astute observer may have noticed
that the chapter on list manipulation makes up less that three percent of Common Lisp: The Language II. The
language has grown since Lisp 1.5—new data types supersede lists for many purposes.

5.10.2 Structure Representation

One of the best ways of building complex data structures is to define appropriate structure types using defstruct.
In Python, access of structure slots is always at least as fast as list or vector access, and is usually faster. In
comparison to a list representation of a tuple, structures also have a space advantage.

Even if structures weren’t more efficient than other representations, structure use would still be attractive
because programs that use structures in appropriate ways are much more maintainable and robust than pro-
grams written using only lists. For example:

(rplaca (caddr (cadddr x)) (caddr y))

could have been written using structures in this way:

(setf (beverage-flavor (astronaut-beverage x)) (beverage-flavor y))

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 102

The second version is more maintainable because it is easier to understand what it is doing. It is more robust
because structures accesses are type checked. An astronaut will never be confused with a beverage, and the
result of beverage-flavor is always a flavor. See sections 5.2.8 and 5.2.9 for more information about structure
types. See section 5.3, page 80 for a number of examples that make clear the advantages of structure typing.

Note that the structure definition should be compiled before any uses of its accessors or type predicate so
that these function calls can be efficiently open-coded.

5.10.3 Arrays

Arrays are often the most efficient representation for collections of objects because:

• Array representations are often the most compact. An array is always more compact than a list containing
the same number of elements.

• Arrays allow fast constant-time access.

• Arrays are easily destructively modified, which can reduce consing.

• Array element types can be specialized, which reduces both overall size and consing (see section 5.11.8,
page 108.)

Access of arrays that are not of type simple-array is less efficient, so declarations are appropriate when
an array is of a simple type like simple-string or simple-bit-vector. Arrays are almost always simple, but the
compiler may not be able to prove simpleness at every use. The only way to get a non-simple array is to use
the :displaced-to, :fill-pointer or adjustable arguments to make-array. If you don’t use these hairy options, then
arrays can always be declared to be simple.

Because of the many specialized array types and the possibility of non-simple arrays, array access is much
like generic arithmetic (see section 5.11.4, page 105). In order for array accesses to be efficiently compiled, the
element type and simpleness of the array must be known at compile time. If there is inadequate information,
the compiler is forced to call a generic array access routine. You can detect inefficient array accesses by enabling
efficiency notes, see section 5.13, page 112.

5.10.4 Vectors

Vectors (one dimensional arrays) are particularly useful, since in addition to their obvious array-like applica-
tions, they are also well suited to representing sequences. In comparison to a list representation, vectors are
faster to access and take up between two and sixty-four times less space (depending on the element type.) As
with arbitrary arrays, the compiler needs to know that vectors are not complex, so you should use simple-string
in preference to string, etc.

The only advantage that lists have over vectors for representing sequences is that it is easy to change the
length of a list, add to it and remove items from it. Likely signs of archaic, slow lisp code are nth and nthcdr. If
you are using these functions you should probably be using a vector.

5.10.5 Bit-Vectors

Another thing that lists have been used for is set manipulation. In applications where there is a known, rea-
sonably small universe of items bit-vectors can be used to improve performance. This is much less convenient
than using lists, because instead of symbols, each element in the universe must be assigned a numeric index
into the bit vector. Using a bit-vector will nearly always be faster, and can be tremendously faster if the number
of elements in the set is not small. The logical operations on simple-bit-vectors are efficient, since they operate
on a word at a time.

5.10.6 Hashtables

Hashtables are an efficient and general mechanism for maintaining associations such as the association between
an object and its name. Although hashtables are usually the best way to maintain associations, efficiency and
style considerations sometimes favor the use of an association list (a-list).

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 103

assoc is fairly fast when the test argument is eq or eql and there are only a few elements, but the time
goes up in proportion with the number of elements. In contrast, the hash-table lookup has a somewhat higher
overhead, but the speed is largely unaffected by the number of entries in the table. For an equal hash-table or
alist, hash-tables have an even greater advantage, since the test is more expensive. Whatever you do, be sure to
use the most restrictive test function possible.

The style argument observes that although hash-tables and alists overlap in function, they do not do all
things equally well.

• Alists are good for maintaining scoped environments. They were originally invented to implement scop-
ing in the Lisp interpreter, and are still used for this in Python. With an alist one can non-destructively
change an association simply by consing a new element on the front. This is something that cannot be
done with hash-tables.

• Hashtables are good for maintaining a global association. The value associated with an entry can easily
be changed with setf. With an alist, one has to go through contortions, either rplacd’ing the cons if the
entry exists, or pushing a new one if it doesn’t. The side-effecting nature of hash-table operations is an
advantage here.

Historically, symbol property lists were often used for global name associations. Property lists provide an
awkward and error-prone combination of name association and record structure. If you must use the property
list, please store all the related values in a single structure under a single property, rather than using many prop-
erties. This makes access more efficient, and also adds a modicum of typing and abstraction. See section 5.2,
page 75 for information on types in CMUCL.

5.11 Numbers

Numbers are interesting because numbers are one of the few Common Lisp data types that have direct support
in conventional hardware. If a number can be represented in the way that the hardware expects it, then there is
a big efficiency advantage.

Using hardware representations is problematical in Common Lisp due to dynamic typing (where the type
of a value may be unknown at compile time.) It is possible to compile code for statically typed portions of a
Common Lisp program with efficiency comparable to that obtained in statically typed languages such as C,
but not all Common Lisp implementations succeed. There are two main barriers to efficient numerical code in
Common Lisp:

• The compiler must prove that the numerical expression is in fact statically typed, and

• The compiler must be able to somehow reconcile the conflicting demands of the hardware mandated
number representation with the Common Lisp requirements of dynamic typing and garbage-collecting
dynamic storage allocation.

Because of its type inference (see section 5.3, page 80) and efficiency notes (see section 5.13, page 112), Python
is better than conventional Common Lisp compilers at ensuring that numerical expressions are statically typed.
Python also goes somewhat farther than existing compilers in the area of allowing native machine number
representations in the presence of garbage collection.

5.11.1 Descriptors

Common Lisp’s dynamic typing requires that it be possible to represent any value with a fixed length object,
known as a descriptor . This fixed-length requirement is implicit in features such as:

• Data types (like simple-vector) that can contain any type of object, and that can be destructively modified
to contain different objects (of possibly different types.)

• Functions that can be called with any type of argument, and that can be redefined at run time.

In order to save space, a descriptor is invariably represented as a single word. Objects that can be directly
represented in the descriptor itself are said to be immediate. Descriptors for objects larger than one word are in
reality pointers to the memory actually containing the object.

Representing objects using pointers has two major disadvantages:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 104

• The memory pointed to must be allocated on the heap, so it must eventually be freed by the garbage col-
lector. Excessive heap allocation of objects (or “consing”) is inefficient in several ways. See section 5.12.2,
page 110.

• Representing an object in memory requires the compiler to emit additional instructions to read the actual
value in from memory, and then to write the value back after operating on it.

The introduction of garbage collection makes things even worse, since the garbage collector must be able
to determine whether a descriptor is an immediate object or a pointer. This requires that a few bits in each
descriptor be dedicated to the garbage collector. The loss of a few bits doesn’t seem like much, but it has a
major efficiency implication—objects whose natural machine representation is a full word (integers and single-
floats) cannot have an immediate representation. So the compiler is forced to use an unnatural immediate
representation (such as fixnum) or a natural pointer representation (with the attendant consing overhead.)

5.11.2 Non-Descriptor Representations

From the discussion above, we can see that the standard descriptor representation has many problems, the
worst being number consing. Common Lisp compilers try to avoid these descriptor efficiency problems by
using non-descriptor representations. A compiler that uses non-descriptor representations can compile this
function so that it does no number consing:

(defun multby (vec n)
(declare (type (simple-array single-float (*)) vec)

(single-float n))
(dotimes (i (length vec))

(setf (aref vec i)
(* n (aref vec i)))))

If a descriptor representation were used, each iteration of the loop might cons two floats and do three times as
many memory references.

As its negative definition suggests, the range of possible non-descriptor representations is large. The per-
formance improvement from non-descriptor representation depends upon both the number of types that have
non-descriptor representations and the number of contexts in which the compiler is forced to use a descriptor
representation.

Many Common Lisp compilers support non-descriptor representations for float types such as single-float
and double-float (section 5.11.7.) Python adds support for full word integers (see section 5.11.6, page 106),
characters (see section 5.11.11, page 109) and system-area pointers (unconstrained pointers, see section 6.5,
page 121.) Many Common Lisp compilers support non-descriptor representations for variables (section 5.11.3)
and array elements (section 5.11.8.) Python adds support for non-descriptor arguments and return values in
local call (see section 5.11.10, page 109) and structure slots (see section 5.11.9, page 109).

5.11.3 Variables

In order to use a non-descriptor representation for a variable or expression intermediate value, the compiler
must be able to prove that the value is always of a particular type having a non-descriptor representation. Type
inference (see section 5.3, page 80) often needs some help from user-supplied declarations. The best kind of
type declaration is a variable type declaration placed at the binding point:

(let ((x (car l)))
(declare (single-float x))
...)

Use of the, or of variable declarations not at the binding form is insufficient to allow non-descriptor representa-
tion of the variable—with these declarations it is not certain that all values of the variable are of the right type.
It is sometimes useful to introduce a gratuitous binding that allows the compiler to change to a non-descriptor
representation, like:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 105

(etypecase x
((signed-byte 32)
(let ((x x))

(declare (type (signed-byte 32) x))
...))

...)

The declaration on the inner x is necessary here due to a phase ordering problem. Although the compiler will
eventually prove that the outer x is a (signed-byte 32) within that etypecase branch, the inner x would have
been optimized away by that time. Declaring the type makes let optimization more cautious.

Note that storing a value into a global (or special) variable always forces a descriptor representation. Wher-
ever possible, you should operate only on local variables, binding any referenced globals to local variables at
the beginning of the function, and doing any global assignments at the end.

Efficiency notes signal use of inefficient representations, so programmer’s needn’t continuously worry about
the details of representation selection (see section 5.13.3, page 113.)

5.11.4 Generic Arithmetic

In Common Lisp, arithmetic operations are generic.3 The + function can be passed fixnums, bignums, ratios, and
various kinds of floats and complexes, in any combination. In addition to the inherent complexity of bignum and
ratio operations, there is also a lot of overhead in just figuring out which operation to do and what contagion
and canonicalization rules apply. The complexity of generic arithmetic is so great that it is inconceivable to open
code it. Instead, the compiler does a function call to a generic arithmetic routine, consuming many instructions
before the actual computation even starts.

This is ridiculous, since even Common Lisp programs do a lot of arithmetic, and the hardware is capable of
doing operations on small integers and floats with a single instruction. To get acceptable efficiency, the compiler
special-cases uses of generic arithmetic that are directly implemented in the hardware. In order to open code
arithmetic, several constraints must be met:

• All the arguments must be known to be a good type of number.

• The result must be known to be a good type of number.

• Any intermediate values such as the result of (+ a b) in the call (+ a b c) must be known to be a good type
of number.

• All the above numbers with good types must be of the same good type. Don’t try to mix integers and
floats or different float formats.

The “good types” are (signed-byte 32), (unsigned-byte 32), single-float, double-float, (complex single-float),
and (complex double-float). See sections 5.11.5, 5.11.6 and 5.11.7 for more discussion of good numeric types.

float is not a good type, since it might mean either single-float or double-float. integer is not a good type,
since it might mean bignum. rational is not a good type, since it might mean ratio. Note however that these
types are still useful in declarations, since type inference may be able to strengthen a weak declaration into a
good one, when it would be at a loss if there was no declaration at all (see section 5.3, page 80). The integer
and unsigned-byte (or non-negative integer) types are especially useful in this regard, since they can often be
strengthened to a good integer type.

As noted above, CMUCL has support for (complex single-float) and (complex double-float). These can be
unboxed and, thus, are quite efficient. However, arithmetic with complex types such as:

(complex float)
(complex fixnum)

will be significantly slower than the good complex types but is still faster than bignum or ratio arithmetic, since
the implementation is much simpler.

Note: don’t use / to divide integers unless you want the overhead of rational arithmetic. Use truncate even
when you know that the arguments divide evenly.

You don’t need to remember all the rules for how to get open-coded arithmetic, since efficiency notes will
tell you when and where there is a problem—see section 5.13, page 112.

3As Steele notes in CLTL II, this is a generic conception of generic, and is not to be confused with the CLOS concept of a generic function.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 106

5.11.5 Fixnums

A fixnum is a “FIXed precision NUMber”. In modern Common Lisp implementations, fixnums can be rep-
resented with an immediate descriptor, so operating on fixnums requires no consing or memory references.
Clever choice of representations also allows some arithmetic operations to be done on fixnums using hardware
supported word-integer instructions, somewhat reducing the speed penalty for using an unnatural integer rep-
resentation.

It is useful to distinguish the fixnum type from the fixnum representation of integers. In Python, there is ab-
solutely nothing magical about the fixnum type in comparison to other finite integer types. fixnum is equivalent
to (is defined with deftype to be) (signed-byte 30). fixnum is simply the largest subset of integers that can be
represented using an immediate fixnum descriptor.

Unlike in other Common Lisp compilers, it is in no way desirable to use the fixnum type in declarations in
preference to more restrictive integer types such as bit, (integer -43 7) and (unsigned-byte 8). Since Python does
understand these integer types, it is preferable to use the more restrictive type, as it allows better type inference
(see section 5.3.4, page 81.)

The small, efficient fixnum is contrasted with bignum, or “BIG NUMber”. This is another descriptor repre-
sentation for integers, but this time a pointer representation that allows for arbitrarily large integers. Bignum
operations are less efficient than fixnum operations, both because of the consing and memory reference over-
heads of a pointer descriptor, and also because of the inherent complexity of extended precision arithmetic.
While fixnum operations can often be done with a single instruction, bignum operations are so complex that
they are always done using generic arithmetic.

A crucial point is that the compiler will use generic arithmetic if it can’t prove that all the arguments, in-
termediate values, and results are fixnums. With bounded integer types such as fixnum, the result type proves
to be especially problematical, since these types are not closed under common arithmetic operations such as +,
-, * and /. For example, (1+ (the fixnum x)) does not necessarily evaluate to a fixnum. Bignums were added to
Common Lisp to get around this problem, but they really just transform the correctness problem “if this add
overflows, you will get the wrong answer” to the efficiency problem “if this add might overflow then your
program will run slowly (because of generic arithmetic.)”

There is just no getting around the fact that the hardware only directly supports short integers. To get the
most efficient open coding, the compiler must be able to prove that the result is a good integer type. This is an
argument in favor of using more restrictive integer types: (1+ (the fixnum x)) may not always be a fixnum, but
(1+ (the (unsigned-byte 8) x)) always is. Of course, you can also assert the result type by putting in lots of the
declarations and then compiling with safety 0.

5.11.6 Word Integers

Python is unique in its efficient implementation of arithmetic on full-word integers through non-descriptor
representations and open coding. Arithmetic on any subtype of these types:

(signed-byte 32)
(unsigned-byte 32)

is reasonably efficient, although subtypes of fixnum remain somewhat more efficient.
If a word integer must be represented as a descriptor, then the bignum representation is used, with its associ-

ated consing overhead. The support for word integers in no way changes the language semantics, it just makes
arithmetic on small bignums vastly more efficient. It is fine to do arithmetic operations with mixed fixnum and
word integer operands; just declare the most specific integer type you can, and let the compiler decide what
representation to use.

In fact, to most users, the greatest advantage of word integer arithmetic is that it effectively provides a few
guard bits on the fixnum representation. If there are missing assertions on intermediate values in a fixnum
expression, the intermediate results can usually be proved to fit in a word. After the whole expression is
evaluated, there will often be a fixnum assertion on the final result, allowing creation of a fixnum result without
even checking for overflow.

The remarks in section 5.11.5 about fixnum result type also apply to word integers; you must be careful to
give the compiler enough information to prove that the result is still a word integer. This time, though, when
we blow out of word integers we land in into generic bignum arithmetic, which is much worse than sleazing

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 107

from fixnums to word integers. Note that mixing (unsigned-byte 32) arguments with arguments of any signed
type (such as fixnum) is a no-no, since the result might not be unsigned.

5.11.7 Floating Point Efficiency

Arithmetic on objects of type single-float and double-float is efficiently implemented using non-descriptor rep-
resentations and open coding. As for integer arithmetic, the arguments must be known to be of the same float
type. Unlike for integer arithmetic, the results and intermediate values usually take care of themselves due to
the rules of float contagion, i.e. (1+ (the single-float x)) is always a single-float.

Although they are not specially implemented, short-float and long-float are also acceptable in declarations,
since they are synonyms for the single-float and double-float types, respectively.

In CMUCL, list-style float type specifiers such as (single-float 0.0 1.0) will be used to good effect.
For example, in this function,

(defun square (x)
(declare (type (single-float 0f0 10f0)))
(* x x))

Python can deduce that the return type of the function square is (single-float 0f0 100f0).
Many union types are also supported so that

(+ (the (or (integer 1 1) (integer 5 5)) x)
(the (or (integer 10 10) (integer 20 20)) y))

has the inferred type (or (integer 11 11) (integer 15 15) (integer 21 21) (integer 25 25)). This also works for
floating-point numbers. Member types are also supported.

CMUCL can also infer types for many mathematical functions including square root, exponential and loga-
rithmic functions, trignometric functions and their inverses, and hyperbolic functions and their inverses. For
numeric code, this can greatly enhance efficiency by allowing the compiler to use specialized versions of the
functions instead of the generic versions. The greatest benefit of this type inference is determining that the
result of the function is real-valued number instead of possibly being a complex-valued number.

For example, consider the function

(defun fun (x)
(declare (type (single-float (0f0) 100f0) x))
(values (sqrt x) (log x)))

With this declaration, the compiler can determine that the argument to sqrt and log are always non-negative
so that the result is always a single-float. In fact, the return type for this function is derived to be (values
(single-float 0f0 10f0) (single-float * 2f0)).

If the declaration were reduced to just (declare (single-float x)), the argument to sqrt and log could be nega-
tive. This forces the use of the generic versions of these functions because the result could be a complex number.

We note, however, that proper interval arithmetic is not fully implemented in the compiler so the inferred
types may be slightly in error due to round-off errors. This round-off error could accumulate to cause the
compiler to erroneously deduce the result type and cause code to be removed as being unreachable.4Thus, the
declarations should only be precise enough for the compiler to deduce that a real-valued argument to a function
would produce a real-valued result. The efficiency notes (see section 5.13.3, page 113) from the compiler will
guide you on what declarations might be useful.

When a float must be represented as a descriptor, a pointer representation is used, creating consing over-
head. For this reason, you should try to avoid situations (such as full call and non-specialized data structures)
that force a descriptor representation. See sections 5.11.8, 5.11.9 and 5.11.10.

See section 2.1.2, page 6 for information on the extensions to support IEEE floating point.

4This, however, has not actually happened, but it is a possibility.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 108

5.11.7.1 Signed Zeroes and Special Functions

CMUCL supports IEEE signed zeroes. In typical usage, the signed zeroes are not a problem and can be treated
as an unsigned zero. However, some of the special functions have branch points at zero, so care must be taken.

For example, suppose we have the function

(defun fun (x)
(declare (type (single-float 0f0) x))
(log x))

The derived result of the function is (OR SINGLE-FLOAT (COMPLEX SINGLE-FLOAT)) because the declared
values for x includes both −0.0 and 0.0 and (log -0.0) is actually a complex number. Because of this, the generic
complex log routine is used.

If the declaration for x were (single-float (0f0)) so +0.0 is not included or (or (single-float (0f0)) (member
0f0)) so +0.0 is include but not −0.0, the derived type would be single-float for both cases. By declaring x this
way, the log can be implemented using a fast real-valued log routine instead of the generic log routine.

CMUCL implements the branch cuts and values given by Kahan5.

5.11.8 Specialized Arrays

Common Lisp supports specialized array element types through the :element-type argument to make-array.
When an array has a specialized element type, only elements of that type can be stored in the array. From this
restriction comes two major efficiency advantages:

• A specialized array can save space by packing multiple elements into a single word. For example, a base-
char array can have 4 elements per word, and a bit array can have 32. This space-efficient representation
is possible because it is not necessary to separately indicate the type of each element.

• The elements in a specialized array can be given the same non-descriptor representation as the one used in
registers and on the stack, eliminating the need for representation conversions when reading and writing
array elements. For objects with pointer descriptor representations (such as floats and word integers)
there is also a substantial consing reduction because it is not necessary to allocate a new object every time
an array element is modified.

These are the specialized element types currently supported:

bit
(unsigned-byte 2)
(unsigned-byte 4)
(unsigned-byte 8)
(unsigned-byte 16)
(unsigned-byte 32)
(signed-byte 8)
(signed-byte 16)
(signed-byte 30)
(signed-byte 32)
base-character
single-float
double-float
(complex single-float)
(complex double-float)

Although a simple-vector can hold any type of object, t should still be considered a specialized array type,
since arrays with element type t are specialized to hold descriptors.

When using non-descriptor representations, it is particularly important to make sure that array accesses
are open-coded, since in addition to the generic operation overhead, efficiency is lost when the array element
is converted to a descriptor so that it can be passed to (or from) the generic access routine. You can detect
inefficient array accesses by enabling efficiency notes, see section 5.13, page 112. See section 5.10.3, page 102.

5Kahan, W., “Branch Cuts for Complex Elementary Functions, or Much Ado About Nothing’s Sign Bit” in Iserles and Powell (eds.) The
State of the Art in Numerical Analysis, pp. 165-211, Clarendon Press, 1987

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 109

5.11.9 Specialized Structure Slots

Structure slots declared by the :type defstruct slot option to have certain known numeric types are also given
non-descriptor representations. These types (and subtypes of these types) are supported:

(unsigned-byte 32)
single-float
double-float
(complex single-float)
(complex double-float)

The primary advantage of specialized slot representations is a large reduction spurious memory allocation
and access overhead of programs that intensively use these types.

5.11.10 Interactions With Local Call

Local call has many advantages (see section 5.6, page 91); one relevant to our discussion here is that local call
extends the usefulness of non-descriptor representations. If the compiler knows from the argument type that
an argument has a non-descriptor representation, then the argument will be passed in that representation. The
easiest way to ensure that the argument type is known at compile time is to always declare the argument type
in the called function, like:

(defun 2+f (x)
(declare (single-float x))
(+ x 2.0))

The advantages of passing arguments and return values in a non-descriptor representation are the same as for
non-descriptor representations in general: reduced consing and memory access (see section 5.11.2, page 104.)
This extends the applicative programming styles discussed in section 5.6 to numeric code. Also, if source files
are kept reasonably small, block compilation can be used to reduce number consing to a minimum.

Note that non-descriptor return values can only be used with the known return convention (section 5.6.5.)
If the compiler can’t prove that a function always returns the same number of values, then it must use the
unknown values return convention, which requires a descriptor representation. Pay attention to the known
return efficiency notes to avoid number consing.

5.11.11 Representation of Characters

Python also uses a non-descriptor representation for characters when convenient. This improves the efficiency
of string manipulation, but is otherwise pretty invisible; characters have an immediate descriptor representa-
tion, so there is not a great penalty for converting a character to a descriptor. Nonetheless, it may sometimes be
helpful to declare character-valued variables as base-character.

5.12 General Efficiency Hints

This section is a summary of various implementation costs and ways to get around them. These hints are
relatively unrelated to the use of the Python compiler, and probably also apply to most other Common Lisp
implementations. In each section, there are references to related in-depth discussion.

5.12.1 Compile Your Code

At this point, the advantages of compiling code relative to running it interpreted probably need not be em-
phasized too much, but remember that in CMUCL, compiled code typically runs hundreds of times faster than
interpreted code. Also, compiled (fasl) files load significantly faster than source files, so it is worthwhile com-
piling files which are loaded many times, even if the speed of the functions in the file is unimportant.

Even disregarding the efficiency advantages, compiled code is as good or better than interpreted code. Com-
piled code can be debugged at the source level (see chapter 3), and compiled code does more error checking.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 110

For these reasons, the interpreter should be regarded mainly as an interactive command interpreter, rather than
as a programming language implementation.

Do not
¯

be concerned about the performance of your program until you see its speed compiled. Some tech-
niques that make compiled code run faster make interpreted code run slower.

5.12.2 Avoid Unnecessary Consing

Consing is another name for allocation of storage, as done by the cons function (hence its name.) cons is by no
means the only function which conses—so does make-array and many other functions. Arithmetic and function
call can also have hidden consing overheads. Consing hurts performance in the following ways:

• Consing reduces memory access locality, increasing paging activity.

• Consing takes time just like anything else.

• Any space allocated eventually needs to be reclaimed, either by garbage collection or by starting a new
lisp process.

Consing is not undiluted evil, since programs do things other than consing, and appropriate consing can
speed up the real work. It would certainly save time to allocate a vector of intermediate results that are reused
hundreds of times. Also, if it is necessary to copy a large data structure many times, it may be more efficient
to update the data structure non-destructively; this somewhat increases update overhead, but makes copying
trivial.

Note that the remarks in section 5.1.5 about the importance of separating tuning from coding also apply
to consing overhead. The majority of consing will be done by a small portion of the program. The consing
hot spots are even less predictable than the CPU hot spots, so don’t waste time and create bugs by doing
unnecessary consing optimization. During initial coding, avoid unnecessary side-effects and cons where it is
convenient. If profiling reveals a consing problem, then go back and fix the hot spots.

See section 5.11.2, page 104 for a discussion of how to avoid number consing in Python.

5.12.3 Complex Argument Syntax

Common Lisp has very powerful argument passing mechanisms. Unfortunately, two of the most powerful
mechanisms, rest arguments and keyword arguments, have a significant performance penalty:

• With keyword arguments, the called function has to parse the supplied keywords by iterating over them
and checking them against the desired keywords.

• With rest arguments, the function must cons a list to hold the arguments. If a function is called many
times or with many arguments, large amounts of memory will be allocated.

Although rest argument consing is worse than keyword parsing, neither problem is serious unless thou-
sands of calls are made to such a function. The use of keyword arguments is strongly encouraged in functions
with many arguments or with interfaces that are likely to be extended, and rest arguments are often natural in
user interface functions.

Optional arguments have some efficiency advantage over keyword arguments, but their syntactic clumsi-
ness and lack of extensibility has caused many Common Lisp programmers to abandon use of optionals except
in functions that have obviously simple and immutable interfaces (such as subseq), or in functions that are only
called in a few places. When defining an interface function to be used by other programmers or users, use of
only required and keyword arguments is recommended.

Parsing of defmacro keyword and rest arguments is done at compile time, so a macro can be used to provide
a convenient syntax with an efficient implementation. If the macro-expanded form contains no keyword or rest
arguments, then it is perfectly acceptable in inner loops.

Keyword argument parsing overhead can also be avoided by use of inline expansion (see section 5.8,
page 98) and block compilation (section 5.7.)

Note: the compiler open-codes most heavily used system functions which have keyword or rest arguments,
so that no run-time overhead is involved.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 111

5.12.4 Mapping and Iteration

One of the traditional Common Lisp programming styles is a highly applicative one, involving the use of
mapping functions and many lists to store intermediate results. To compute the sum of the square-roots of a
list of numbers, one might say:

(apply #’+ (mapcar #’sqrt list-of-numbers))

This programming style is clear and elegant, but unfortunately results in slow code. There are two reasons
why:

• The creation of lists of intermediate results causes much consing (see 5.12.2).

• Each level of application requires another scan down the list. Thus, disregarding other effects, the above
code would probably take twice as long as a straightforward iterative version.

An example of an iterative version of the same code:

(do ((num list-of-numbers (cdr num))
(sum 0 (+ (sqrt (car num)) sum)))

((null num) sum))

See sections 5.3.1 and 5.4.1 for a discussion of the interactions of iteration constructs with type inference and
variable optimization. Also, section 5.6.4 discusses an applicative style of iteration.

5.12.5 Trace Files and Disassembly

In order to write efficient code, you need to know the relative costs of different operations. The main reason
why writing efficient Common Lisp code is difficult is that there are so many operations, and the costs of these
operations vary in obscure context-dependent ways. Although efficiency notes point out some problem areas,
the only way to ensure generation of the best code is to look at the assembly code output.

The disassemble function is a convenient way to get the assembly code for a function, but it can be very dif-
ficult to interpret, since the correspondence with the original source code is weak. A better (but more awkward)
option is to use the :trace-file argument to compile-file to generate a trace file.

A trace file is a dump of the compiler’s internal representations, including annotated assembly code. Each
component in the program gets four pages in the trace file (separated by “̂L”):

• The implicit-continuation (or IR1) representation of the optimized source. This is a dump of the flow
graph representation used for “source level” optimizations. As you will quickly notice, it is not really
very close to the source. This representation is not very useful to even sophisticated users.

• The Virtual Machine (VM, or IR2) representation of the program. This dump represents the generated
code as sequences of “Virtual OPerations” (VOPs.) This representation is intermediate between the source
and the assembly code—each VOP corresponds fairly directly to some primitive function or construct,
but a given VOP also has a fairly predictable instruction sequence. An operation (such as +) may have
multiple implementations with different cost and applicability. The choice of a particular VOP such as
+/fixnum or +/single-float represents this choice of implementation. Once you are familiar with it, the VM
representation is probably the most useful for determining what implementation has been used.

• An assembly listing, annotated with the VOP responsible for generating the instructions. This listing is
useful for figuring out what a VOP does and how it is implemented in a particular context, but its large
size makes it more difficult to read.

• A disassembly of the generated code, which has all pseudo-operations expanded out, but is not annotated
with VOPs.

Note that trace file generation takes much space and time, since the trace file is tens of times larger than the
source file. To avoid huge confusing trace files and much wasted time, it is best to separate the critical program
portion into its own file and then generate the trace file from this small file.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 112

5.13 Efficiency Notes

Efficiency notes are messages that warn the user that the compiler has chosen a relatively inefficient implemen-
tation for some operation. Usually an efficiency note reflects the compiler’s desire for more type information. If
the type of the values concerned is known to the programmer, then additional declarations can be used to get a
more efficient implementation.

Efficiency notes are controlled by the extensions:inhibit-warnings (see section 4.7.1, page 69) optimization
quality. When speed is greater than extensions:inhibit-warnings, efficiency notes are enabled. Note that this
implicitly enables efficiency notes whenever speed is increased from its default of 1.

Consider this program with an obscure missing declaration:

(defun eff-note (x y z)
(declare (fixnum x y z))
(the fixnum (+ x y z)))

If compiled with (speed 3) (safety 0), this note is given:

In: DEFUN EFF-NOTE
(+ X Y Z)

==>
(+ (+ X Y) Z)

Note: Forced to do inline (signed-byte 32) arithmetic (cost 3).
Unable to do inline fixnum arithmetic (cost 2) because:
The first argument is a (INTEGER -1073741824 1073741822),
not a FIXNUM.

This efficiency note tells us that the result of the intermediate computation (+ x y) is not known to be a
fixnum, so the addition of the intermediate sum to z must be done less efficiently. This can be fixed by changing
the definition of eff-note:

(defun eff-note (x y z)
(declare (fixnum x y z))
(the fixnum (+ (the fixnum (+ x y)) z)))

5.13.1 Type Uncertainty

The main cause of inefficiency is the compiler’s lack of adequate information about the types of function argu-
ment and result values. Many important operations (such as arithmetic) have an inefficient general (generic)
case, but have efficient implementations that can usually be used if there is sufficient argument type informa-
tion.

Type efficiency notes are given when a value’s type is uncertain. There is an important distinction between
values that are not known to be of a good type (uncertain) and values that are known not to be of a good type.
Efficiency notes are given mainly for the first case (uncertain types.) If it is clear to the compiler that that there
is not an efficient implementation for a particular function call, then an efficiency note will only be given if the
extensions:inhibit-warnings optimization quality is 0 (see section 4.7.1, page 69.)

In other words, the default efficiency notes only suggest that you add declarations, not that you change the
semantics of your program so that an efficient implementation will apply. For example, compilation of this
form will not give an efficiency note:

(elt (the list l) i)

even though a vector access is more efficient than indexing a list.

5.13.2 Efficiency Notes and Type Checking

It is important that the eff-note example above used (safety 0). When type checking is enabled, you may get
apparently spurious efficiency notes. With (safety 1), the note has this extra line on the end:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 113

The result is a (INTEGER -1610612736 1610612733), not a FIXNUM.

This seems strange, since there is a the declaration on the result of that second addition.
In fact, the inefficiency is real, and is a consequence of Python’s treating declarations as assertions to be

verified. The compiler can’t assume that the result type declaration is true—it must generate the result and
then test whether it is of the appropriate type.

In practice, this means that when you are tuning a program to run without type checks, you should work
from the efficiency notes generated by unsafe compilation. If you want code to run efficiently with type check-
ing, then you should pay attention to all the efficiency notes that you get during safe compilation. Since user
supplied output type assertions (e.g., from the) are disregarded when selecting operation implementations for
safe code, you must somehow give the compiler information that allows it to prove that the result truly must
be of a good type. In our example, it could be done by constraining the argument types more:

(defun eff-note (x y z)
(declare (type (unsigned-byte 18) x y z))
(+ x y z))

Of course, this declaration is acceptable only if the arguments to eff-note always are (unsigned-byte 18)
integers.

5.13.3 Representation Efficiency Notes

When operating on values that have non-descriptor representations (see section 5.11.2, page 104), there can be
a substantial time and consing penalty for converting to and from descriptor representations. For this reason,
the compiler gives an efficiency note whenever it is forced to do a representation coercion more expensive than
efficiency-note-cost-threshold (page 114).

Inefficient representation coercions may be due to type uncertainty, as in this example:

(defun set-flo (x)
(declare (single-float x))
(prog ((var 0.0))

(setq var (gorp))
(setq var x)
(return var)))

which produces this efficiency note:

In: DEFUN SET-FLO
(SETQ VAR X)

Note: Doing float to pointer coercion (cost 13) from X to VAR.

The variable var is not known to always hold values of type single-float, so a descriptor representation must
be used for its value. In this sort of situation, adding a declaration will eliminate the inefficiency.

Often inefficient representation conversions are not due to type uncertainty—instead, they result from eval-
uating a non-descriptor expression in a context that requires a descriptor result:

• Assignment to or initialization of any data structure other than a specialized array (see section 5.11.8,
page 108), or

• Assignment to a special variable, or

• Passing as an argument or returning as a value in any function call that is not a local call (see sec-
tion 5.11.10, page 109.)

If such inefficient coercions appear in a “hot spot” in the program, data structures redesign or program
reorganization may be necessary to improve efficiency. See sections 5.7, 5.11 and 5.14.

Because representation selection is done rather late in compilation, the source context in these efficiency
notes is somewhat vague, making interpretation more difficult. This is a fairly straightforward example:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 114

(defun cf+ (x y)
(declare (single-float x y))
(cons (+ x y) t))

which gives this efficiency note:

In: DEFUN CF+
(CONS (+ X Y) T)

Note: Doing float to pointer coercion (cost 13), for:
The first argument of CONS.

The source context form is almost always the form that receives the value being coerced (as it is in the pre-
ceding example), but can also be the source form which generates the coerced value. Compiling this example:

(defun if-cf+ (x y)
(declare (single-float x y))
(cons (if (grue) (+ x y) (snoc)) t))

produces this note:

In: DEFUN IF-CF+
(+ X Y)

Note: Doing float to pointer coercion (cost 13).

In either case, the note’s text explanation attempts to include additional information about what locations
are the source and destination of the coercion. Here are some example notes:

(IF (GRUE) X (SNOC))
Note: Doing float to pointer coercion (cost 13) from X.

(SETQ VAR X)
Note: Doing float to pointer coercion (cost 13) from X to VAR.

Note that the return value of a function is also a place to which coercions may have to be done:

(DEFUN F+ (X Y) (DECLARE (SINGLE-FLOAT X Y)) (+ X Y))
Note: Doing float to pointer coercion (cost 13) to "<return value>".

Sometimes the compiler is unable to determine a name for the source or destination, in which case the source
context is the only clue.

5.13.4 Verbosity Control

These variables control the verbosity of efficiency notes:

efficiency-note-cost-threshold [Variable]
Before printing some efficiency notes, the compiler compares the value of this variable to the difference in

cost between the chosen implementation and the best potential implementation. If the difference is not greater
than this limit, then no note is printed. The units are implementation dependent; the initial value suppresses
notes about “trivial” inefficiencies. A value of 1 will note any inefficiency.

efficiency-note-limit [Variable]
When printing some efficiency notes, the compiler reports possible efficient implementations. The initial

value of 2 prevents excessively long efficiency notes in the common case where there is no type information, so
all implementations are possible.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 115

5.14 Profiling

The first step in improving a program’s performance is to profile the activity of the program to find where it
spends its time. The best way to do this is to use the profiling utility found in the profile package. This package
provides a macro profile that encapsulates functions with statistics gathering code.

5.14.1 Profile Interface

profile:*timed-functions* [Variable]
This variable holds a list of all functions that are currently being profiled.

profile:profile {name |:callers t}∗ [Macro]
This macro wraps profiling code around the named functions. As in trace, the names are not evaluated. If

a function is already profiled, then the function is unprofiled and reprofiled (useful to notice function redefini-
tion.) A warning is printed for each name that is not a defined function.

If :callers t is specified, then each function that calls this function is recorded along with the number of calls
made.

profile:unprofile {name}∗ [Macro]
This macro removes profiling code from the named functions. If no names are supplied, all currently pro-

filed functions are unprofiled.

profile:profile-all &key :package :callers-p [Macro]
This macro in effect calls profile:profile for each function in the specified package which defaults to *pack-

age*. :callers-p has the same meaning as in profile:profile.

profile:report-time {name}∗ [Macro]
This macro prints a report for each named function of the following information:

• The total CPU time used in that function for all calls,

• the total number of bytes consed in that function for all calls,

• the total number of calls,

• the average amount of CPU time per call.

Summary totals of the CPU time, consing and calls columns are printed. An estimate of the profiling overhead
is also printed (see below). If no names are supplied, then the times for all currently profiled functions are
printed.

reset-time {name}∗ [Macro]
This macro resets the profiling counters associated with the named functions. If no names are supplied,

then all currently profiled functions are reset.

5.14.2 Profiling Techniques

Start by profiling big pieces of a program, then carefully choose which functions close to, but not in, the inner
loop are to be profiled next. Avoid profiling functions that are called by other profiled functions, since this
opens the possibility of profiling overhead being included in the reported times.

If the per-call time reported is less than 1/10 second, then consider the clock resolution and profiling over-
head before you believe the time. It may be that you will need to run your program many times in order to
average out to a higher resolution.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 116

5.14.3 Nested or Recursive Calls

The profiler attempts to compensate for nested or recursive calls. Time and consing overhead will be charged
to the dynamically innermost (most recent) call to a profiled function. So profiling a subfunction of a profiled
function will cause the reported time for the outer function to decrease. However if an inner function has a
large number of calls, some of the profiling overhead may “leak” into the reported time for the outer function.
In general, be wary of profiling short functions that are called many times.

5.14.4 Clock resolution

Unless you are very lucky, the length of your machine’s clock “tick” is probably much longer than the time it
takes simple function to run. For example, on the IBM RT, the clock resolution is 1/50 second. This means that
if a function is only called a few times, then only the first couple decimal places are really meaningful.

Note however, that if a function is called many times, then the statistical averaging across all calls should
result in increased resolution. For example, on the IBM RT, if a function is called a thousand times, then a
resolution of tens of microseconds can be expected.

5.14.5 Profiling overhead

The added profiling code takes time to run every time that the profiled function is called, which can disrupt
the attempt to collect timing information. In order to avoid serious inflation of the times for functions that take
little time to run, an estimate of the overhead due to profiling is subtracted from the times reported for each
function.

Although this correction works fairly well, it is not totally accurate, resulting in times that become increas-
ingly meaningless for functions with short runtimes. This is only a concern when the estimated profiling over-
head is many times larger than reported total CPU time.

The estimated profiling overhead is not represented in the reported total CPU time. The sum of total CPU
time and the estimated profiling overhead should be close to the total CPU time for the entire profiling run (as
determined by the time macro.) Time unaccounted for is probably being used by functions that you forgot to
profile.

5.14.6 Additional Timing Utilities

time form [Macro]
This macro evaluates form, prints some timing and memory allocation information to *trace-output*, and

returns any values that form returns. The timing information includes real time, user run time, and system run
time. This macro executes a form and reports the time and consing overhead. If the time form is not compiled
(e.g. it was typed at top-level), then compile will be called on the form to give more accurate timing information.
If you really want to time interpreted speed, you can say:

(time (eval ’form))

Things that execute fairly quickly should be timed more than once, since there may be more paging overhead
in the first timing. To increase the accuracy of very short times, you can time multiple evaluations:

(time (dotimes (i 100) form))

extensions:get-bytes-consed [Function]
This function returns the number of bytes allocated since the first time you called it. The first time it is called

it returns zero. The above profiling routines use this to report consing information.

extensions:*gc-run-time* [Variable]
This variable accumulates the run-time consumed by garbage collection, in the units returned by get-

internal-run-time.

internal-time-units-per-second [Constant]
The value of internal-time-units-per-second is 100.

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 117

5.14.7 A Note on Timing

There are two general kinds of timing information provided by the time macro and other profiling utilities:
real time and run time. Real time is elapsed, wall clock time. It will be affected in a fairly obvious way by
any other activity on the machine. The more other processes contending for CPU and memory, the more real
time will increase. This means that real time measurements are difficult to replicate, though this is less true on a
dedicated workstation. The advantage of real time is that it is real. It tells you really how long the program took
to run under the benchmarking conditions. The problem is that you don’t know exactly what those conditions
were.

Run time is the amount of time that the processor supposedly spent running the program, as opposed to
waiting for I/O or running other processes. “User run time” and “system run time” are numbers reported by
the Unix kernel. They are supposed to be a measure of how much time the processor spent running your “user”
program (which will include GC overhead, etc.), and the amount of time that the kernel spent running “on your
behalf.”

Ideally, user time should be totally unaffected by benchmarking conditions; in reality user time does depend
on other system activity, though in rather non-obvious ways.

System time will clearly depend on benchmarking conditions. In Lisp benchmarking, paging activity in-
creases system run time (but not by as much as it increases real time, since the kernel spends some time waiting
for the disk, and this is not run time, kernel or otherwise.)

In my experience, the biggest trap in interpreting kernel/user run time is to look only at user time. In
reality, it seems that the sum of kernel and user time is more reproducible. The problem is that as system
activity increases, there is a spurious decrease in user run time. In effect, as paging, etc., increases, user time
leaks into system time.

So, in practice, the only way to get truly reproducible results is to run with the same competing activity on
the system. Try to run on a machine with nobody else logged in, and check with “ps aux” to see if there are any
system processes munching large amounts of CPU or memory. If the ratio between real time and the sum of
user and system time varies much between runs, then you have a problem.

5.14.8 Benchmarking Techniques

Given these imperfect timing tools, how do should you do benchmarking? The answer depends on whether
you are trying to measure improvements in the performance of a single program on the same hardware, or if
you are trying to compare the performance of different programs and/or different hardware.

For the first use (measuring the effect of program modifications with constant hardware), you should look
at both system+user and real time to understand what effect the change had on CPU use, and on I/O (includ-
ing paging.) If you are working on a CPU intensive program, the change in system+user time will give you a
moderately reproducible measure of performance across a fairly wide range of system conditions. For a CPU
intensive program, you can think of system+user as “how long it would have taken to run if I had my own ma-
chine.” So in the case of comparing CPU intensive programs, system+user time is relatively real, and reasonable
to use.

For programs that spend a substantial amount of their time paging, you really can’t predict elapsed time
under a given operating condition without benchmarking in that condition. User or system+user time may
be fairly reproducible, but it is also relatively meaningless, since in a paging or I/O intensive program, the
program is spending its time waiting, not running, and system time and user time are both measures of run
time. A change that reduces run time might increase real time by increasing paging.

Another common use for benchmarking is comparing the performance of the same program on different
hardware. You want to know which machine to run your program on. For comparing different machines
(operating systems, etc.), the only way to compare that makes sense is to set up the machines in exactly the way
that they will normally be run, and then measure real time. If the program will normally be run along with X,
then run X. If the program will normally be run on a dedicated workstation, then be sure nobody else is on the
benchmarking machine. If the program will normally be run on a machine with three other Lisp jobs, then run
three other Lisp jobs. If the program will normally be run on a machine with 64MB of memory, then run with
64MB. Here, “normal” means “normal for that machine”.

If you have a program you believe to be CPU intensive, then you might be tempted to compare “run” times
across systems, hoping to get a meaningful result even if the benchmarking isn’t done under the expected
running condition. Don’t to this, for two reasons:

CHAPTER 5. ADVANCED COMPILER USE AND EFFICIENCY HINTS 118

• The operating systems might not compute run time in the same way.

• Under the real running condition, the program might not be CPU intensive after all.

In the end, only real time means anything—it is the amount of time you have to wait for the result. The only
valid uses for run time are:

• To develop insight into the program. For example, if run time is much less than elapsed time, then you
are probably spending lots of time paging.

• To evaluate the relative performance of CPU intensive programs in the same environment.

Chapter 6

UNIX Interface

by Robert MacLachlan, Skef Wholey, Bill Chiles and William Lott

CMUCL attempts to make the full power of the underlying environment available to the Lisp programmer.
This is done using combination of hand-coded interfaces and foreign function calls to C libraries. Although the
techniques differ, the style of interface is similar. This chapter provides an overview of the facilities available
and general rules for using them, as well as describing specific features in detail. It is assumed that the reader
has a working familiarity with Unix and X11, as well as access to the standard system documentation.

6.1 Reading the Command Line

The shell parses the command line with which Lisp is invoked, and passes a data structure containing the
parsed information to Lisp. This information is then extracted from that data structure and put into a set of
Lisp data structures.

extensions:*command-line-strings* [Variable]
extensions:*command-line-utility-name* [Variable]
extensions:*command-line-words* [Variable]
extensions:*command-line-switches* [Variable]

The value of *command-line-words* is a list of strings that make up the command line, one word per string.
The first word on the command line, i.e. the name of the program invoked (usually lisp) is stored in *command-
line-utility-name*. The value of *command-line-switches* is a list of command-line-switch structures, with a
structure for each word on the command line starting with a hyphen. All the command line words between the
program name and the first switch are stored in *command-line-words*.

The following functions may be used to examine command-line-switch structures.

extensions:cmd-switch-name switch [Function]
Returns the name of the switch, less the preceding hyphen and trailing equal sign (if any).

extensions:cmd-switch-value switch [Function]
Returns the value designated using an embedded equal sign, if any. If the switch has no equal sign, then

this is null.

extensions:cmd-switch-words switch [Function]
Returns a list of the words between this switch and the next switch or the end of the command line.

extensions:cmd-switch-arg switch [Function]

119

CHAPTER 6. UNIX INTERFACE 120

Returns the first non-null value from cmd-switch-value, the first element in cmd-switch-words, or the first
word in command-line-words.

extensions:get-command-line-switch sname [Function]
This function takes the name of a switch as a string and returns the value of the switch given on the com-

mand line. If no value was specified, then any following words are returned. If there are no following words,
then t is returned. If the switch was not specified, then nil is returned.

extensions:defswitch name &optional function [Macro]
This macro causes function to be called when the switch name appears in the command line. Name is a

simple-string that does not begin with a hyphen (unless the switch name really does begin with one.)
If function is not supplied, then the switch is parsed into command-line-switches, but otherwise ignored.

This suppresses the undefined switch warning which would otherwise take place. The warning can also be
globally suppressed by complain-about-illegal-switches.

6.2 Useful Variables

system:*stdin* [Variable]
system:*stdout* [Variable]
system:*stderr* [Variable]

Streams connected to the standard input, output and error file descriptors.

system:*tty* [Variable]
A stream connected to ‘/dev/tty’.

extensions:*environment-list* [Variable]
The environment variables inherited by the current process, as a keyword-indexed alist. For example, to

access the DISPLAY environment variable, you could use

(cdr (assoc :display ext:*environment-list*))

Note that the case of the variable name is preserved when converting to a keyword. Therefore, you need to
specify the keyword properly for variable names containing lower-case letters,

6.3 Lisp Equivalents for C Routines

The UNIX documentation describes the system interface in terms of C procedure headers. The corresponding
Lisp function will have a somewhat different interface, since Lisp argument passing conventions and datatypes
are different.

The main difference in the argument passing conventions is that Lisp does not support passing values by
reference. In Lisp, all argument and results are passed by value. Interface functions take some fixed number
of arguments and return some fixed number of values. A given “parameter” in the C specification will appear
as an argument, return value, or both, depending on whether it is an In parameter, Out parameter, or In/Out
parameter. The basic transformation one makes to come up with the Lisp equivalent of a C routine is to remove
the Out parameters from the call, and treat them as extra return values. In/Out parameters appear both as
arguments and return values. Since Out and In/Out parameters are only conventions in C, you must determine
the usage from the documentation.

Thus, the C routine declared as

CHAPTER 6. UNIX INTERFACE 121

kern_return_t lookup(servport, portsname, portsid)
port servport;
char *portsname;
int *portsid; /* out */

...

*portsid = <expression to compute portsid field>
return(KERN_SUCCESS);

has as its Lisp equivalent something like

(defun lookup (ServPort PortsName)
...
(values
success
<expression to compute portsid field>))

If there are multiple out or in-out arguments, then there are multiple additional returns values.
Fortunately, CMUCL programmers rarely have to worry about the nuances of this translation process, since

the names of the arguments and return values are documented in a way so that the describe function (and
the Hemlock Describe Function Call command, invoked with C-M-Shift-A

¯
) will list this information. Since the

names of arguments and return values are usually descriptive, the information that describe prints is usually all
one needs to write a call. Most programmers use this on-line documentation nearly all of the time, and thereby
avoid the need to handle bulky manuals and perform the translation from barbarous tongues.

6.4 Type Translations

Lisp data types have very different representations from those used by conventional languages such as C. Since
the system interfaces are designed for conventional languages, Lisp must translate objects to and from the
Lisp representations. Many simple objects have a direct translation: integers, characters, strings and floating
point numbers are translated to the corresponding Lisp object. A number of types, however, are implemented
differently in Lisp for reasons of clarity and efficiency.

Instances of enumerated types are expressed as keywords in Lisp. Records, arrays, and pointer types are
implemented with the Alien facility (see section 8, page 134). Access functions are defined for these types which
convert fields of records, elements of arrays, or data referenced by pointers into Lisp objects (possibly another
object to be referenced with another access function).

One should dispose of Alien objects created by constructor functions or returned from remote procedure
calls when they are no longer of any use, freeing the virtual memory associated with that object. Since Aliens
contain pointers to non-Lisp data, the garbage collector cannot do this itself. If the memory was obtained from
make-alien (page 138) or from a foreign function call to a routine that used malloc, then free-alien (page 138)
should be used.

6.5 System Area Pointers

Note that in some cases an address is represented by a Lisp integer, and in other cases it is represented by a
real pointer. Pointers are usually used when an object in the current address space is being referred to. The
MACH virtual memory manipulation calls must use integers, since in principle the address could be in any
process, and Lisp cannot abide random pointers. Because these types are represented differently in Lisp, one
must explicitly coerce between these representations.

System Area Pointers (SAPs) provide a mechanism that bypasses the Alien type system and accesses virtual
memory directly. A SAP is a raw byte pointer into the lisp process address space. SAPs are represented with a
pointer descriptor, so SAP creation can cause consing. However, the compiler uses a non-descriptor represen-
tation for SAPs when possible, so the consing overhead is generally minimal. See section 5.11.2, page 104.

CHAPTER 6. UNIX INTERFACE 122

system:sap-int sap [Function]
system:int-sap int [Function]

The function sap-int is used to generate an integer corresponding to the system area pointer, suitable for
passing to the kernel interfaces (which want all addresses specified as integers). The function int-sap is used to
do the opposite conversion. The integer representation of a SAP is the byte offset of the SAP from the start of
the address space.

system:sap+ sap offset [Function]
This function adds a byte offset to sap, returning a new SAP.

system:sap-ref-8 sap offset [Function]
system:sap-ref-16 sap offset [Function]
system:sap-ref-32 sap offset [Function]

These functions return the 8, 16 or 32 bit unsigned integer at offset from sap. The offset is always a byte
offset, regardless of the number of bits accessed. setf may be used with the these functions to deposit values
into virtual memory.

system:signed-sap-ref-8 sap offset [Function]
system:signed-sap-ref-16 sap offset [Function]
system:signed-sap-ref-32 sap offset [Function]

These functions are the same as the above unsigned operations, except that they sign-extend, returning a
negative number if the high bit is set.

6.6 Unix System Calls

You probably won’t have much cause to use them, but all the Unix system calls are available. The Unix system
call functions are in the Unix package. The name of the interface for a particular system call is the name of
the system call prepended with unix-. The system usually defines the associated constants without any prefix
name. To find out how to use a particular system call, try using describe on it. If that is unhelpful, look at the
source in ‘unix.lisp’ or consult your system maintainer.

The Unix system calls indicate an error by returning nil as the first value and the Unix error number as the
second value. If the call succeeds, then the first value will always be non-nil, often t.

For example, to use the chdir syscall:

(multiple-value-bind (success errno)
(unix:unix-chdir "/tmp")

(unless success
(error "Can’t change working directory: ˜a"

(unix:get-unix-error-msg errno))))

Unix:get-unix-error-msg error [Function]
This function returns a string describing the Unix error number error (this is similar to the Unix function

perror).

CHAPTER 6. UNIX INTERFACE 123

6.7 File Descriptor Streams

Many of the UNIX system calls return file descriptors. Instead of using other UNIX system calls to perform
I/O on them, you can create a stream around them. For this purpose, fd-streams exist. See also read-n-bytes
(page 22).

system:make-fd-stream descriptor &key :input :output :element-type
:buffering :name :file :original
:delete-original :auto-close
:timeout :pathname

[Function]

This function creates a file descriptor stream using descriptor . If :input is non-nil, input operations are al-
lowed. If :output is non-nil, output operations are allowed. The default is input only. These keywords are
defined:

:element-type
is the type of the unit of transaction for the stream, which defaults to string-char. See the Common
Lisp description of open for valid values.

:buffering is the kind of output buffering desired for the stream. Legal values are :none for no buffering, :line
for buffering up to each newline, and :full for full buffering.

:name is a simple-string name to use for descriptive purposes when the system prints an fd-stream. When
printing fd-streams, the system prepends the streams name with Stream for . If name is unspecified,
it defaults to a string containing file or descriptor , in order of preference.

:file, :original
file specifies the defaulted namestring of the associated file when creating a file stream (must be a
simple-string). original is the simple-string name of a backup file containing the original contents of
file while writing file.

When you abort the stream by passing t to close as the second argument, if you supplied both
file and original , close will rename the original name to the file name. When you close the stream
normally, if you supplied original , and delete-original is non-nil, close deletes original . If auto-close
is true (the default), then descriptor will be closed when the stream is garbage collected.

:pathname
: The original pathname passed to open and returned by pathname; not defaulted or translated.

:timeout if non-null, then timeout is an integer number of seconds after which an input wait should time out.
If a read does time out, then the system:io-timeout condition is signalled.

system:fd-stream-p object [Function]
This function returns t if object is an fd-stream, and nil if not. Obsolete: use the portable (typep x ’file-

stream).

system:fd-stream-fd stream [Function]
This returns the file descriptor associated with stream.

6.8 Unix Signals

CMUCL allows access to all the Unix signals that can be generated under Unix. It should be noted that if this
capability is abused, it is possible to completely destroy the running Lisp. The following macros and functions
allow access to the Unix interrupt system. The signal names as specified in section 2 of the Unix Programmer’s
Manual are exported from the Unix package.

CHAPTER 6. UNIX INTERFACE 124

6.8.1 Changing Signal Handlers

system:with-enabled-interrupts specs &rest body [Macro]
This macro should be called with a list of signal specifications, specs. Each element of specs should be a

list of two elements: the first should be the Unix signal for which a handler should be established, the second
should be a function to be called when the signal is received One or more signal handlers can be established in
this way. with-enabled-interrupts establishes the correct signal handlers and then executes the forms in body .
The forms are executed in an unwind-protect so that the state of the signal handlers will be restored to what it
was before the with-enabled-interrupts was entered. A signal handler function specified as NIL will set the Unix
signal handler to the default which is normally either to ignore the signal or to cause a core dump depending
on the particular signal.

system:without-interrupts &rest body [Macro]
It is sometimes necessary to execute a piece a code that can not be interrupted. This macro the forms in body

with interrupts disabled. Note that the Unix interrupts are not actually disabled, rather they are queued until
after body has finished executing.

system:with-interrupts &rest body [Macro]
When executing an interrupt handler, the system disables interrupts, as if the handler was wrapped in in

a without-interrupts. The macro with-interrupts can be used to enable interrupts while the forms in body are
evaluated. This is useful if body is going to enter a break loop or do some long computation that might need to
be interrupted.

system:without-hemlock &rest body [Macro]
For some interrupts, such as SIGTSTP (suspend the Lisp process and return to the Unix shell) it is necessary

to leave Hemlock and then return to it. This macro executes the forms in body after exiting Hemlock. When
body has been executed, control is returned to Hemlock.

system:enable-interrupt signal function [Function]
This function establishes function as the handler for signal . Unless you want to establish a global signal

handler, you should use the macro with-enabled-interrupts to temporarily establish a signal handler. enable-
interrupt returns the old function associated with the signal.

system:ignore-interrupt signal [Function]
Ignore-interrupt sets the Unix signal mechanism to ignore signal which means that the Lisp process will

never see the signal. Ignore-interrupt returns the old function associated with the signal or nil if none is currently
defined.

system:default-interrupt signal [Function]
Default-interrupt can be used to tell the Unix signal mechanism to perform the default action for signal . For

details on what the default action for a signal is, see section 2 of the Unix Programmer’s Manual. In general, it is
likely to ignore the signal or to cause a core dump.

CHAPTER 6. UNIX INTERFACE 125

6.8.2 Examples of Signal Handlers

The following code is the signal handler used by the Lisp system for the SIGINT signal.

(defun ih-sigint (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(with-interrupts
(break "Software Interrupt" t))))

The without-hemlock form is used to make sure that Hemlock is exited before a break loop is entered. The
with-interrupts form is used to enable interrupts because the user may want to generate an interrupt while in
the break loop. Finally, break is called to enter a break loop, so the user can look at the current state of the
computation. If the user proceeds from the break loop, the computation will be restarted from where it was
interrupted.

The following function is the Lisp signal handler for the SIGTSTP signal which suspends a process and
returns to the Unix shell.

(defun ih-sigtstp (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(Unix:unix-kill (Unix:unix-getpid) Unix:sigstop)))

Lisp uses this interrupt handler to catch the SIGTSTP signal because it is necessary to get out of Hemlock in
a clean way before returning to the shell.

To set up these interrupt handlers, the following is recommended:

(with-enabled-interrupts ((Unix:SIGINT #’ih-sigint)
(Unix:SIGTSTP #’ih-sigtstp))

<user code to execute with the above signal handlers enabled.>
)

Chapter 7

Event Dispatching with SERVE-EVENT

by Bill Chiles and Robert MacLachlan

It is common to have multiple activities simultaneously operating in the same Lisp process. Furthermore,
Lisp programmers tend to expect a flexible development environment. It must be possible to load and modify
application programs without requiring modifications to other running programs. CMUCL achieves this by
having a central scheduling mechanism based on an event-driven, object-oriented paradigm.

An event is some interesting happening that should cause the Lisp process to wake up and do something.
These events include X events and activity on Unix file descriptors. The object-oriented mechanism is only
available with the first two, and it is optional with X events as described later in this chapter. In an X event, the
window ID is the object capability and the X event type is the operation code. The Unix file descriptor input
mechanism simply consists of an association list of a handler to call when input shows up on a particular file
descriptor.

7.1 Object Sets

An object set is a collection of objects that have the same implementation for each operation. Externally the object
is represented by the object capability and the operation is represented by the operation code. Within Lisp, the
object is represented by an arbitrary Lisp object, and the implementation for the operation is represented by an
arbitrary Lisp function. The object set mechanism maintains this translation from the external to the internal
representation.

system:make-object-set name &optional default-handler [Function]
This function makes a new object set. Name is a string used only for purposes of identifying the object set

when it is printed. Default-handler is the function used as a handler when an undefined operation occurs on an
object in the set. You can define operations with the serve-operation functions exported the extensions package
for X events (see section 7.4, page 128). Objects are added with system:add-xwindow-object. Initially the object
set has no objects and no defined operations.

system:object-set-operation object-set operation-code [Function]
This function returns the handler function that is the implementation of the operation corresponding to

operation-code in object-set . When set with setf, the setter function establishes the new handler. The serve-
operation functions exported from the extensions package for X events (see section 7.4, page 128) call this on
behalf of the user when announcing a new operation for an object set.

system:add-xwindow-object window object object-set [Function]
These functions add port or window to object-set . Object is an arbitrary Lisp object that is associated with

the port or window capability. Window is a CLX window. When an event occurs, system:serve-event passes
object as an argument to the handler function.

126

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 127

7.2 The SERVE-EVENT Function

The system:serve-event function is the standard way for an application to wait for something to happen. For
example, the Lisp system calls system:serve-event when it wants input from X or a terminal stream. The idea
behind system:serve-event is that it knows the appropriate action to take when any interesting event happens.
If an application calls system:serve-event when it is idle, then any other applications with pending events can
run. This allows several applications to run “at the same time” without interference, even though there is only
one thread of control. Note that if an application is waiting for input of any kind, then other applications will
get events.

system:serve-event &optional timeout [Function]
This function waits for an event to happen and then dispatches to the correct handler function. If specified,

timeout is the number of seconds to wait before timing out. A time out of zero seconds is legal and causes
system:serve-event to poll for any events immediately available for processing. system:serve-event returns t
if it serviced at least one event, and nil otherwise. Depending on the application, when system:serve-event
returns t, you might want to call it repeatedly with a timeout of zero until it returns nil.

If input is available on any designated file descriptor, then this calls the appropriate handler function sup-
plied by system:add-fd-handler.

Since events for many different applications may arrive simultaneously, an application waiting for a specific
event must loop on system:serve-event until the desired event happens. Since programs such as Hemlock
call system:serve-event for input, applications usually do not need to call system:serve-event at all; Hemlock
allows other application’s handlers to run when it goes into an input wait.

system:serve-all-events &optional timeout [Function]
This function is similar to system:serve-event, except it serves all the pending events rather than just one. It

returns t if it serviced at least one event, and nil otherwise.

7.3 Using SERVE-EVENT with Unix File Descriptors

Object sets are not available for use with file descriptors, as there are only two operations possible on file
descriptors: input and output. Instead, a handler for either input or output can be registered with system:serve-
event for a specific file descriptor. Whenever any input shows up, or output is possible on this file descriptor, the
function associated with the handler for that descriptor is funcalled with the descriptor as it’s single argument.

system:add-fd-handler fd direction function [Function]
This function installs and returns a new handler for the file descriptor fd . direction can be either :input if the

system should invoke the handler when input is available or :output if the system should invoke the handler
when output is possible. This returns a unique object representing the handler, and this is a suitable argument
for system:remove-fd-handler function must take one argument, the file descriptor.

system:remove-fd-handler handler [Function]
This function removes handler , that add-fd-handler must have previously returned.

system:with-fd-handler (fd direction function) {form}∗ [Macro]
This macro executes the supplied forms with a handler installed using fd , direction, and function. See

system:add-fd-handler. The given forms are wrapped in an unwind-protect; the handler is removed (see
system:remove-fd-handler) when done.

system:wait-until-fd-usable fd direction &optional timeout [Function]
This function waits for up to timeout seconds for fd to become usable for direction (either :input or :output).

If timeout is nil or unspecified, this waits forever.

system:invalidate-descriptor fd [Function]
This function removes all handlers associated with fd . This should only be used in drastic cases (such as I/O

errors, but not necessarily EOF). Normally, you should use remove-fd-handler to remove the specific handler.

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 128

7.4 Using SERVE-EVENT with the CLX Interface to X

Remember from section 7.1, an object set is a collection of objects, CLX windows in this case, with some set
of operations, event keywords, with corresponding implementations, the same handler functions. Since X
allows multiple display connections from a given process, you can avoid using object sets if every window
in an application or display connection behaves the same. If a particular X application on a single display
connection has windows that want to handle certain events differently, then using object sets is a convenient
way to organize this since you need some way to map the window/event combination to the appropriate
functionality.

The following is a discussion of functions exported from the extensions package that facilitate handling
CLX events through system:serve-event. The first two routines are useful regardless of whether you use
system:serve-event:

ext:open-clx-display &optional string [Function]
This function parses string for an X display specification including display and screen numbers. String

defaults to the following:

(cdr (assoc :display ext:*environment-list* :test #’eq))

If any field in the display specification is missing, this signals an error. ext:open-clx-display returns the CLX
display and screen.

ext:flush-display-events display [Function]
This function flushes all the events in display ’s event queue including the current event, in case the user

calls this from within an event handler.

7.4.1 Without Object Sets

Since most applications that use CLX, can avoid the complexity of object sets, these routines are described in
a separate section. The routines described in the next section that use the object set mechanism are based on
these interfaces.

ext:enable-clx-event-handling display handler [Function]
This function causes system:serve-event to notice when there is input on display ’s connection to the X11

server. When this happens, system:serve-event invokes handler on display in a dynamic context with an error
handler bound that flushes all events from display and returns. By returning, the error handler declines to han-
dle the error, but it will have cleared all events; thus, entering the debugger will not result in infinite errors due
to streams that wait via system:serve-event for input. Calling this repeatedly on the same display establishes
handler as a new handler, replacing any previous one for display .

ext:disable-clx-event-handling display [Function]
This function undoes the effect of ext:enable-clx-event-handling.

ext:with-clx-event-handling (display handler) {form}∗ [Macro]
This macro evaluates each form in a context where system:serve-event invokes handler on display whenever

there is input on display ’s connection to the X server. This destroys any previously established handler for
display .

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 129

7.4.2 With Object Sets

This section discusses the use of object sets and system:serve-event to handle CLX events. This is necessary
when a single X application has distinct windows that want to handle the same events in different ways. Ba-
sically, you need some way of asking for a given window which way you want to handle some event because
this event is handled differently depending on the window. Object sets provide this feature.

For each CLX event-key symbol-name ıXXX (for example, key-press), there is a function serve-ıXXX of two
arguments, an object set and a function. The serve-ıXXX function establishes the function as the handler for
the :XXX event in the object set. Recall from section 7.1, system:add-xwindow-object associates some Lisp object
with a CLX window in an object set. When system:serve-event notices activity on a window, it calls the function
given to ext:enable-clx-event-handling. If this function is ext:object-set-event-handler, it calls the function given
to serve-ıXXX, passing the object given to system:add-xwindow-object and the event’s slots as well as a couple
other arguments described below.

To use object sets in this way:

• Create an object set.

• Define some operations on it using the serve-ıXXX functions.

• Add an object for every window on which you receive requests. This can be the CLX window itself or
some structure more meaningful to your application.

• Call system:serve-event to service an X event.

ext:object-set-event-handler display [Function]
This function is a suitable argument to ext:enable-clx-event-handling. The actual event handlers defined for

particular events within a given object set must take an argument for every slot in the appropriate event. In
addition to the event slots, ext:object-set-event-handler passes the following arguments:

• The object, as established by system:add-xwindow-object, on which the event occurred.

• event-key, see xlib:event-case.

• send-event-p, see xlib:event-case.

Describing any ext:serve-event-key-name function, where event-key-name is an event-key symbol-name
(for example, ext:serve-key-press), indicates exactly what all the arguments are in their correct order.

When creating an object set for use with ext:object-set-event-handler, specify ext:default-clx-event-handler
as the default handler for events in that object set. If no default handler is specified, and the system invokes
the default default handler, it will cause an error since this function takes arguments suitable for handling port
messages.

7.5 A SERVE-EVENT Example

This section contains two examples using system:serve-event. The first one does not use object sets, and the
second, slightly more complicated one does.

7.5.1 Without Object Sets Example

This example defines an input handler for a CLX display connection. It only recognizes :key-press events. The
body of the example loops over system:serve-event to get input.

(in-package "SERVER-EXAMPLE")

(defun my-input-handler (display)
(xlib:event-case (display :timeout 0)

(:key-press (event-window code state)
(format t "KEY-PRESSED (Window = ˜D) = ˜S.˜%"

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 130

(xlib:window-id event-window)
;; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext:translate-character display code state))

;; Make XLIB:EVENT-CASE discard the event.
t)))

(defun server-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets to
handle CLX events."

(let* ((display (ext:open-clx-display))
(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(window (create-window :parent (screen-root screen)

:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press))))

;; Wrap code in UNWIND-PROTECT, so we clean up after ourselves.
(unwind-protect

(progn
;; Enable event handling on the display.
(ext:enable-clx-event-handling display #’my-input-handler)
;; Map the windows to the screen.
(map-window window)
;; Make sure we send all our requests.
(display-force-output display)
;; Call serve-event for 100,000 events or immediate timeouts.
(dotimes (i 100000) (system:serve-event)))

;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
;; Get rid of the window.
(destroy-window window)
;; Pick off any events the X server has already queued for our
;; windows, so we don’t choke since SYSTEM:SERVE-EVENT is no longer
;; prepared to handle events for us.
(loop
(unless (deleting-window-drop-event *display* window)
(return)))

;; Close the display.
(xlib:close-display display))))

(defun deleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."

(xlib:display-finish-output display)
(let ((result nil))

(xlib:process-event
display :timeout 0
:handler #’(lambda (&key event-window &allow-other-keys)

(if (eq event-window win)
(setf result t)
nil)))

result))

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 131

7.5.2 With Object Sets Example

This example involves more work, but you get a little more for your effort. It defines two objects, input-box and
slider, and establishes a :key-press handler for each object, key-pressed and slider-pressed. We have two object
sets because we handle events on the windows manifesting these objects differently, but the events come over
the same display connection.

(in-package "SERVER-EXAMPLE")

(defstruct (input-box (:print-function print-input-box)
(:constructor make-input-box (display window)))

"Our program knows about input-boxes, and it doesn’t care how they
are implemented."

display ; The CLX display on which my input-box is displayed.
window) ; The CLX window in which the user types.

;;;
(defun print-input-box (object stream n)

(declare (ignore n))
(format stream "#<Input-Box ˜S>" (input-box-display object)))

(defvar *input-box-windows*
(system:make-object-set "Input Box Windows"

#’ext:default-clx-event-handler))

(defun key-pressed (input-box event-key event-window root child
same-screen-p x y root-x root-y modifiers time
key-code send-event-p)

"This is our :key-press event handler."
(declare (ignore event-key root child same-screen-p x y

root-x root-y time send-event-p))
(format t "KEY-PRESSED (Window = ˜D) = ˜S.˜%"

(xlib:window-id event-window)
;; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext:translate-character (input-box-display input-box)

key-code modifiers)))
;;;
(ext:serve-key-press *input-box-windows* #’key-pressed)

(defstruct (slider (:print-function print-slider)
(:include input-box)
(:constructor %make-slider

(display window window-width max)))
"Our program knows about sliders too, and these provide input values
zero to max."

bits-per-value ; bits per discrete value up to max.
max) ; End value for slider.

;;;
(defun print-slider (object stream n)

(declare (ignore n))
(format stream "#<Slider ˜S 0..˜D>"

(input-box-display object)
(1- (slider-max object))))

;;;
(defun make-slider (display window max)

(%make-slider display window
(truncate (xlib:drawable-width window) max)

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 132

max))

(defvar *slider-windows*
(system:make-object-set "Slider Windows"

#’ext:default-clx-event-handler))

(defun slider-pressed (slider event-key event-window root child
same-screen-p x y root-x root-y modifiers time
key-code send-event-p)

"This is our :key-press event handler for sliders. Probably this is
a mouse thing, but for simplicity here we take a character typed."

(declare (ignore event-key root child same-screen-p x y
root-x root-y time send-event-p))

(format t "KEY-PRESSED (Window = ˜D) = ˜S --> ˜D.˜%"
(xlib:window-id event-window)
;; See Hemlock Command Implementor’s Manual for convenient
;; input mapping function.
(ext:translate-character (input-box-display slider)

key-code modifiers)
(truncate x (slider-bits-per-value slider))))

;;;
(ext:serve-key-press *slider-windows* #’slider-pressed)

(defun server-example ()
"An example of using the SYSTEM:SERVE-EVENT function and object sets to
handle CLX events."

(let* ((display (ext:open-clx-display))
(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(iwindow (create-window :parent (screen-root screen)

:x 0 :y 0 :width 200 :height 200
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press)))

(swindow (create-window :parent (screen-root screen)
:x 0 :y 300 :width 200 :height 50
:background white :border black
:border-width 2
:event-mask
(xlib:make-event-mask :key-press)))

(input-box (make-input-box display iwindow))
(slider (make-slider display swindow 15)))

;; Wrap code in UNWIND-PROTECT, so we clean up after ourselves.
(unwind-protect

(progn
;; Enable event handling on the display.
(ext:enable-clx-event-handling display

#’ext:object-set-event-handler)
;; Add the windows to the appropriate object sets.
(system:add-xwindow-object iwindow input-box

input-box-windows)
(system:add-xwindow-object swindow slider

slider-windows)
;; Map the windows to the screen.

CHAPTER 7. EVENT DISPATCHING WITH SERVE-EVENT 133

(map-window iwindow)
(map-window swindow)
;; Make sure we send all our requests.
(display-force-output display)
;; Call server for 100,000 events or immediate timeouts.
(dotimes (i 100000) (system:serve-event)))

;; Disable event handling on this display.
(ext:disable-clx-event-handling display)
(delete-window iwindow display)
(delete-window swindow display)
;; Close the display.
(xlib:close-display display))))

(defun delete-window (window display)
;; Remove the windows from the object sets before destroying them.
(system:remove-xwindow-object window)
;; Destroy the window.
(destroy-window window)
;; Pick off any events the X server has already queued for our
;; windows, so we don’t choke since SYSTEM:SERVE-EVENT is no longer
;; prepared to handle events for us.
(loop
(unless (deleting-window-drop-event display window)

(return))))

(defun deleting-window-drop-event (display win)
"Check for any events on win. If there is one, remove it from the
event queue and return t; otherwise, return nil."

(xlib:display-finish-output display)
(let ((result nil))

(xlib:process-event
display :timeout 0
:handler #’(lambda (&key event-window &allow-other-keys)

(if (eq event-window win)
(setf result t)
nil)))

result))

Chapter 8

Alien Objects

by Robert MacLachlan and William Lott

8.1 Introduction to Aliens

Because of Lisp’s emphasis on dynamic memory allocation and garbage collection, Lisp implementations use
unconventional memory representations for objects. This representation mismatch creates problems when a
Lisp program must share objects with programs written in another language. There are three different ap-
proaches to establishing communication:

• The burden can be placed on the foreign program (and programmer) by requiring the use of Lisp object
representations. The main difficulty with this approach is that either the foreign program must be written
with Lisp interaction in mind, or a substantial amount of foreign “glue” code must be written to perform
the translation.

• The Lisp system can automatically convert objects back and forth between the Lisp and foreign repre-
sentations. This is convenient, but translation becomes prohibitively slow when large or complex data
structures must be shared.

• The Lisp program can directly manipulate foreign objects through the use of extensions to the Lisp lan-
guage. Most Lisp systems make use of this approach, but the language for describing types and expressing
accesses is often not powerful enough for complex objects to be easily manipulated.

CMUCL relies primarily on the automatic conversion and direct manipulation approaches: Aliens of simple
scalar types are automatically converted, while complex types are directly manipulated in their foreign repre-
sentation. Any foreign objects that can’t automatically be converted into Lisp values are represented by objects
of type alien-value. Since Lisp is a dynamically typed language, even foreign objects must have a run-time type;
this type information is provided by encapsulating the raw pointer to the foreign data within an alien-value ob-
ject.

The Alien type language and operations are most similar to those of the C language, but Aliens can also be
used when communicating with most other languages that can be linked with C.

8.2 Alien Types

Alien types have a description language based on nested list structure. For example:

struct foo {
int a;
struct foo *b[100];

};

has the corresponding Alien type:

134

CHAPTER 8. ALIEN OBJECTS 135

(struct foo
(a int)
(b (array (* (struct foo)) 100)))

8.2.1 Defining Alien Types

Types may be either named or anonymous. With structure and union types, the name is part of the type
specifier, allowing recursively defined types such as:

(struct foo (a (* (struct foo))))

An anonymous structure or union type is specified by using the name nil. The with-alien (page 138) macro
defines a local scope which “captures” any named type definitions. Other types are not inherently named, but
can be given named abbreviations using def-alien-type.

alien:def-alien-type name type [Macro]
This macro globally defines name as a shorthand for the Alien type type. When introducing global structure

and union type definitions, name may be nil, in which case the name to define is taken from the type’s name.

8.2.2 Alien Types and Lisp Types

The Alien types form a subsystem of the CMUCL type system. An alien type specifier provides a way to use any
Alien type as a Lisp type specifier. For example

(typep foo ’(alien (* int)))

can be used to determine whether foo is a pointer to an int. alien type specifiers can be used in the same ways
as ordinary type specifiers (like string.) Alien type declarations are subject to the same precise type checking as
any other declaration (see section 4.5.2, page 66.)

Note that the Alien type system overlaps with normal Lisp type specifiers in some cases. For example, the
type specifier (alien single-float) is identical to single-float, since Alien floats are automatically converted to Lisp
floats. When type-of is called on an Alien value that is not automatically converted to a Lisp value, then it will
return an alien type specifier.

8.2.3 Alien Type Specifiers

Some Alien type names are Common Lisp symbols, but the names are still exported from the alien package, so
it is legal to say alien:single-float. These are the basic Alien type specifiers:

* type [Alien type]
A pointer to an object of the specified type. If type is t, then it means a pointer to anything, similar to “void

*” in ANSI C. Currently, the only way to detect a null pointer is:

(zerop (sap-int (alien-sap ptr)))

See section 6.5, page 121

array type {dimension}∗ [Alien type]
An array of the specified dimensions, holding elements of type type. Note that (* int) and (array int) are

considered to be different types when type checking is done; pointer and array types must be explicitly coerced
using cast.

Arrays are accessed using deref, passing the indices as additional arguments. Elements are stored in column-
major order (as in C), so the first dimension determines only the size of the memory block, and not the layout
of the higher dimensions. An array whose first dimension is variable may be specified by using nil as the first
dimension. Fixed-size arrays can be allocated as array elements, structure slots or with-alien variables. Dynamic
arrays can only be allocated using make-alien (page 138).

CHAPTER 8. ALIEN OBJECTS 136

struct name {(field type {bits})}∗ [Alien type]
A structure type with the specified name and fields. Fields are allocated at the same positions used by the

implementation’s C compiler. bits is intended for C-like bit field support, but is currently unused. If name is
nil, then the type is anonymous.

If a named Alien struct specifier is passed to def-alien-type (page 135) or with-alien (page 138), then this
defines, respectively, a new global or local Alien structure type. If no fields are specified, then the fields are
taken from the current (local or global) Alien structure type definition of name.

union name {(field type {bits})}∗ [Alien type]
Similar to struct, but defines a union type. All fields are allocated at the same offset, and the size of the union

is the size of the largest field. The programmer must determine which field is active from context.

enum name {spec}∗ [Alien type]
An enumeration type that maps between integer values and keywords. If name is nil, then the type is

anonymous. Each spec is either a keyword, or a list (keyword value). If integer is not supplied, then it defaults
to one greater than the value for the preceding spec (or to zero if it is the first spec.)

signed {bits} [Alien type]
A signed integer with the specified number of bits precision. The upper limit on integer precision is deter-

mined by the machine’s word size. If no size is specified, the maximum size will be used.

integer {bits} [Alien type]
Identical to signed—the distinction between signed and integer is purely stylistic.

unsigned {bits} [Alien type]
Like signed, but specifies an unsigned integer.

boolean {bits} [Alien type]
Similar to an enumeration type that maps 0 to nil and all other values to t. bits determines the amount of

storage allocated to hold the truth value.

single-float [Alien type]
A floating-point number in IEEE single format.

double-float [Alien type]
A floating-point number in IEEE double format.

function result-type {arg-type}∗ [Alien type]
A Alien function that takes arguments of the specified arg-types and returns a result of type result-type.

Note that the only context where a function type is directly specified is in the argument to alien-funcall (see
section alien-funcall (page 141).) In all other contexts, functions are represented by function pointer types: (*
(function ...)).

system-area-pointer [Alien type]
A pointer which is represented in Lisp as a system-area-pointer object (see section 6.5, page 121.)

CHAPTER 8. ALIEN OBJECTS 137

8.2.4 The C-Call Package

The c-call package exports these type-equivalents to the C type of the same name: char, short, int, long,
unsigned-char, unsigned-short, unsigned-int, unsigned-long, float, double. c-call also exports these types:

void [Alien type]
This type is used in function types to declare that no useful value is returned. Evaluation of an alien-funcall

form will return zero values.

c-string [Alien type]
This type is similar to (* char), but is interpreted as a null-terminated string, and is automatically converted

into a Lisp string when accessed. If the pointer is C NULL (or 0), then accessing gives Lisp nil.
Assigning a Lisp string to a c-string structure field or variable stores the contents of the string to the memory

already pointed to by that variable. When an Alien of type (* char) is assigned to a c-string, then the c-string
pointer is assigned to. This allows c-string pointers to be initialized. For example:

(def-alien-type nil (struct foo (str c-string)))

(defun make-foo (str) (let ((my-foo (make-alien (struct foo))))
(setf (slot my-foo ’str) (make-alien char (length str))) (setf (slot
my-foo ’str) str) my-foo))

Storing Lisp nil writes C NULL to the c-string pointer.

8.3 Alien Operations

This section describes the basic operations on Alien values.

8.3.1 Alien Access Operations

alien:deref pointer-or-array &restindices [Function]
This function returns the value pointed to by an Alien pointer or the value of an Alien array element. If a

pointer, an optional single index can be specified to give the equivalent of C pointer arithmetic; this index is
scaled by the size of the type pointed to. If an array, the number of indices must be the same as the number of
dimensions in the array type. deref can be set with setf to assign a new value.

alien:slot struct-or-union slot-name [Function]
This function extracts the value of slot slot-name from the an Alien struct or union. If struct-or-union is

a pointer to a structure or union, then it is automatically dereferenced. This can be set with setf to assign a
new value. Note that slot-name is evaluated, and need not be a compile-time constant (but only constant slot
accesses are efficiently compiled.)

8.3.2 Alien Coercion Operations

alien:addr alien-expr [Macro]
This macro returns a pointer to the location specified by alien-expr , which must be either an Alien variable,

a use of deref, a use of slot, or a use of extern-alien (page 139).

alien:cast alien new-type [Macro]
This macro converts alien to a new Alien with the specified new-type. Both types must be an Alien pointer,

array or function type. Note that the result is not eq to the argument, but does refer to the same data bits.

CHAPTER 8. ALIEN OBJECTS 138

alien:sap-alien sap type [Macro]
alien:alien-sap alien-value [Function]

sap-alien converts sap (a system area pointer see section 6.5, page 121) to an Alien value with the specified
type. type is not evaluated.

alien-sap returns the SAP which points to alien-value’s data.
The type to sap-alien and the type of the alien-value to alien-sap must some Alien pointer, array or record

type.

8.3.3 Alien Dynamic Allocation

Dynamic Aliens are allocated using the malloc library, so foreign code can call free on the result of make-alien,
and Lisp code can call free-alien on objects allocated by foreign code.

alien:make-alien type {size} [Macro]
This macro returns a dynamically allocated Alien of the specified type (which is not evaluated.) The allo-

cated memory is not initialized, and may contain arbitrary junk. If supplied, size is an expression to evaluate
to compute the size of the allocated object. There are two major cases:

• When type is an array type, an array of that type is allocated and a pointer to it is returned. Note that you
must use deref to change the result to an array before you can use deref to read or write elements:

(defvar *foo* (make-alien (array char 10)))

(type-of *foo*) ⇒ (alien (* (array (signed 8) 10)))

(setf (deref (deref foo) 0) 10) ⇒ 10

If supplied, size is used as the first dimension for the array.

• When type is any other type, then then an object for that type is allocated, and a pointer to it is returned.
So (make-alien int) returns a (* int). If size is specified, then a block of that many objects is allocated, with
the result pointing to the first one.

alien:free-alien alien [Function]
This function frees the storage for alien (which must have been allocated with make-alien or malloc.)
See also with-alien (page 138), which stack-allocates Aliens.

8.4 Alien Variables

Both local (stack allocated) and external (C global) Alien variables are supported.

8.4.1 Local Alien Variables

alien:with-alien {(name type {initial-value})}∗ {form}∗ [Macro]
This macro establishes local alien variables with the specified Alien types and names for dynamic extent

of the body. The variable names are established as symbol-macros; the bindings have lexical scope, and may
be assigned with setq or setf. This form is analogous to defining a local variable in C: additional storage is
allocated, and the initial value is copied.

with-alien also establishes a new scope for named structures and unions. Any type specified for a variable
may contain name structure or union types with the slots specified. Within the lexical scope of the binding
specifiers and body, a locally defined structure type foo can be referenced by its name using:

(struct foo)

CHAPTER 8. ALIEN OBJECTS 139

8.4.2 External Alien Variables

External Alien names are strings, and Lisp names are symbols. When an external Alien is represented using a
Lisp variable, there must be a way to convert from one name syntax into the other. The macros extern-alien,
def-alien-variable and def-alien-routine (page 142) use this conversion heuristic:

• Alien names are converted to Lisp names by uppercasing and replacing underscores with hyphens.

• Conversely, Lisp names are converted to Alien names by lowercasing and replacing hyphens with under-
scores.

• Both the Lisp symbol and Alien string names may be separately specified by using a list of the form:

(alien-string lisp-symbol)

alien:def-alien-variable name type [Macro]
This macro defines name as an external Alien variable of the specified Alien type. name and type are not

evaluated. The Lisp name of the variable (see above) becomes a global Alien variable in the Lisp namespace.
Global Alien variables are effectively “global symbol macros”; a reference to the variable fetches the contents
of the external variable. Similarly, setting the variable stores new contents—the new contents must be of the
declared type.

For example, it is often necessary to read the global C variable errno to determine why a particular function
call failed. It is possible to define errno and make it accessible from Lisp by the following:

(def-alien-variable "errno" int)

;; Now it is possible to get the value of the C variable errno simply by
;; referencing that Lisp variable:
;;
(print errno)

alien:extern-alien name type [Macro]
This macro returns an Alien with the specified type which points to an externally defined value. name is

not evaluated, and may be specified either as a string or a symbol. type is an unevaluated Alien type specifier.

8.5 Alien Data Structure Example

Now that we have Alien types, operations and variables, we can manipulate foreign data structures. This C
declaration can be translated into the following Alien type:

struct foo {
int a;
struct foo *b[100];

};

≡

(def-alien-type nil
(struct foo

(a int)
(b (array (* (struct foo)) 100))))

With this definition, the following C expression can be translated in this way:

CHAPTER 8. ALIEN OBJECTS 140

struct foo f;
f.b[7].a

≡

(with-alien ((f (struct foo)))
(slot (deref (slot f ’b) 7) ’a)
;;
;; Do something with f...
)

Or consider this example of an external C variable and some accesses:

struct c_struct {
short x, y;
char a, b;
int z;
c_struct *n;

};

extern struct c_struct *my_struct;

my_struct->x++;
my_struct->a = 5;
my_struct = my_struct->n;

which can be made be manipulated in Lisp like this:

(def-alien-type nil
(struct c-struct

(x short)
(y short)
(a char)
(b char)
(z int)
(n (* c-struct))))

(def-alien-variable "my_struct" (* c-struct))

(incf (slot my-struct ’x))
(setf (slot my-struct ’a) 5)
(setq my-struct (slot my-struct ’n))

8.6 Loading Unix Object Files

CMUCL is able to load foreign object files at runtime, using the function load-foreign. This function is able to
load shared libraries (that are typically named .so) via the dlopen mechanism. It can also load .a or .o object
files by calling the linker on the files and libraries to create a loadable object file. Once loaded, the external
symbols that define routines and variables are made available for future external references (e.g. by extern-
alien.) load-foreign must be run before any of the defined symbols are referenced.

Note that if a Lisp core image is saved (using save-lisp (page 25)), all loaded foreign code is lost when the
image is restarted.

ext:load-foreign files &key :libraries :base-file :env [Function]
files is a simple-string or list of simple-strings specifying the names of the object files. If files is a simple-string,

the file that it designates is loaded using the platform’s dlopen mechanism. If it is a list of strings, the platform

CHAPTER 8. ALIEN OBJECTS 141

linker ld is invoked to transform the object files into a loadable object file. libraries is a list of simple-strings
specifying libraries in a format that the platform linker expects. The default value for libraries is (”-lc”) (i.e., the
standard C library). base-file is the file to use for the initial symbol table information. The default is the Lisp
start up code: ‘path:lisp’. env should be a list of simple strings in the format of Unix environment variables
(i.e., A=B, where A is an environment variable and B is its value). The default value for env is the environment
information available at the time Lisp was invoked. Unless you are certain that you want to change this, you
should just use the default.

8.7 Alien Function Calls

The foreign function call interface allows a Lisp program to call functions written in other languages. The
current implementation of the foreign function call interface assumes a C calling convention and thus routines
written in any language that adheres to this convention may be called from Lisp.

Lisp sets up various interrupt handling routines and other environment information when it first starts
up, and expects these to be in place at all times. The C functions called by Lisp should either not change the
environment, especially the interrupt entry points, or should make sure that these entry points are restored
when the C function returns to Lisp. If a C function makes changes without restoring things to the way they
were when the C function was entered, there is no telling what will happen.

8.7.1 The alien-funcall Primitive

alien:alien-funcall alien-function &rest arguments [Function]
This function is the foreign function call primitive: alien-function is called with the supplied arguments and

its value is returned. The alien-function is an arbitrary run-time expression; to call a constant function, use
extern-alien (page 139) or def-alien-routine.

The type of alien-function must be (alien (function ...)) or (alien (* (function ...))), See section 8.2.3, page 136.
The function type is used to determine how to call the function (as though it was declared with a prototype.)
The type need not be known at compile time, but only known-type calls are efficiently compiled. Limitations:

• Structure type return values are not implemented.

• Passing of structures by value is not implemented.

Here is an example which allocates a (struct foo), calls a foreign function to initialize it, then returns a Lisp
vector of all the (* (struct foo)) objects filled in by the foreign call:

;; Allocate a foo on the stack.
(with-alien ((f (struct foo)))

;;
;; Call some C function to fill in foo fields.
(alien-funcall (extern-alien "mangle_foo" (function void (* foo)))

(addr f))
;;
;; Find how many foos to use by getting the A field.
(let* ((num (slot f ’a))

(result (make-array num)))
;;
;; Get a pointer to the array so that we don’t have to keep
;; extracting it:
(with-alien ((a (* (array (* (struct foo)) 100)) (addr (slot f ’b))))

;;
;; Loop over the first N elements and stash them in the
;; result vector.
(dotimes (i num)

(setf (svref result i) (deref (deref a) i)))
result)))

CHAPTER 8. ALIEN OBJECTS 142

8.7.2 The def-alien-routine Macro

alien:def-alien-routine name result-type {(aname atype {style})}∗ [Macro]
This macro is a convenience for automatically generating Lisp interfaces to simple foreign functions. The

primary feature is the parameter style specification, which translates the C pass-by-reference idiom into addi-
tional return values.

name is usually a string external symbol, but may also be a symbol Lisp name or a list of the foreign name
and the Lisp name. If only one name is specified, the other is automatically derived, (see section 8.4.2, page 139.)

result-type is the Alien type of the return value. Each remaining subform specifies an argument to the
foreign function. aname is the symbol name of the argument to the constructed function (for documentation)
and atype is the Alien type of corresponding foreign argument. The semantics of the actual call are the same as
for alien-funcall (page 141). style should be one of the following:

:in specifies that the argument is passed by value. This is the default. :in arguments have no corre-
sponding return value from the Lisp function.

:out specifies a pass-by-reference output value. The type of the argument must be a pointer to a fixed
sized object (such as an integer or pointer). :out and :in-out cannot be used with pointers to arrays,
records or functions. An object of the correct size is allocated, and its address is passed to the foreign
function. When the function returns, the contents of this location are returned as one of the values
of the Lisp function.

:copy is similar to :in, but the argument is copied to a pre-allocated object and a pointer to this object is
passed to the foreign routine.

:in-out is a combination of :copy and :out. The argument is copied to a pre-allocated object and a pointer to
this object is passed to the foreign routine. On return, the contents of this location is returned as an
additional value.

Any efficiency-critical foreign interface function should be inline expanded by preceding def-alien-routine with:

(declaim (inline lisp-name))

In addition to avoiding the Lisp call overhead, this allows pointers, word-integers and floats to be passed
using non-descriptor representations, avoiding consing (see section 5.11.2, page 104.)

8.7.3 def-alien-routine Example

Consider the C function cfoo with the following calling convention:

/* a for update

* i out

*/
void cfoo (char *str, char *a, int *i);

which can be described by the following call to def-alien-routine:

(def-alien-routine "cfoo" void
(str c-string)
(a char :in-out)
(i int :out))

The Lisp function cfoo will have two arguments (str and a) and two return values (a and i).

CHAPTER 8. ALIEN OBJECTS 143

8.7.4 Calling Lisp from C

CMUCL supports calling Lisp from C via the def-callback (page 143) macro:

alien:def-callback name (return-type {(arg-name arg-type)}∗) &body body [Macro]
This macro defines a Lisp function that can be called from C and a Lisp variable. The arguments to the

function must be alien types, and the return type must also be an alien type. This Lisp function can be accessed
via the callback (page 143) macro.

name is the name of the Lisp function. It is also the name of a variable to be used by the callback macro.
return-type is the return type of the function. This must be a recognized alien type.
arg-name specifies the name of the argument to the function, and the argument has type arg-type, which

must be an alien type.

alien:callback callback-symbol [Macro]
This macro extracts the appropriate information for the function named callback-symbol so that it can be

called by a C function. callback-symbol must be a symbol created by the def-callback macro.

alien:callback-funcall callback-name &restargs [Macro]
This macro does the necessary stuff to call the callback named callback-name with the given arguments.

8.7.5 Callback Example

Here is a simple example of using callbacks.

(use-package :alien)
(use-package :c-call)

(def-callback foo (int (arg1 int) (arg2 int))
(format t "˜&foo: ˜S, ˜S˜%" arg1 arg2)
(+ arg1 arg2))

(defun test-foo ()
(callback-funcall foo 555 444444))

In this example, the callback function foo is defined which takes two C int parameters and returns a int. As
this shows, we can use arbitrary Lisp inside the function.

The function test-foo shows how we can call this callback function from Lisp. The macro callback extracts
the necessary information for the callback function foo which can be converted into a pointer which we can call
via alien-funcall.

The following code is a more complete example where a foreign routine calls our Lisp routine.

(use-package :alien)
(use-package :c-call)

(def-alien-routine qsort void
(base (* t))
(nmemb int)
(size int)
(compar (* (function int (* t) (* t)))))

(def-callback my< (int (arg1 (* double))
(arg2 (* double)))

(let ((a1 (deref arg1))
(a2 (deref arg2)))

(cond ((= a1 a2) 0)

CHAPTER 8. ALIEN OBJECTS 144

((< a1 a2) -1)
(t +1))))

(defun test-qsort ()
(let ((a (make-array 10 :element-type ’double-float

:initial-contents ’(0.1d0 0.5d0 0.2d0 1.2d0 1.5d0
2.5d0 0.0d0 0.1d0 0.2d0 0.3d0))))

(print a)
(qsort (sys:vector-sap a)

(length a)
(alien-size double :bytes)
(alien:callback my<))

(print a)))

We define the alien routine, qsort, and a callback, my¡, to determine whether two double’s are less than,
greater than or equal to each other.

The test function test-qsort shows how we can call the alien sort routine with our Lisp comparison routine
to produce a sorted array.

8.7.6 Accessing Lisp Arrays

Due to the way CMUCL manages memory, the amount of memory that can be dynamically allocated by malloc
or make-alien (page 138) is limited1.

To overcome this limitation, it is possible to access the content of Lisp arrays which are limited only by
the amount of physical memory and swap space available. However, this technique is only useful if the foreign
function takes pointers to memory instead of allocating memory for itself. In latter case, you will have to modify
the foreign functions.

This technique takes advantage of the fact that CMUCL has specialized array types (see section 5.11.8,
page 108) that match a typical C array. For example, a (simple-array double-float (100)) is stored in memory
in essentially the same way as the C array double x[100] would be. The following function allows us to get the
physical address of such a Lisp array:

(defun array-data-address (array)
"Return the physical address of where the actual data of an array is

stored.

ARRAY must be a specialized array type in CMUCL. This means ARRAY
must be an array of one of the following types:

double-float
single-float
(unsigned-byte 32)
(unsigned-byte 16)
(unsigned-byte 8)
(signed-byte 32)
(signed-byte 16)
(signed-byte 8)

"
(declare (type (or (simple-array (signed-byte 8))

(simple-array (signed-byte 16))
(simple-array (signed-byte 32))
(simple-array (unsigned-byte 8))
(simple-array (unsigned-byte 16))
(simple-array (unsigned-byte 32))

1CMUCL mmaps a large piece of memory for its own use and this memory is typically about 256 MB above the start of the C heap. Thus,
only about 256 MB of memory can be dynamically allocated. In earlier versions, this limit was closer to 8 MB.

CHAPTER 8. ALIEN OBJECTS 145

(simple-array single-float)
(simple-array double-float)
(simple-array (complex single-float))
(simple-array (complex double-float)))

array)
(optimize (speed 3) (safety 0))
(ext:optimize-interface (safety 3)))

;; with-array-data will get us to the actual data. However, because
;; the array could have been displaced, we need to know where the
;; data starts.
(lisp::with-array-data ((data array)

(start)
(end))

(declare (ignore end))
;; DATA is a specialized simple-array. Memory is laid out like this:
;;
;; byte offset Value
;; 0 type code (should be 70 for double-float vector)
;; 4 4 * number of elements in vector
;; 8 1st element of vector
;;
;;
(let ((addr (+ 8 (logandc1 7 (kernel:get-lisp-obj-address data))))

(type-size
(let ((type (array-element-type data)))

(cond ((or (equal type ’(signed-byte 8))
(equal type ’(unsigned-byte 8)))

1)
((or (equal type ’(signed-byte 16))

(equal type ’(unsigned-byte 16)))
2)

((or (equal type ’(signed-byte 32))
(equal type ’(unsigned-byte 32)))

4)
((equal type ’single-float)
4)

((equal type ’double-float)
8)

(t
(error "Unknown specialized array element type"))))))

(declare (type (unsigned-byte 32) addr)
(optimize (speed 3) (safety 0) (ext:inhibit-warnings 3)))

(system:int-sap (the (unsigned-byte 32)
(+ addr (* type-size start)))))))

We note, however, that the system function system:vector-sap will do the same thing as above does.
Assume we have the C function below that we wish to use:

double dotprod(double* x, double* y, int n)
{

int k;
double sum = 0;

for (k = 0; k < n; ++k) {
sum += x[k] * y[k];

}

CHAPTER 8. ALIEN OBJECTS 146

return sum;
}

The following example generates two large arrays in Lisp, and calls the C function to do the desired compu-
tation. This would not have been possible using malloc or make-alien since we need about 16 MB of memory
to hold the two arrays.

(alien:def-alien-routine "dotprod" c-call:double
(x (* double-float) :in)
(y (* double-float) :in)
(n c-call:int :in))

(defun test-dotprod ()
(let ((x (make-array 10000 :element-type ’double-float

:initial-element 2d0))
(y (make-array 10000 :element-type ’double-float

:initial-element 10d0)))
(sys:without-gcing

(let ((x-addr (sys:vector-sap x))
(y-addr (sys:vector-sap y)))

(dotprod x-addr y-addr 10000)))))

In this example, we have used sys:vector-sap instead of array-data-address, but we could have used (sys:int-
sap (array-data-address x)) as well.

Also, we have wrapped the inner let expression in a sys:without-gcing that disables garbage collection for the
duration of the body. This will prevent garbage collection from moving x and y arrays after we have obtained
the (now erroneous) addresses but before the call to dotprod is made.

8.8 Step-by-Step Alien Example

This section presents a complete example of an interface to a somewhat complicated C function. This example
should give a fairly good idea of how to get the effect you want for almost any kind of C function. Suppose you
have the following C function which you want to be able to call from Lisp in the file ‘test.c’:

struct c_struct
{

int x;
char *s;

};

struct c_struct *c_function (i, s, r, a)
int i;
char *s;
struct c_struct *r;
int a[10];

{
int j;
struct c_struct *r2;

printf("i = %d\n", i);
printf("s = %s\n", s);
printf("r->x = %d\n", r->x);
printf("r->s = %s\n", r->s);
for (j = 0; j < 10; j++) printf("a[%d] = %d.\n", j, a[j]);
r2 = (struct c_struct *) malloc (sizeof(struct c_struct));
r2->x = i + 5;

CHAPTER 8. ALIEN OBJECTS 147

r2->s = "A C string";
return(r2);

};

It is possible to call this function from Lisp using the file ‘test.lisp’ whose contents is:

;;; -*- Package: test-c-call -*-
(in-package "TEST-C-CALL")
(use-package "ALIEN")
(use-package "C-CALL")

;;; Define the record c-struct in Lisp.
(def-alien-type nil

(struct c-struct
(x int)
(s c-string)))

;;; Define the Lisp function interface to the C routine. It returns a
;;; pointer to a record of type c-struct. It accepts four parameters:
;;; i, an int; s, a pointer to a string; r, a pointer to a c-struct
;;; record; and a, a pointer to the array of 10 ints.
;;;
;;; The INLINE declaration eliminates some efficiency notes about heap
;;; allocation of Alien values.
(declaim (inline c-function))
(def-alien-routine c-function

(* (struct c-struct))
(i int)
(s c-string)
(r (* (struct c-struct)))
(a (array int 10)))

;;; A function which sets up the parameters to the C function and
;;; actually calls it.
(defun call-cfun ()

(with-alien ((ar (array int 10))
(c-struct (struct c-struct)))

(dotimes (i 10) ; Fill array.
(setf (deref ar i) i))

(setf (slot c-struct ’x) 20)
(setf (slot c-struct ’s) "A Lisp String")

(with-alien ((res (* (struct c-struct))
(c-function 5 "Another Lisp String" (addr c-struct) ar)))

(format t "Returned from C function.˜%")
(multiple-value-prog1

(values (slot res ’x)
(slot res ’s))

;;
;; Deallocate result after we are done using it.
(free-alien res)))))

To execute the above example, it is necessary to compile the C routine as follows:

cc -c test.c

In order to enable incremental loading with some linkers, you may need to say:

CHAPTER 8. ALIEN OBJECTS 148

cc -G 0 -c test.c

Once the C code has been compiled, you can start up Lisp and load it in:

% lisp
;;; Lisp should start up with its normal prompt.

;;; Compile the Lisp file. This step can be done separately. You don’t have
;;; to recompile every time.

* (compile-file "test.lisp")

;;; Load the foreign object file to define the necessary symbols. This must
;;; be done before loading any code that refers to these symbols. next block
;;; of comments are actually the output of LOAD-FOREIGN. Different linkers
;;; will give different warnings, but some warning about redefining the code
;;; size is typical.

* (load-foreign "test.o")

;;; Running library:load-foreign.csh...
;;; Loading object file...
;;; Parsing symbol table...
Warning: "_gp" moved from #x00C082C0 to #x00C08460.
Warning: "end" moved from #x00C00340 to #x00C004E0.

;;; o.k. now load the compiled Lisp object file.

* (load "test")

;;; Now we can call the routine that sets up the parameters and calls the C
;;; function.

* (test-c-call::call-cfun)

;;; The C routine prints the following information to standard output.
i = 5
s = Another Lisp string
r->x = 20
r->s = A Lisp string
a[0] = 0.
a[1] = 1.
a[2] = 2.
a[3] = 3.
a[4] = 4.
a[5] = 5.
a[6] = 6.
a[7] = 7.
a[8] = 8.
a[9] = 9.
;;; Lisp prints out the following information.
Returned from C function.
;;; Return values from the call to test-c-call::call-cfun.
10
"A C string"

*

If any of the foreign functions do output, they should not be called from within Hemlock. Depending on the
situation, various strange behavior occurs. Under X, the output goes to the window in which Lisp was started;
on a terminal, the output will overwrite the Hemlock screen image; in a Hemlock slave, standard output is
‘/dev/null’ by default, so any output is discarded.

Chapter 9

Interprocess Communication under LISP

by William Lott and Bill Chiles

CMUCL offers a facility for interprocess communication (IPC) on top of using Unix system calls and the com-
plications of that level of IPC. There is a simple remote-procedure-call (RPC) package build on top of TCP/IP
sockets.

9.1 The REMOTE Package

The remote package provides simple RPC facility including interfaces for creating servers, connecting to al-
ready existing servers, and calling functions in other Lisp processes. The routines for establishing a connection
between two processes, create-request-server and connect-to-remote-server, return wire structures. A wire
maintains the current state of a connection, and all the RPC forms require a wire to indicate where to send
requests.

9.1.1 Connecting Servers and Clients

Before a client can connect to a server, it must know the network address on which the server accepts connec-
tions. Network addresses consist of a host address or name, and a port number. Host addresses are either
a string of the form VANCOUVER.SLISP.CS.CMU.EDU or a 32 bit unsigned integer. Port numbers are 16 bit
unsigned integers. Note: port in this context has nothing to do with Mach ports and message passing.

When a process wants to receive connection requests (that is, become a server), it first picks an integer
to use as the port. Only one server (Lisp or otherwise) can use a given port number on a given machine at
any particular time. This can be an iterative process to find a free port: picking an integer and calling create-
request-server. This function signals an error if the chosen port is unusable. You will probably want to write
a loop using handler-case, catching conditions of type error, since this function does not signal more specific
conditions.

wire:create-request-server port &optional on-connect [Function]
create-request-server sets up the current Lisp to accept connections on the given port. If port is unavailable

for any reason, this signals an error. When a client connects to this port, the acceptance mechanism makes
a wire structure and invokes the on-connect function. Invoking this function has a couple of purposes, and
on-connect may be nil in which case the system foregoes invoking any function at connect time.

The on-connect function is both a hook that allows you access to the wire created by the acceptance mech-
anism, and it confirms the connection. This function takes two arguments, the wire and the host address of the
connecting process. See the section on host addresses below. When on-connect is nil, the request server allows
all connections. When it is non-nil, the function returns two values, whether to accept the connection and a
function the system should call when the connection terminates. Either value may be nil, but when the first
value is nil, the acceptance mechanism destroys the wire.

create-request-server returns an object that destroy-request-server uses to terminate a connection.

149

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP 150

wire:destroy-request-server server [Function]
destroy-request-server takes the result of create-request-server and terminates that server. Any existing

connections remain intact, but all additional connection attempts will fail.

wire:connect-to-remote-server host port &optional on-death [Function]
connect-to-remote-server attempts to connect to a remote server at the given port on host and returns a

wire structure if it is successful. If on-death is non-nil, it is a function the system invokes when this connection
terminates.

9.1.2 Remote Evaluations

After the server and client have connected, they each have a wire allowing function evaluation in the other
process. This RPC mechanism has three flavors: for side-effect only, for a single value, and for multiple values.

Only a limited number of data types can be sent across wires as arguments for remote function calls and
as return values: integers inclusively less than 32 bits in length, symbols, lists, and remote-objects (see sec-
tion 9.1.3, page 151). The system sends symbols as two strings, the package name and the symbol name, and
if the package doesn’t exist remotely, the remote process signals an error. The system ignores other slots of
symbols. Lists may be any tree of the above valid data types. To send other data types you must represent them
in terms of these supported types. For example, you could use prin1-to-string locally, send the string, and use
read-from-string remotely.

wire:remote wire {call-specs}∗ [Macro]
The remote macro arranges for the process at the other end of wire to invoke each of the functions in the

call-specs. To make sure the system sends the remote evaluation requests over the wire, you must call wire-
force-output.

Each of call-specs looks like a function call textually, but it has some odd constraints and semantics. The
function position of the form must be the symbolic name of a function. remote evaluates each of the argument
subforms for each of the call-specs locally in the current context, sending these values as the arguments for the
functions.

Consider the following example:

(defun write-remote-string (str)
(declare (simple-string str))
(wire:remote wire

(write-string str)))

The value of str in the local process is passed over the wire with a request to invoke write-string on the value.
The system does not expect to remotely evaluate str for a value in the remote process.

wire:wire-force-output wire [Function]
wire-force-output flushes all internal buffers associated with wire, sending the remote requests. This is nec-

essary after a call to remote.

wire:remote-value wire call-spec [Macro]
The remote-value macro is similar to the remote macro. remote-value only takes one call-spec, and it returns

the value returned by the function call in the remote process. The value must be a valid type the system can
send over a wire, and there is no need to call wire-force-output in conjunction with this interface.

If client unwinds past the call to remote-value, the server continues running, but the system ignores the
value the server sends back.

If the server unwinds past the remotely requested call, instead of returning normally, remote-value returns
two values, nil and t. Otherwise this returns the result of the remote evaluation and nil.

wire:remote-value-bind wire ({variable}∗) remote-form {local-forms}∗ [Macro]

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP 151

remote-value-bind is similar to multiple-value-bind except the values bound come from remote-form’s eval-
uation in the remote process. The local-forms execute in an implicit progn.

If the client unwinds past the call to remote-value-bind, the server continues running, but the system ignores
the values the server sends back.

If the server unwinds past the remotely requested call, instead of returning normally, the local-forms never
execute, and remote-value-bind returns nil.

9.1.3 Remote Objects

The wire mechanism only directly supports a limited number of data types for transmission as arguments
for remote function calls and as return values: integers inclusively less than 32 bits in length, symbols, lists.
Sometimes it is useful to allow remote processes to refer to local data structures without allowing the remote
process to operate on the data. We have remote-objects to support this without the need to represent the data
structure in terms of the above data types, to send the representation to the remote process, to decode the
representation, to later encode it again, and to send it back along the wire.

You can convert any Lisp object into a remote-object. When you send a remote-object along a wire, the
system simply sends a unique token for it. In the remote process, the system looks up the token and returns a
remote-object for the token. When the remote process needs to refer to the original Lisp object as an argument to
a remote call back or as a return value, it uses the remote-object it has which the system converts to the unique
token, sending that along the wire to the originating process. Upon receipt in the first process, the system
converts the token back to the same (eq) remote-object.

wire:make-remote-object object [Function]
make-remote-object returns a remote-object that has object as its value. The remote-object can be passed

across wires just like the directly supported wire data types.

wire:remote-object-p object [Function]
The function remote-object-p returns t if object is a remote object and nil otherwise.

wire:remote-object-local-p remote [Function]
The function remote-object-local-p returns t if remote refers to an object in the local process. This is can only

occur if the local process created remote with make-remote-object.

wire:remote-object-eq obj1 obj2 [Function]
The function remote-object-eq returns t if obj1 and obj2 refer to the same (eq) lisp object, regardless of which

process created the remote-objects.

wire:remote-object-value remote [Function]
This function returns the original object used to create the given remote object. It is an error if some other

process originally created the remote-object.

wire:forget-remote-translation object [Function]
This function removes the information and storage necessary to translate remote-objects back into object ,

so the next gc can reclaim the memory. You should use this when you no longer expect to receive references to
object . If some remote process does send a reference to object , remote-object-value signals an error.

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP 152

9.2 The WIRE Package

The wire package provides for sending data along wires. The remote package sits on top of this package. All
data sent with a given output routine must be read in the remote process with the complementary fetching
routine. For example, if you send so a string with wire-output-string, the remote process must know to use
wire-get-string. To avoid rigid data transfers and complicated code, the interface supports sending tagged data.
With tagged data, the system sends a tag announcing the type of the next data, and the remote system takes
care of fetching the appropriate type.

When using interfaces at the wire level instead of the RPC level, the remote process must read everything
sent by these routines. If the remote process leaves any input on the wire, it will later mistake the data for an
RPC request causing unknown lossage.

9.2.1 Untagged Data

When using these routines both ends of the wire know exactly what types are coming and going and in what
order. This data is restricted to the following types:

• 8 bit unsigned bytes.

• 32 bit unsigned bytes.

• 32 bit integers.

• simple-strings less than 65535 in length.

wire:wire-output-byte wire byte [Function]
wire:wire-get-byte wire [Function]
wire:wire-output-number wire number [Function]
wire:wire-get-number wire &optional signed [Function]
wire:wire-output-string wire string [Function]
wire:wire-get-string wire [Function]

These functions either output or input an object of the specified data type. When you use any of these output
routines to send data across the wire, you must use the corresponding input routine interpret the data.

9.2.2 Tagged Data

When using these routines, the system automatically transmits and interprets the tags for you, so both ends
can figure out what kind of data transfers occur. Sending tagged data allows a greater variety of data types:
integers inclusively less than 32 bits in length, symbols, lists, and remote-objects (see section 9.1.3, page 151).
The system sends symbols as two strings, the package name and the symbol name, and if the package doesn’t
exist remotely, the remote process signals an error. The system ignores other slots of symbols. Lists may be
any tree of the above valid data types. To send other data types you must represent them in terms of these
supported types. For example, you could use prin1-to-string locally, send the string, and use read-from-string
remotely.

wire:wire-output-object wire object &optional cache-it [Function]
wire:wire-get-object wire [Function]

The function wire-output-object sends object over wire preceded by a tag indicating its type.
If cache-it is non-nil, this function only sends object the first time it gets object . Each end of the wire

associates a token with object , similar to remote-objects, allowing you to send the object more efficiently on
successive transmissions. cache-it defaults to t for symbols and nil for other types. Since the RPC level requires
function names, a high-level protocol based on a set of function calls saves time in sending the functions’ names
repeatedly.

The function wire-get-object reads the results of wire-output-object and returns that object.

CHAPTER 9. INTERPROCESS COMMUNICATION UNDER LISP 153

9.2.3 Making Your Own Wires

You can create wires manually in addition to the remote package’s interface creating them for you. To create a
wire, you need a Unix file descriptor. If you are unfamiliar with Unix file descriptors, see section 2 of the Unix
manual pages.

wire:make-wire descriptor [Function]
The function make-wire creates a new wire when supplied with the file descriptor to use for the underlying

I/O operations.

wire:wire-p object [Function]
This function returns t if object is indeed a wire, nil otherwise.

wire:wire-fd wire [Function]
This function returns the file descriptor used by the wire.

9.3 Out-Of-Band Data

The TCP/IP protocol allows users to send data asynchronously, otherwise known as out-of-band data. When
using this feature, the operating system interrupts the receiving process if this process has chosen to be notified
about out-of-band data. The receiver can grab this input without affecting any information currently queued
on the socket. Therefore, you can use this without interfering with any current activity due to other wire and
remote interfaces.

Unfortunately, most implementations of TCP/IP are broken, so use of out-of-band data is limited for safety
reasons. You can only reliably send one character at a time.

The Wire package is built on top of CMUCLs networking support. In view of this, it is possible to use
the routines described in section 10.6 for handling and sending out-of-band data. These all take a Unix file
descriptor instead of a wire, but you can fetch a wire’s file descriptor with wire-fd.

Chapter 10

Networking Support

by Mario S. Mommer

This chapter documents the IPv4 networking and local sockets support offered by CMUCL. It covers most of
the basic sockets interface functionality in a convenient and transparent way.

For reasons of space it would be impossible to include a thorough introduction to network programming,
so we assume some basic knowledge of the matter.

10.1 Byte Order Converters

These are the functions that convert integers from host byte order to network byte order (big-endian).

extensions:htonl integer [Function]
Converts a 32 bit integer from host byte order to network byte order.

extensions:htons integer [Function]
Converts a 16 bit integer from host byte order to network byte order.

extensions:ntohs integer [Function]
Converts a 32 bit integer from network byte order to host byte order.

extensions:ntohl integer [Function]
Converts a 32 bit integer from network byte order to host byte order.

10.2 Domain Name Services (DNS)

The networking support of CMUCL includes the possibility of doing DNS lookups. The function

extensions:lookup-host-entry host [Function]
returns a structure of type host-entry (explained below) for the given host . If host is an integer, it will be

assumed to be the IP address in host (byte-)order. If it is a string, it can contain either the host name or the IP
address in dotted format.

This function works by completing the structure host-entry . That is, if the user provides the IP address, then
the structure will contain that information and also the domain names. If the user provides the domain name,
the structure will be complemented with the IP addresses along with the any aliases the host might have.

154

CHAPTER 10. NETWORKING SUPPORT 155

host-entry [structure]
name aliases addr-type addr-list
This structure holds all information available at request time on a given host. The entries are self-explanatory.

Aliases is a list of strings containing alternative names of the host, and addr-list a list of addresses stored in host
byte order. The field addr-type contains the number of the address family, as specified in socket.h, to which
the addresses belong. Since only addresses of the IPv4 family are currently supported, this slot always has the
value 2.

extensions:ip-string addr [Function]
This function takes an IP address in host order and returns a string containing it in dotted format.

10.3 Binding to Interfaces

In this section, functions for creating sockets bound to an interface are documented.

extensions:create-inet-listener port &optional kind &key :reuse-address :backlog :host [Function]
Creates a socket and binds it to a port, prepared to receive connections of kind kind (which defaults to

:stream), queuing up to backlog of them. If :reuse-address T is used, the option SO REUSEADDR is used in
the call to bind . If no value is given for :host, it will try to bind to the default IP address of the machine where
the Lisp process is running.

extensions:create-unix-listener path &optional kind :reuse-address :backlog [Function]
Creates a socket and binds it to the file name given by path, prepared to receive connections of kind kind

(which defaults to :stream), queuing up to backlog of them. If :reuse-address T is used, then the file given by
path is unlinked first.

10.4 Accepting Connections

Once a socket is bound to its interface, we have to explicitly accept connections. This task is performed by the
functions we document here.

extensions:accept-tcp-connection unconnected [Function]
Waits until a connection arrives on the (internet family) socket unconnected . Returns the file descriptor of

the connection. These can be conveniently encapsulated using file descriptor streams; see 6.7.

extensions:accept-unix-connection unconnected [Function]
Waits until a connection arrives on the (unix family) socket unconnected . Returns the file descriptor of the

connection. These can be conveniently encapsulated using file descriptor streams; see 6.7.

10.5 Connecting

The task performed by the functions we present next is connecting to remote hosts.

extensions:connect-to-inet-socket host port &optional kind [Function]
Tries to open a connection to the remote host host (which may be an IP address in host order, or a string with

either a host name or an IP address in dotted format) on port port . Returns the file descriptor of the connection.
The optional parameter kind can be either :stream (the default) or :datagram.

extensions:connect-to-unix-socket path &optional kind [Function]
Opens a connection to the unix “adress” given by path. Returns the file descriptor of the connection. The

type of connection is given by kind , which can be either :stream (the default) or :datagram.

CHAPTER 10. NETWORKING SUPPORT 156

10.6 Out-of-Band Data

Out-of-band data is data transmitted with a higher priority than ordinary data. This is usually used by either
side of the connection to signal exceptional conditions. Due to the fact that most TCP/IP implementations are
broken in this respect, only single characters can reliably be sent this way.

extensions:add-oob-handler fd char handler [Function]
Sets the function passed in handler as a handler for the character char on the connection whose descriptor

is fd . In case this character arrives, the function in handler is called without any argument.

extensions:remove-oob-handler fd char [Function]
Removes the handler for the character char from the connection with the file descriptor fd

extensions:remove-all-oob-handlers fd [Function]
After calling this function, the connection whose descriptor is fd will ignore any out-of-band character it

receives.

extensions:send-character-out-of-band fd char [Function]
Sends the character char through the connection fd out of band.

10.7 Unbound Sockets, Socket Options, and Closing Sockets

These functions create unbound sockets. This is usually not necessary, since connectors and listeners create
their own.

extensions:create-unix-socket &optional type [Function]
Creates a unix socket for the unix address family, of type :stream and (on success) returns its file descriptor.

extensions:create-inet-socket &optional type [Function]
Creates a unix socket for the internet address family, of type :stream and (on success) returns its file descrip-

tor.
Further, it is desirable to be able to change socket options. This is performed by the following two functions,

which are essentially wrappers for system calls to getsockopt and setsockopt.

extensions:get-socket-option socket level optname [Function]
Gets the value of option optname from the socket socket .

extensions:set-socket-option socket level optname optval [Function]
Sets the value of option optname from the socket socket to the value optval .
For information on possible options and values we refer to the manpages of getsockopt and setsockopt,

and to socket.h
Finally, the function

extensions:close-socket socket [Function]
Closes the socket given by the file descriptor socket .

CHAPTER 10. NETWORKING SUPPORT 157

10.8 Unix Datagrams

Datagram network is supported with the following functions.

unix:inet-recvfrom fd buffer size &key flags [Function]
A simple interface to the Unix recvfrom function.

unix:inet-sendto fd buffer size port &key flags [Function]
A simple interface to the Unix sendto function.

unix:inet-shutdown fd level [Function]
A simple interface to the Unix shutdown function. For level, you may use the following symbols to close one

or both ends of a socket: shut-rd, shut-wr, shut-rdwr.

10.9 Errors

Errors that occur during socket operations signal a socket-error condition, a subtype of the error condition.
Currently this condition includes just the Unix errno associated with the error.

Chapter 11

Debugger Programmer’s Interface

The debugger programmers interface is exported from from the DEBUG-INTERNALS or DI package. This is
a CMU extension that allows debugging tools to be written without detailed knowledge of the compiler or
run-time system.

Some of the interface routines take a code-location as an argument. As described in the section on code-
locations, some code-locations are unknown. When a function calls for a basic-code-location, it takes either
type, but when it specifically names the argument code-location, the routine will signal an error if you give it
an unknown code-location.

11.1 DI Exceptional Conditions

Some of these operations fail depending on the availability debugging information. In the most severe case,
when someone saved a Lisp image stripping all debugging data structures, no operations are valid. In this
case, even backtracing and finding frames is impossible. Some interfaces can simply return values indicating
the lack of information, or their return values are naturally meaningful in light missing data. Other routines,
as documented below, will signal serious-conditions when they discover awkward situations. This interface
does not provide for programs to detect these situations other than by calling a routine that detects them and
signals a condition. These are serious-conditions because the program using the interface must handle them
before it can correctly continue execution. These debugging conditions are not errors since it is no fault of the
programmers that the conditions occur.

11.1.1 Debug-conditions

The debug internals interface signals conditions when it can’t adhere to its contract. These are serious-
conditions because the program using the interface must handle them before it can correctly continue execution.
These debugging conditions are not errors since it is no fault of the programmers that the conditions occur. The
interface does not provide for programs to detect these situations other than calling a routine that detects them
and signals a condition.

debug-condition [Condition]
This condition inherits from serious-condition, and all debug-conditions inherit from this. These must be

handled, but they are not programmer errors.

no-debug-info [Condition]
This condition indicates there is absolutely no debugging information available.

no-debug-function-returns [Condition]
This condition indicates the system cannot return values from a frame since its debug-function lacks debug

information details about returning values.

no-debug-blocks [Condition]

158

CHAPTER 11. DEBUGGER PROGRAMMER’S INTERFACE 159

This condition indicates that a function was not compiled with debug-block information, but this informa-
tion is necessary necessary for some requested operation.

no-debug-variables [Condition]
Similar to no-debug-blocks, except that variable information was requested.

lambda-list-unavailable [Condition]
Similar to no-debug-blocks, except that lambda list information was requested.

invalid-value [Condition]
This condition indicates a debug-variable has :invalid or :unknown value in a particular frame.

ambiguous-variable-name [Condition]
This condition indicates a user supplied debug-variable name identifies more than one valid variable in a

particular frame.

11.1.2 Debug-errors

These are programmer errors resulting from misuse of the debugging tools’ programmers’ interface. You could
have avoided an occurrence of one of these by using some routine to check the use of the routine generating the
error.

debug-error [Condition]
This condition inherits from error, and all user programming errors inherit from this condition.

unhandled-condition [Condition]
This error results from a signalled debug-condition occurring without anyone handling it.

unknown-code-location [Condition]
This error indicates the invalid use of an unknown-code-location.

unknown-debug-variable [Condition]
This error indicates an attempt to use a debug-variable in conjunction with an inappropriate debug-function;

for example, checking the variable’s validity using a code-location in the wrong debug-function will signal this
error.

frame-function-mismatch [Condition]
This error indicates you called a function returned by preprocess-for-eval on a frame other than the one for

which the function had been prepared.

11.2 Debug-variables

Debug-variables represent the constant information about where the system stores argument and local variable
values. The system uniquely identifies with an integer every instance of a variable with a particular name and
package. To access a value, you must supply the frame along with the debug-variable since these are particular
to a function, not every instance of a variable on the stack.

debug-variable-name debug-variable [Function]
This function returns the name of the debug-variable. The name is the name of the symbol used as an

identifier when writing the code.

debug-variable-package debug-variable [Function]

CHAPTER 11. DEBUGGER PROGRAMMER’S INTERFACE 160

This function returns the package name of the debug-variable. This is the package name of the symbol used
as an identifier when writing the code.

debug-variable-symbol debug-variable [Function]
This function returns the symbol from interning debug-variable-name in the package named by debug-

variable-package.

debug-variable-id debug-variable [Function]
This function returns the integer that makes debug-variable’s name and package name unique with respect

to other debug-variable’s in the same function.

debug-variable-validity debug-variable basic-code-location [Function]
This function returns three values reflecting the validity of debug-variable’s value at basic-code-location:

:valid The value is known to be available.

:invalid The value is known to be unavailable.

:unknown The value’s availability is unknown.

debug-variable-value debug-variable frame [Function]
This function returns the value stored for debug-variable in frame. The value may be invalid. This is

SETF’able.

debug-variable-valid-value debug-variable frame [Function]
This function returns the value stored for debug-variable in frame. If the value is not :valid, then this signals

an invalid-value error.

11.3 Frames

Frames describe a particular call on the stack for a particular thread. This is the environment for name resolu-
tion, getting arguments and locals, and returning values. The stack conceptually grows up, so the top of the
stack is the most recently called function.

top-frame, frame-down, frame-up, and frame-debug-function can only fail when there is absolutely no debug
information available. This can only happen when someone saved a Lisp image specifying that the system
dump all debugging data.

top-frame [Function]
This function never returns the frame for itself, always the frame before calling top-frame.

frame-down frame [Function]
This returns the frame immediately below frame on the stack. When frame is the bottom of the stack, this

returns nil.

frame-up frame [Function]
This returns the frame immediately above frame on the stack. When frame is the top of the stack, this returns

nil.

frame-debug-function frame [Function]
This function returns the debug-function for the function whose call frame represents.

CHAPTER 11. DEBUGGER PROGRAMMER’S INTERFACE 161

frame-code-location frame [Function]
This function returns the code-location where frame’s debug-function will continue running when program

execution returns to frame. If someone interrupted this frame, the result could be an unknown code-location.

frame-catches frame [Function]
This function returns an a-list for all active catches in frame mapping catch tags to the code-locations at

which the catch re-enters.

eval-in-frame frame form [Function]
This evaluates form in frame’s environment. This can signal several different debug-conditions since its suc-

cess relies on a variety of inexact debug information: invalid-value, ambiguous-variable-name, frame-function-
mismatch. See also preprocess-for-eval (page 162).

11.4 Debug-functions

Debug-functions represent the static information about a function determined at compile time—argument and
variable storage, their lifetime information, etc. The debug-function also contains all the debug-blocks repre-
senting basic-blocks of code, and these contains information about specific code-locations in a debug-function.

do-debug-function-blocks (block-var debug-function {result-form}) {form}∗ [Macro]
This executes the forms in a context with block-var bound to each debug-block in debug-function succes-

sively. Result-form is an optional form to execute for a return value, and do-debug-function-blocks returns nilif
there is no result-form. This signals a no-debug-blocks condition when the debug-function lacks debug-block
information.

debug-function-lambda-list debug-function [Function]
This function returns a list representing the lambda-list for debug-function. The list has the following struc-

ture:

(required-var1 required-var2
...
(:optional var3 suppliedp-var4)
(:optional var5)
...
(:rest var6) (:rest var7)
...
(:keyword keyword-symbol var8 suppliedp-var9)
(:keyword keyword-symbol var10)
...
)

Each varn is a debug-variable; however, the symbol :deleted appears instead whenever the argument remains
unreferenced throughout debug-function.

If there is no lambda-list information, this signals a lambda-list-unavailable condition.

do-debug-function-variables (var debug-function {result}) {form}∗ [Macro]
This macro executes each form in a context with var bound to each debug-variable in debug-function. This

returns the value of executing result (defaults to nil). This may iterate over only some of debug-function’s
variables or none depending on debug policy; for example, possibly the compilation only preserved argument
information.

CHAPTER 11. DEBUGGER PROGRAMMER’S INTERFACE 162

debug-variable-info-available debug-function [Function]
This function returns whether there is any variable information for debug-function. This is useful for distin-

guishing whether there were no locals in a function or whether there was no variable information. For example,
if do-debug-function-variables executes its forms zero times, then you can use this function to determine the rea-
son.

debug-function-symbol-variables debug-function symbol [Function]
This function returns a list of debug-variables in debug-function having the same name and package as

symbol . If symbol is uninterned, then this returns a list of debug-variables without package names and with
the same name as symbol . The result of this function is limited to the availability of variable information in
debug-function; for example, possibly debug-function only knows about its arguments.

ambiguous-debug-variables debug-function name-prefix-string [Function]
This function returns a list of debug-variables in debug-function whose names contain name-prefix-string as

an initial substring. The result of this function is limited to the availability of variable information in debug-
function; for example, possibly debug-function only knows about its arguments.

preprocess-for-eval form basic-code-location [Function]
This function returns a function of one argument that evaluates form in the lexical context of basic-code-

location. This allows efficient repeated evaluation of form at a certain place in a function which could be useful
for conditional breaking. This signals a no-debug-variables condition when the code-location’s debug-function
has no debug-variable information available. The returned function takes a frame as an argument. See also
eval-in-frame (page 161).

function-debug-function function [Function]
This function returns a debug-function that represents debug information for function.

debug-function-kind debug-function [Function]
This function returns the kind of function debug-function represents. The value is one of the following:

:optional This kind of function is an entry point to an ordinary function. It handles optional defaulting,
parsing keywords, etc.

:external This kind of function is an entry point to an ordinary function. It checks argument values and count
and calls the defined function.

:top-level This kind of function executes one or more random top-level forms from a file.

:cleanup This kind of function represents the cleanup forms in an unwind-protect.

nil This kind of function is not one of the above; that is, it is not specially marked in any way.

debug-function-function debug-function [Function]
This function returns the Common Lisp function associated with the debug-function. This returns nil if the

function is unavailable or is non-existent as a user callable function object.

debug-function-name debug-function [Function]
This function returns the name of the function represented by debug-function. This may be a string or a

cons; do not assume it is a symbol.

CHAPTER 11. DEBUGGER PROGRAMMER’S INTERFACE 163

11.5 Debug-blocks

Debug-blocks contain information pertinent to a specific range of code in a debug-function.

do-debug-block-locations (code-var debug-block {result}) {form}∗ [Macro]
This macro executes each form in a context with code-var bound to each code-location in debug-block . This

returns the value of executing result (defaults to nil).

debug-block-successors debug-block [Function]
This function returns the list of possible code-locations where execution may continue when the basic-block

represented by debug-block completes its execution.

debug-block-elsewhere-p debug-block [Function]
This function returns whether debug-block represents elsewhere code. This is code the compiler has moved

out of a function’s code sequence for optimization reasons. Code-locations in these blocks are unsuitable for
stepping tools, and the first code-location has nothing to do with a normal starting location for the block.

11.6 Breakpoints

A breakpoint represents a function the system calls with the current frame when execution passes a certain
code-location. A break point is active or inactive independent of its existence. They also have an extra slot for
users to tag the breakpoint with information.

make-breakpoint hook-function what &key :kind :info :function-end-cookie [Function]
This function creates and returns a breakpoint. When program execution encounters the breakpoint, the

system calls hook-function. hook-function takes the current frame for the function in which the program is
running and the breakpoint object.

what and kind determine where in a function the system invokes hook-function. what is either a code-
location or a debug-function. kind is one of :code-location, :function-start, or :function-end. Since the starts and
ends of functions may not have code-locations representing them, designate these places by supplying what as
a debug-function and kind indicating the :function-start or :function-end. When what is a debug-function and
kind is :function-end, then hook-function must take two additional arguments, a list of values returned by the
function and a function-end-cookie.

info is information supplied by and used by the user.
function-end-cookie is a function. To implement function-end breakpoints, the system uses starter break-

points to establish the function-end breakpoint for each invocation of the function. Upon each entry, the system
creates a unique cookie to identify the invocation, and when the user supplies a function for this argument,
the system invokes it on the cookie. The system later invokes the function-end breakpoint hook on the same
cookie. The user may save the cookie when passed to the function-end-cookie function for later comparison in
the hook function.

This signals an error if what is an unknown code-location.
Note: Breakpoints in interpreted code or byte-compiled code are not implemented. Function-end breakpoints are not

implemented for compiled functions that use the known local return convention (e.g. for block-compiled or self-recursive
functions.)

activate-breakpoint breakpoint [Function]
This function causes the system to invoke the breakpoint ’s hook-function until the next call to deactivate-

breakpoint or delete-breakpoint. The system invokes breakpoint hook functions in the opposite order that you
activate them.

deactivate-breakpoint breakpoint [Function]

CHAPTER 11. DEBUGGER PROGRAMMER’S INTERFACE 164

This function stops the system from invoking the breakpoint ’s hook-function.

breakpoint-active-p breakpoint [Function]
This returns whether breakpoint is currently active.

breakpoint-hook-function breakpoint [Function]
This function returns the breakpoint ’s function the system calls when execution encounters breakpoint , and

it is active. This is SETF’able.

breakpoint-info breakpoint [Function]
This function returns breakpoint ’s information supplied by the user. This is SETF’able.

breakpoint-kind breakpoint [Function]
This function returns the breakpoint ’s kind specification.

breakpoint-what breakpoint [Function]
This function returns the breakpoint ’s what specification.

delete-breakpoint breakpoint [Function]
This function frees system storage and removes computational overhead associated with breakpoint . After

calling this, breakpoint is useless and can never become active again.

11.7 Code-locations

Code-locations represent places in functions where the system has correct information about the function’s en-
vironment and where interesting operations can occur—asking for a local variable’s value, setting breakpoints,
evaluating forms within the function’s environment, etc.

Sometimes the interface returns unknown code-locations. These represent places in functions, but there is
no debug information associated with them. Some operations accept these since they may succeed even with
missing debug data. These operations’ argument is named basic-code-location indicating they take known
and unknown code-locations. If an operation names its argument code-location, and you supply an unknown
one, it will signal an error. For example, frame-code-location may return an unknown code-location if someone
interrupted Lisp in the given frame. The system knows where execution will continue, but this place in the
code may not be a place for which the compiler dumped debug information.

code-location-debug-function basic-code-location [Function]
This function returns the debug-function representing information about the function corresponding to the

code-location.

code-location-debug-block basic-code-location [Function]
This function returns the debug-block containing code-location if it is available. Some debug policies inhibit

debug-block information, and if none is available, then this signals a no-debug-blocks condition.

code-location-top-level-form-offset code-location [Function]
This function returns the number of top-level forms before the one containing code-location as seen by the

compiler in some compilation unit. A compilation unit is not necessarily a single file, see the section on debug-
sources.

code-location-form-number code-location [Function]

CHAPTER 11. DEBUGGER PROGRAMMER’S INTERFACE 165

This function returns the number of the form corresponding to code-location. The form number is derived
by walking the subforms of a top-level form in depth-first order. While walking the top-level form, count one
in depth-first order for each subform that is a cons. See form-number-translations (page 166).

code-location-debug-source code-location [Function]
This function returns code-location’s debug-source.

code-location-unknown-p basic-code-location [Function]
This function returns whether basic-code-location is unknown. It returns nil when the code-location is

known.

code-location= code-location1 code-location2 [Function]
This function returns whether the two code-locations are the same.

11.8 Debug-sources

Debug-sources represent how to get back the source for some code. The source is either a file (compile-file or
load), a lambda-expression (compile, defun, defmacro), or a stream (something particular to CMUCL, compile-
from-stream).

When compiling a source, the compiler counts each top-level form it processes, but when the compiler han-
dles multiple files as one block compilation, the top-level form count continues past file boundaries. Therefore
code-location-top-level-form-offset returns an offset that does not always start at zero for the code-location’s
debug-source. The offset into a particular source is code-location-top-level-form-offset minus debug-source-
root-number.

Inside a top-level form, a code-location’s form number indicates the subform corresponding to the code-
location.

debug-source-from debug-source [Function]
This function returns an indication of the type of source. The following are the possible values:

:file from a file (obtained by compile-file if compiled).

:lisp from Lisp (obtained by compile if compiled).

:stream from a non-file stream (CMUCL supports compile-from-stream).

debug-source-name debug-source [Function]
This function returns the actual source in some sense represented by debug-source, which is related to

debug-source-from:

:file the pathname of the file.

:lisp a lambda-expression.

:stream some descriptive string that’s otherwise useless.

debug-source-created debug-source [Function]
This function returns the universal time someone created the source. This may be nil if it is unavailable.

debug-source-compiled debug-source [Function]
This function returns the time someone compiled the source. This is nil if the source is uncompiled.

debug-source-root-number debug-source [Function]
This returns the number of top-level forms processed by the compiler before compiling this source. If this

source is uncompiled, this is zero. This may be zero even if the source is compiled since the first form in the first
file compiled in one compilation, for example, must have a root number of zero—the compiler saw no other
top-level forms before it.

CHAPTER 11. DEBUGGER PROGRAMMER’S INTERFACE 166

11.9 Source Translation Utilities

These two functions provide a mechanism for converting the rather obscure (but highly compact) representation
of source locations into an actual source form:

debug-source-start-positions debug-source [Function]
This function returns the file position of each top-level form as a vector if debug-source is from a :file. If

debug-source-from is :lisp or :stream, or the file is byte-compiled, then the result is nil.

form-number-translations form tlf-number [Function]
This function returns a table mapping form numbers (see code-location-form-number) to source-paths. A

source-path indicates a descent into the top-level-form form, going directly to the subform corresponding to a
form number. tlf-number is the top-level-form number of form.

source-path-context form path context [Function]
This function returns the subform of form indicated by the source-path. Form is a top-level form, and path is

a source-path into it. Context is the number of enclosing forms to return instead of directly returning the source-
path form. When context is non-zero, the form returned contains a marker, #:****HERE****, immediately before
the form indicated by path.

Chapter 12

Cross-Referencing Facility

by Eric Marsden

The CMUCL cross-referencing facility (abbreviated XREF) assists in the analysis of static dependency rela-
tionships in a program. It provides introspection capabilities such as the ability to know which functions may
call a given function, and the program contexts in which a particular global variable is used. The compiler
populates a database of cross-reference information, which can be queried by the user to know:

• the list of program contexts (functions, macros, top-level forms) where a given function may be called at
runtime, either directly or indirectly (via its function-object);

• the list of program contexts where a given global variable may be read;

• the list of program contexts that bind a global variable;

• the list of program contexts where a given global variable may be modified during the execution of the
program.

A global variable is either a dynamic variable or a constant variable, for instance declared using defvar or
defparameter or defconstant.

12.1 Populating the cross-reference database

c:*record-xref-info* [Variable]
When non-NIL, code that is compiled (either using compile-file, or by calling compile from the listener), will

be analyzed for cross-references. Defaults to nil.
Cross-referencing information is only generated by the compiler; the interpreter does not populate the cross-

reference database. XREF analysis is independent of whether the compiler is generating native code or byte
code, and of whether it is compiling from a file, from a stream, or is invoked interactively from the listener.

xref:init-xref-database [Function]
Reinitializes the database of cross-references. This can be used to reclaim the space occupied by the database

contents, or to discard stale cross-reference information.

12.2 Querying the cross-reference database

CMUCL provides a number of functions in the XREF package that may be used to query the cross-reference
database:

xref:who-calls function [Function]

167

CHAPTER 12. CROSS-REFERENCING FACILITY 168

Returns the list of xref-contexts where function (either a symbol that names a function, or a function object)
may be called at runtime. XREF does not record calls to macro-functions (such as defun) or to special forms
(such as eval-when).

xref:who-references global-variable [Function]
Returns the list of program contexts that may reference global-variable.

xref:who-binds global-variable [Function]
Returns a list of program contexts where the specified global variable may be bound at runtime (for example

using LET).

xref:who-sets global-variable [Function]
Returns a list of program contexts where the given global variable may be modified at runtime (for example

using SETQ).
An xref-context is the originating site of a cross-reference. It identifies a portion of a program, and is defined

by an xref-context structure, that comprises a name, a source file and a source-path.

xref:xref-context-name context [Function]
Returns the name slot of an xref-context, which is one of:

• a global function, which is named by a symbol or by a list of the form (setf foo).

• a macro, named by a list (:macro foo).

• an inner function (flet, labels, or anonymous lambdas) that is named by a list of the form (:internal outer
inner).

• a method, named by a list of the form (:method foo (specializer1 specializer2).

• a string "Top-Level Form" that identifies a reference from a top-level form. Note that multiple refer-
ences from top-level forms will only be listed once.

• a compiler-macro, named by a string of the form (:compiler-macro foo).

• a string such as "DEFSTRUCT FOO", identifying a reference from within a structure accessor or construc-
tor or copier.

• a string such as

"Creation Form for #<KERNEL::CLASS-CELL STRUCT-FOO>"

• a string such as "defun foo", or "defmethod bar (t)", that identifies a reference from within code
that has been generated by the compiler for that form. For example, the compilation of a defclass form
causes accessor functions to be generated by the compiler; this code is compiler-generated (it does not
appear in the source file), and so is identified by the XREF facility by a string.

xref:xref-context-file context [Function]
Return the truename (in the sense of the variable *compile-file-truename*) of the source file from which the

referencing forms were compiled. This slot will be nil if the code was compiled from a stream, or interactively
from the listener.

xref:xref-context-source-path context [Function]
Return a list of positive integers identifying the form that contains the cross-reference. The first integer in

the source-path is the number of the top-level form containing the cross-reference (for example, 2 identifies the
second top-level form in the source file). The second integer in the source-path identifies the form within this
top-level form that contains the cross-reference, and so on. This function will always return nil if the file slot of
an xref-context is nil.

CHAPTER 12. CROSS-REFERENCING FACILITY 169

12.3 Example usage

In this section, we will illustrate use of the XREF facility on a number of simple examples.
Consider the following program fragment, that defines a global variable and a function.

(defvar *variable-one* 42)

(defun function-one (x)
(princ (* x *variable-one*)))

We save this code in a file named example.lisp, enable cross-referencing, clear any previous cross-reference
information, compile the file, and can then query the cross-reference database (output has been modified for
readability).

USER> (setf c:*record-xref-info* t)
USER> (xref:init-xref-database)
USER> (compile-file "example")
USER> (xref:who-calls ’princ)
(#<xref-context function-one in #p"example.lisp">)
USER> (xref:who-references ’*variable-one*)
(#<xref-context function-one in #p"example.lisp">)

From this example, we see that the compiler has noted the call to the global function princ in function-one,
and the reference to the global variable *variable-one*.

Suppose that we add the following code to the previous file.

(defconstant +constant-one+ 1)

(defstruct struct-one
slot-one
(slot-two +constant-one+ :type integer)
(slot-three 42 :read-only t))

(defmacro with-different-one (&body body)
‘(let ((*variable-one* 666))

,@body))

(defun get-variable-one () *variable-one*)

(defun (setf get-variable-one) (new-value)
(setq *variable-one* new-value))

In the following example, we detect references x and y.
The following function illustrates the effect that various forms of optimization carried out by the CMUCL

compiler can have on the cross-references that are reported for a particular program. The compiler is able
to detect that the evaluated condition is always false, and that the first clause of the if will never be taken
(this optimization is called dead-code elimination). XREF will therefore not register a call to the function sin
from the function foo. Likewise, no calls to the functions sqrt and < are registered, because the compiler has
eliminated the code that evaluates the condition. Finally, no call to the function expt is generated, because the
compiler was able to evaluate the result of the expression (expt 3 2) at compile-time (though a process called
constant-folding).

;; zero call references are registered for this function!
(defun constantly-nine (x)

(if (< (sqrt x) 0)
(sin x)
(expt 3 2)))

CHAPTER 12. CROSS-REFERENCING FACILITY 170

12.4 Limitations of the cross-referencing facility

No cross-reference information is available for interpreted functions. The cross-referencing database is not per-
sistent: unless you save an image using save-lisp, the database will be empty each time CMUCL is restarted.
There is no mechanism that saves cross-reference information in FASL files, so loading a system from compiled
code will not populate the cross-reference database. The XREF database currently accumulates “stale” informa-
tion: when compiling a file, it does not delete any cross-references that may have previously been generated for
that file. This latter limitation will be removed in a future release.

The cross-referencing facility is only able to analyze the static dependencies in a program; it does not pro-
vide any information about runtime (dynamic) dependencies. For instance, XREF is able to identify the list of
program contexts where a given function may be called, but is not able to determine which contexts will be
activated when the program is executed with a specific set of input parameters. However, the static analysis
that is performed by the CMUCL compiler does allow XREF to provide more information than would be avail-
able from a mere syntactic analysis of a program. References that occur from within unreachable code will not
be displayed by XREF, because the CMUCL compiler deletes dead code before cross-references are analyzed.
Certain “trivial” function calls (where the result of the function call can be evaluated at compile-time) may be
eliminated by optimizations carried out by the compiler; see the example below.

If you examine the entire database of cross-reference information (by accessing undocumented internals of
the XREF package), you will note that XREF notes “bogus” cross-references to function calls that are inserted
by the compiler. For example, in safe code, the CMUCL compiler inserts a call to an internal function called
c::%verify-argument-count, so that the number of arguments passed to the function is checked each time it is
called. The XREF facility does not distinguish between user code and these forms that are introduced during
compilation. This limitation should not be visible if you use the documented functions in the XREF package.

As of the 18e release of CMUCL, the cross-referencing facility is experimental; expect details of its implemen-
tation to change in future releases. In particular, the names given to CLOS methods and to inner functions will
change in future releases.

Function Index

accept-tcp-connection, 155
accept-unix-connection, 155
activate-breakpoint, 163
add-fd-handler, 127
add-oob-handler, 156
add-xwindow-object, 126
addr, 137
alien-funcall, 136, 141, 142
alien-sap, 138
ambiguous-debug-variables, 162
ambiguous-files, 29

break, 43
breakpoint-active-p, 164
breakpoint-hook-function, 164
breakpoint-info, 164
breakpoint-kind, 164
breakpoint-what, 164

callback, 143, 143
callback-funcall, 143
cancel-finalization, 19
cast, 137
ceiling, 8
clear-search-list, 28
close-socket, 156
cmd-switch-arg, 119
cmd-switch-name, 119
cmd-switch-value, 119
cmd-switch-words, 119
code-location-debug-block, 164
code-location-debug-function, 164
code-location-debug-source, 165
code-location-form-number, 164
code-location-top-level-form-offset, 164
code-location-unknown-p, 165
code-location=, 165
compile, 57
compile-file, 49, 57, 95, 101
compile-from-stream, 58
complete-file, 29
connect-to-inet-socket, 155
connect-to-remote-server, 150
connect-to-unix-socket, 155
constantly, 38
create-inet-listener, 155

create-inet-socket, 156
create-request-server, 149
create-unix-listener, 155
create-unix-socket, 156

deactivate-breakpoint, 163
debug, 43
debug-block-elsewhere-p, 163
debug-block-successors, 163
debug-function-function, 162
debug-function-kind, 162
debug-function-lambda-list, 161
debug-function-name, 162
debug-function-symbol-variables, 162
debug-source-compiled, 165
debug-source-created, 165
debug-source-from, 165
debug-source-name, 165
debug-source-root-number, 165
debug-source-start-positions, 166
debug-variable-id, 160
debug-variable-info-available, 161
debug-variable-name, 159
debug-variable-package, 159
debug-variable-symbol, 160
debug-variable-valid-value, 160
debug-variable-validity, 160
debug-variable-value, 160
def-alien-routine, 139, 142
def-alien-type, 135, 136
def-alien-variable, 139
def-callback, 143, 143
def-source-context, 64
default-directory, 29
default-interrupt, 124
define-function-name-syntax, 32
define-fwrapper, 39
define-hash-table-test, 10
defmodule, 42
defstruct, 79, 101
defswitch, 120
deftype, 79
defun, 94
delete-breakpoint, 164
delete-fwrapper, 39
deref, 137

171

FUNCTION INDEX 172

describe, 19, 51
destroy-request-server, 150
directory, 29
disable-clx-event-handling, 128
do-debug-block-locations, 163
do-debug-function-blocks, 161
do-debug-function-variables, 161
do-fwrappers, 40

ed, 2
enable-clx-event-handling, 128
enable-interrupt, 124
encapsulate, 55
encapsulated-p, 56
enumerate-search-list, 28
error, 43
eval-in-frame, 161, 162
extern-alien, 137, 139, 141

fd-stream-fd, 123
fd-stream-p, 123
fdefinition, 55
file-writable, 29
finalize, 19
find-fwrapper, 39
flet, 91
float-denormalized-p, 7
float-digits, 7
float-infinity-p, 6
float-nan-p, 7
float-precision, 7
float-sign, 7
float-trapping-nan-p, 7
floor, 8
flush-display-events, 128
flush-emf-cache, 36
forget-remote-translation, 151
form-number-translations, 165, 166
format-decoded-time, 30
format-universal-time, 30
frame-catches, 161
frame-code-location, 161
frame-debug-function, 160
frame-down, 160
frame-up, 160
free-alien, 121, 138
function, 77
function-debug-function, 162
funwrap, 39
fwrap, 39

gc, 17, 18
gc-off, 17
gc-on, 17
gencgc-stats, 18
get-bytes-consed, 116

get-command-line-switch, 120
get-floating-point-modes, 8
get-internal-run-time, 116
get-socket-option, 156
get-unix-error-msg, 122

hash-table-test, 11
htonl, 154
htons, 154

if, 82, 86
ignore-interrupt, 124
inet-recvfrom, 157
inet-sendto, 157
inet-shutdown, 157
init-xref-database, 167
inspect, 20, 20
int-sap, 122
invalidate-descriptor, 127
ip-string, 155
iterate, 93

labels, 91, 93
let, 80
lisp-control-panel, 20
list-fwrappers, 39
load, 21
load-foreign, 140
load-logical-pathname-translations, 27
lookup-host-entry, 154

make-alien, 121, 135, 138, 144
make-breakpoint, 163
make-fd-stream, 22, 123
make-hash-table, 11, 11
make-object-set, 126
make-remote-object, 151
make-weak-pointer, 19
make-wire, 153
module-provide-cmucl-defmodule, 42
module-provide-cmucl-library, 42
multiple-value-bind, 80

no-primary-method, 33
ntohl, 154
ntohs, 154

object-set-event-handler, 129
object-set-operation, 126
open-clx-display, 128

package-definition-lock, 16
package-lock, 16
parse-time, 30
preprocess-for-eval, 161, 162
print-directory, 29
process-alive-p, 25

FUNCTION INDEX 173

process-close, 25
process-core-dumped, 24
process-error, 24
process-exit-code, 24
process-input, 24
process-kill, 24
process-output, 24
process-p, 24
process-pid, 24
process-plist, 24
process-pty, 24
process-status, 24
process-status-hook, 24
process-wait, 24
profile, 115
profile-all, 115
purify, 25, 26
push-fwrapper, 39

read-n-bytes, 22, 123
remote, 150
remote-object-eq, 151
remote-object-local-p, 151
remote-object-p, 151
remote-object-value, 151
remote-value, 150
remote-value-bind, 150
remove-all-oob-handlers, 156
remove-fd-handler, 127
remove-oob-handler, 156
report-time, 115
required-argument, 65, 76
reset-time, 115
round, 8
run-program, 22

sap+, 122
sap-alien, 137
sap-int, 122
sap-ref-16, 122
sap-ref-32, 122
sap-ref-8, 122
save-lisp, 25, 140
seal, 37
search-list, 28
search-list-defined-p, 28
send-character-out-of-band, 156
serve-all-events, 127
serve-event, 127
set-floating-point-modes, 8
set-fwrappers, 39
set-gc-trigger, 18
set-min-mem-age, 18
set-socket-option, 156
set-trigger-age, 18
signed-sap-ref-16, 122

signed-sap-ref-32, 122
signed-sap-ref-8, 122
slot, 137
source-path-context, 166
system:vector-sap, 145

the, 77, 80
time, 116
top-frame, 160
trace, 54, 92
truncate, 8

unencapsulate, 56
unix-namestring, 29
unlock-all-packages, 16
unprofile, 115
unseal, 37
untrace, 55
update-fwrapper, 39
update-fwrappers, 39

valid-function-name-p, 33
var, 47

wait-until-fd-usable, 127
weak-pointer-value, 19
who-binds, 168
who-calls, 167
who-references, 168
who-sets, 168
wire-fd, 153
wire-force-output, 150
wire-get-byte, 152
wire-get-number, 152
wire-get-object, 152
wire-get-string, 152
wire-output-byte, 152
wire-output-number, 152
wire-output-object, 152
wire-output-string, 152
wire-p, 153
with-alien, 135, 136, 138, 138
with-clx-event-handling, 128
with-compilation-unit, 59, 70, 96
with-enabled-interrupts, 124
with-fd-handler, 127
with-float-traps-masked, 9
with-interrupts, 124
without-hemlock, 124
without-interrupts, 124
without-package-locks, 16

xref-context-file, 168
xref-context-name, 168
xref-context-source-path, 168

Variable Index

max-emf-precomputation-methods, 36

after-gc-hooks, 18

before-gc-hooks, 18
block-compile-default, 96, 96
byte-compile-default, 58, 101
byte-compile-top-level, 101
bytes-consed-between-gcs, 17

command-line-strings, 119
command-line-switches, 119
command-line-utility-name, 119
command-line-words, 119
compile-file-truename, 168
compile-interpreted-methods-p, 38
compile-print, 58, 58
compile-progress, 58, 58
compile-verbose, 58, 58

debug-print-length, 45, 54, 56
debug-print-level, 54, 56
derive-function-types, 81
describe-indentation, 20
describe-level, 19
describe-print-length, 20
describe-print-level, 20

efficiency-note-cost-threshold, 64, 113, 114
efficiency-note-limit, 114
enclosing-source-cutoff, 64
environment-list, 120
error-print-length, 64
error-print-level, 64

gc-inhibit-hook, 18
gc-notify-after, 17
gc-notify-before, 17
gc-run-time, 116
gc-verbose, 17

hash-table-tests, 11

ignore-extra-close-parentheses, 22
inline-methods-in-emfs, 36
interface-style, 20

load-if-source-newer, 21
load-object-types, 21
load-source-types, 21

max-trace-indentation, 55
module-provider-functions, 42

optimize-inline-slot-access-p, 35

read-default-float-format, 6
record-xref-info, 167

stderr, 120
stdin, 120
stdout, 120

timed-functions, 115
trace-encapsulate-package-names, 55
trace-output, 54
traced-function-list, 55
trust-dynamic-extent-declarations, 40
tty, 120

undefined-warning-limit, 59, 64
use-slot-types-p, 34

174

Type Index

*, 135

ambiguous-variable-name, 159
and, 80
array, 135

base-character, 10
bignum, 6
boolean, 136

c-string, 137

debug-condition, 158
debug-error, 159
divide-by-zero, 7
double-double-float, 6
double-float, 6, 136

end-of-file, 22
enum, 136
error, 57
extensions:double-double-float, 10

fixnum, 6, 19, 75
floating-point-overflow, 7
floating-point-underflow, 7
frame-function-mismatch, 159
ftype, 81
function, 19, 136

hash-table, 19
hash-tables, 10
host-entry, 155

integer, 136
invalid-value, 159

lambda-list-unavailable, 159
list, 75

member, 76, 79

no-debug-blocks, 158
no-debug-function-returns, 158
no-debug-info, 158
no-debug-variables, 159
null, 75

or, 76, 79

pathname, 26

serious-condition, 43
signed, 136
single-float, 6, 136
string-char, 10
struct, 136
style-warning, 57
symbol, 19
system-area-pointer, 136

unhandled-condition, 159
union, 136
unknown-code-location, 159
unknown-debug-variable, 159
unsigned, 136

void, 137

warning, 57

175

Concept Index

actual source, 61
advising, 55
aliens, 121
argument syntax

efficiency, 110
arithmetic

generic, 105
arithmetic type inference, 81
array types

specialized, 108
arrays

efficiency of, 102
assembly listing, 111
availability of debug variables, 48

benchmarking techniques, 117
bignums, 106
bit-vectors

efficiency of, 102
block

basic, 50
start location, 50

block compilation, 94
debugger implications, 46

breakpoints, 52
errors, 55
function-end, 55

byte coded compilation, 100

call
inline, 98
local, 91
numeric operands, 109

canonicalization of types, 75
characters, 109
cleanup

stack frame kind, 46
closures, 93
command line options, 2
compatibility with other Lisps, 67
compilation

block, 94
units, 59
why to, 109

compilation-speed optimization quality, 69

compile time type errors, 65
compile-file

block compilation arguments, 95
compiler error messages, 60
compiler error severity, 63
compiler policy, 69
compiling, 57
complemented type checks, 83
conditional type inference, 82
consing, 110, 115

overhead of, 103
constant folding, 85
constant-function declaration, 85
context sensitive declarations, 96
continuations

implicit representation, 111
control optimization, 86
CPU time

interpretation of, 117
cross-referencing, 167

dead code elimination, 86, 87
debug optimization quality, 48, 50, 69
debug variables, 47
debugger, 43
declarations

optimize-interface, 70
optimize, 69
block compilation, 95
context-sensitive, 96

defstruct types, 78
derivation of types, 80
descriptor representations

forcing of, 113
descriptors

object, 103
dynamic type inference, 82
dynamic-extent, 40

closures, 40
known CL functions, 41
list, list*, cons, 41
rest lists, 40

effective method, 36
inlining of methods, 36

176

CONCEPT INDEX 177

precomputation, 36
efficiency

general hints, 109
of argument syntax, 110
of memory use, 110
of numeric variables, 104
of objects, 101
of type checking, 112

efficiency notes, 112
for representation, 113
verbosity, 114

empty type
the, 76

encapsulation, 55
end-block declaration, 95
entry points

external, 46
equivalence of types, 75
error messages

compiler, 60
verbosity, 64

errors
breakpoints, 55
result type of, 76
run-time, 47

evaluation
debugger, 44, 48

existing programs
to run, 67

expansion
inline, 98

external
stack frame kind, 46

external entry points, 46

fixnums, 106
floating point efficiency, 107
folding

constant, 85
frames

stack, 44
free

C function, 121
freeze-type declaration, 79
function

names, 45
tracing, 54
type inference, 81
types, 77

function call
inline, 98
local, 91

function wrappers, 38
function-end breakpoints, 55
fwrappers, 38

garbage collection, 110
generic arithmetic, 105

hash-tables
efficiency of, 102

hierarchical packages, 13

implicit continuation representation (IR1), 111
inference of types, 80
inhibit-warnings optimization quality, 69
inline, 36
inline expansion, 51, 70, 98
interpretation of run time, 117
interrupts, 47

keyword argument efficiency, 110

let optimization, 84
lisp threads, 32
listing files

trace, 111
lists

efficiency of, 101
local call, 91

numeric operands, 109
return values, 94
type inference, 81

locations
unknown, 47

logical pathnames, 27

macroexpansion, 62
errors during, 63

malloc
C function, 121

mapping
efficiency of, 111

maybe-inline declaration, 100
member types, 76
memory allocation, 110
methods, 35

auto-compilation, 35
emf precomputation, 36
inlining in effective methods, 36
interpreted, 38
load time, 36
profiling, 37
sealing, 37
tracing, 37

modular-arith, 41
multiple value optimization, 88

names
function, 45

NIL type, 76
non-descriptor representations, 104, 113
notes

CONCEPT INDEX 178

efficiency, 112
numbers in local call, 109
numeric

operation efficiency, 105
type inference, 81
types, 103

object representation, 101, 103
object representation efficiency notes, 113
object sets, 126
open-coding, 70
operation specific type inference, 81
optimization, 84

control, 86
function call, 98
let, 84
multiple value, 88
type check, 83, 112

optimize declaration, 50, 69
optimize-interface declaration, 70
optional

stack frame kind, 46
or (union) types, 76
original source, 61

package locks, 15
pointers, 121
policy

compiler, 69
debugger, 50

precise type checking, 66
primary method, 33
processing path, 62
profiling, 37, 115

methods, 37

random number generation, 31
MT-19987 generator, 32
new generator, 31
original generator, 31

read errors
compiler, 63

recording of inline expansions, 99
recursion, 90

self, 92
tail, 46, 93

representation
object, 101, 103

representation efficiency notes, 113
require, 41
rest argument efficiency, 110
return values

local call, 94
run time

interpretation of, 117

safety optimization quality, 69

sealing, 37
methods, 37
subclasses, 37

search lists, 27
semi-inline expansion, 51
severity of compiler errors, 63
signals, 123
simple-streams, 22
slot access optimization, 34
slot declaration

inline, 34
method recompilation, 35
slot-boundp, 34

slot declarations, 34
slot type checking, 33
source location printing

debugger, 48
source-to-source transformation, 62, 89
space optimization, 100
space optimization quality, 69
specialized array types, 108
specialized structure slots, 109
speed optimization quality, 69
stack frames, 44
stack numbers, 104, 113
start-block declaration, 95
static functions, 70
strings, 109
structure types, 78

efficiency of, 101
numeric slots, 109

style recommendations, 79, 89

tail recursion, 46, 90, 93
time formatting, 30
time parsing, 30
timing, 115
trace files, 111
tracing, 37, 54

errors, 55
methods, 37

transformation
source-to-source, 89

tuning, 112, 115
type checking

at compile time, 65
efficiency of, 112
optimization, 83
precise, 66
weakened, 66

type declarations
variable, 104

type inference, 80
dynamic, 82

types
alien, 121

CONCEPT INDEX 179

equivalence, 75
foreign language, 121
function, 77
in python, 65, 75
numeric, 103
portability, 67
restrictions on, 79
specialized array, 108
structure, 78
uncertainty, 112

uncertainty of types, 112
undefined warnings, 59
union (or) types, 76
unix

pathnames, 26
unix signals, 123
unknown code locations, 47
unreachable code deletion, 87
unused expression elimination, 86

validity of debug variables, 48
values declaration, 77
variables

debugger access, 47
non-descriptor, 104

vectors
efficiency of, 102

verbosity
of efficiency notes, 114
of error messages, 64

Virtual Machine (VM, or IR2) representation, 111

weakened type checking, 66
word integers, 106

	1 Introduction
	1.1 Distribution and Support
	1.2 Command Line Options
	1.3 Credits

	2 Design Choices and Extensions
	2.1 Data Types
	2.1.1 Integers
	2.1.2 Floats
	2.1.3 Extended Floats
	2.1.4 Characters
	2.1.5 Array Initialization
	2.1.6 Hash tables

	2.2 Default Interrupts for Lisp
	2.3 Implementation-Specific Packages
	2.4 Hierarchical Packages
	2.4.1 Introduction
	2.4.2 Relative Package Names
	2.4.3 Compatibility with ANSI Common Lisp

	2.5 Package Locks
	2.5.1 Rationale
	2.5.2 Disabling package locks

	2.6 The Editor
	2.7 Garbage Collection
	2.7.1 GC Parameters
	2.7.2 Generational GC
	2.7.3 Weak Pointers
	2.7.4 Finalization

	2.8 Describe
	2.9 The Inspector
	2.9.1 The Graphical Interface
	2.9.2 The TTY Inspector

	2.10 Load
	2.11 The Reader
	2.11.1 Reader Extensions
	2.11.2 Reader Parameters

	2.12 Stream Extensions
	2.13 Simple Streams
	2.14 Running Programs from Lisp
	2.14.1 Process Accessors

	2.15 Saving a Core Image
	2.16 Pathnames
	2.16.1 Unix Pathnames
	2.16.2 Wildcard Pathnames
	2.16.3 Logical Pathnames
	2.16.4 Search Lists
	2.16.5 Predefined Search-Lists
	2.16.6 Search-List Operations
	2.16.7 Search List Example

	2.17 Filesystem Operations
	2.17.1 Wildcard Matching
	2.17.2 File Name Completion
	2.17.3 Miscellaneous Filesystem Operations

	2.18 Time Parsing and Formatting
	2.19 Random Number Generation
	2.19.1 Original Generator
	2.19.2 New Generator
	2.19.3 MT-19937 Generator

	2.20 Lisp Threads
	2.21 Lisp Library
	2.22 Generalized Function Names
	2.23 CLOS
	2.23.1 Primary Method Errors
	2.23.2 Slot Type Checking
	2.23.3 Slot Access Optimization
	2.23.4 Inlining Methods in Effective Methods
	2.23.5 Effective Method Precomputation
	2.23.6 Sealing
	2.23.7 Method Tracing and Profiling
	2.23.8 Misc

	2.24 Differences from ANSI Common Lisp
	2.24.1 Extensions

	2.25 Function Wrappers
	2.26 Dynamic-Extent Declarations
	2.26.1 &rest argument lists
	2.26.2 Closures
	2.26.3 list, list*, and cons

	2.27 Modular Arithmetic
	2.28 Extension to REQUIRE

	3 The Debugger
	3.1 Debugger Introduction
	3.2 The Command Loop
	3.3 Stack Frames
	3.3.1 Stack Motion
	3.3.2 How Arguments are Printed
	3.3.3 Function Names
	3.3.4 Funny Frames
	3.3.5 Debug Tail Recursion
	3.3.6 Unknown Locations and Interrupts

	3.4 Variable Access
	3.4.1 Variable Value Availability
	3.4.2 Note On Lexical Variable Access

	3.5 Source Location Printing
	3.5.1 How the Source is Found
	3.5.2 Source Location Availability

	3.6 Compiler Policy Control
	3.7 Exiting Commands
	3.8 Information Commands
	3.9 Breakpoint Commands
	3.9.1 Breakpoint Example

	3.10 Function Tracing
	3.10.1 Encapsulation Functions

	3.11 Specials

	4 The Compiler
	4.1 Compiler Introduction
	4.2 Calling the Compiler
	4.3 Compilation Units
	4.3.1 Undefined Warnings

	4.4 Interpreting Error Messages
	4.4.1 The Parts of the Error Message
	4.4.2 The Original and Actual Source
	4.4.3 The Processing Path
	4.4.4 Error Severity
	4.4.5 Errors During Macroexpansion
	4.4.6 Read Errors
	4.4.7 Error Message Parameterization

	4.5 Types in Python
	4.5.1 Compile Time Type Errors
	4.5.2 Precise Type Checking
	4.5.3 Weakened Type Checking

	4.6 Getting Existing Programs to Run
	4.7 Compiler Policy
	4.7.1 The Optimize Declaration
	4.7.2 The Optimize-Interface Declaration

	4.8 Open Coding and Inline Expansion

	5 Advanced Compiler Use and Efficiency Hints
	5.1 Advanced Compiler Introduction
	5.1.1 Types
	5.1.2 Optimization
	5.1.3 Function Call
	5.1.4 Representation of Objects
	5.1.5 Writing Efficient Code

	5.2 More About Types in Python
	5.2.1 More Types Meaningful
	5.2.2 Canonicalization
	5.2.3 Member Types
	5.2.4 Union Types
	5.2.5 The Empty Type
	5.2.6 Function Types
	5.2.7 The Values Declaration
	5.2.8 Structure Types
	5.2.9 The Freeze-Type Declaration
	5.2.10 Type Restrictions
	5.2.11 Type Style Recommendations

	5.3 Type Inference
	5.3.1 Variable Type Inference
	5.3.2 Local Function Type Inference
	5.3.3 Global Function Type Inference
	5.3.4 Operation Specific Type Inference
	5.3.5 Dynamic Type Inference
	5.3.6 Type Check Optimization

	5.4 Source Optimization
	5.4.1 Let Optimization
	5.4.2 Constant Folding
	5.4.3 Unused Expression Elimination
	5.4.4 Control Optimization
	5.4.5 Unreachable Code Deletion
	5.4.6 Multiple Values Optimization
	5.4.7 Source to Source Transformation
	5.4.8 Style Recommendations

	5.5 Tail Recursion
	5.5.1 Tail Recursion Exceptions

	5.6 Local Call
	5.6.1 Self-Recursive Calls
	5.6.2 Let Calls
	5.6.3 Closures
	5.6.4 Local Tail Recursion
	5.6.5 Return Values

	5.7 Block Compilation
	5.7.1 Block Compilation Semantics
	5.7.2 Block Compilation Declarations
	5.7.3 Compiler Arguments
	5.7.4 Practical Difficulties
	5.7.5 Context Declarations
	5.7.6 Context Declaration Example

	5.8 Inline Expansion
	5.8.1 Inline Expansion Recording
	5.8.2 Semi-Inline Expansion
	5.8.3 The Maybe-Inline Declaration

	5.9 Byte Coded Compilation
	5.10 Object Representation
	5.10.1 Think Before You Use a List
	5.10.2 Structure Representation
	5.10.3 Arrays
	5.10.4 Vectors
	5.10.5 Bit-Vectors
	5.10.6 Hashtables

	5.11 Numbers
	5.11.1 Descriptors
	5.11.2 Non-Descriptor Representations
	5.11.3 Variables
	5.11.4 Generic Arithmetic
	5.11.5 Fixnums
	5.11.6 Word Integers
	5.11.7 Floating Point Efficiency
	5.11.8 Specialized Arrays
	5.11.9 Specialized Structure Slots
	5.11.10 Interactions With Local Call
	5.11.11 Representation of Characters

	5.12 General Efficiency Hints
	5.12.1 Compile Your Code
	5.12.2 Avoid Unnecessary Consing
	5.12.3 Complex Argument Syntax
	5.12.4 Mapping and Iteration
	5.12.5 Trace Files and Disassembly

	5.13 Efficiency Notes
	5.13.1 Type Uncertainty
	5.13.2 Efficiency Notes and Type Checking
	5.13.3 Representation Efficiency Notes
	5.13.4 Verbosity Control

	5.14 Profiling
	5.14.1 Profile Interface
	5.14.2 Profiling Techniques
	5.14.3 Nested or Recursive Calls
	5.14.4 Clock resolution
	5.14.5 Profiling overhead
	5.14.6 Additional Timing Utilities
	5.14.7 A Note on Timing
	5.14.8 Benchmarking Techniques

	6 UNIX Interface
	6.1 Reading the Command Line
	6.2 Useful Variables
	6.3 Lisp Equivalents for C Routines
	6.4 Type Translations
	6.5 System Area Pointers
	6.6 Unix System Calls
	6.7 File Descriptor Streams
	6.8 Unix Signals
	6.8.1 Changing Signal Handlers
	6.8.2 Examples of Signal Handlers

	7 Event Dispatching with SERVE-EVENT
	7.1 Object Sets
	7.2 The SERVE-EVENT Function
	7.3 Using SERVE-EVENT with Unix File Descriptors
	7.4 Using SERVE-EVENT with the CLX Interface to X
	7.4.1 Without Object Sets
	7.4.2 With Object Sets

	7.5 A SERVE-EVENT Example
	7.5.1 Without Object Sets Example
	7.5.2 With Object Sets Example

	8 Alien Objects
	8.1 Introduction to Aliens
	8.2 Alien Types
	8.2.1 Defining Alien Types
	8.2.2 Alien Types and Lisp Types
	8.2.3 Alien Type Specifiers
	8.2.4 The C-Call Package

	8.3 Alien Operations
	8.3.1 Alien Access Operations
	8.3.2 Alien Coercion Operations
	8.3.3 Alien Dynamic Allocation

	8.4 Alien Variables
	8.4.1 Local Alien Variables
	8.4.2 External Alien Variables

	8.5 Alien Data Structure Example
	8.6 Loading Unix Object Files
	8.7 Alien Function Calls
	8.7.1 The alien-funcall Primitive
	8.7.2 The def-alien-routine Macro
	8.7.3 def-alien-routine Example
	8.7.4 Calling Lisp from C
	8.7.5 Callback Example
	8.7.6 Accessing Lisp Arrays

	8.8 Step-by-Step Alien Example

	9 Interprocess Communication under LISP
	9.1 The REMOTE Package
	9.1.1 Connecting Servers and Clients
	9.1.2 Remote Evaluations
	9.1.3 Remote Objects

	9.2 The WIRE Package
	9.2.1 Untagged Data
	9.2.2 Tagged Data
	9.2.3 Making Your Own Wires

	9.3 Out-Of-Band Data

	10 Networking Support
	10.1 Byte Order Converters
	10.2 Domain Name Services (DNS)
	10.3 Binding to Interfaces
	10.4 Accepting Connections
	10.5 Connecting
	10.6 Out-of-Band Data
	10.7 Unbound Sockets, Socket Options, and Closing Sockets
	10.8 Unix Datagrams
	10.9 Errors

	11 Debugger Programmer's Interface
	11.1 DI Exceptional Conditions
	11.1.1 Debug-conditions
	11.1.2 Debug-errors

	11.2 Debug-variables
	11.3 Frames
	11.4 Debug-functions
	11.5 Debug-blocks
	11.6 Breakpoints
	11.7 Code-locations
	11.8 Debug-sources
	11.9 Source Translation Utilities

	12 Cross-Referencing Facility
	12.1 Populating the cross-reference database
	12.2 Querying the cross-reference database
	12.3 Example usage
	12.4 Limitations of the cross-referencing facility

