Previous: Introduction to zeilberger, Up: zeilberger [Contents][Index]
Returns the hypergeometric anti-difference of \(F_k\), if it exists.
Otherwise AntiDifference
returns no_hyp_antidifference
.
Returns the rational certificate \(R(k)\) for \(F_k\), that is,
a rational function such that
\(F_k = R(k+1) F_(k+1) - R(k) F_k\),
if it exists.
Otherwise, Gosper
returns no_hyp_sol
.
Returns the summation of \(F_k\) from k = a to k = b
if \(F_k\) has a hypergeometric anti-difference.
Otherwise, GosperSum
returns nongosper_summable
.
Examples:
(%i1) load ("zeilberger")$
(%i2) GosperSum ((-1)^k*k / (4*k^2 - 1), k, 1, n); Dependent equations eliminated: (1) 3 n + 1 (n + -) (- 1) 2 1 (%o2) - ------------------ - - 2 4 2 (4 (n + 1) - 1)
(%i3) GosperSum (1 / (4*k^2 - 1), k, 1, n); 3 - n - - 2 1 (%o3) -------------- + - 2 2 4 (n + 1) - 1
(%i4) GosperSum (x^k, k, 1, n); n + 1 x x (%o4) ------ - ----- x - 1 x - 1
(%i5) GosperSum ((-1)^k*a! / (k!*(a - k)!), k, 1, n); n + 1 a! (n + 1) (- 1) a! (%o5) - ------------------------- - ---------- a (- n + a - 1)! (n + 1)! a (a - 1)!
(%i6) GosperSum (k*k!, k, 1, n); Dependent equations eliminated: (1) (%o6) (n + 1)! - 1
(%i7) GosperSum ((k + 1)*k! / (k + 1)!, k, 1, n); (n + 1) (n + 2) (n + 1)! (%o7) ------------------------ - 1 (n + 2)!
(%i8) GosperSum (1 / ((a - k)!*k!), k, 1, n); (%o8) NON_GOSPER_SUMMABLE
Attempts to find a d-th order recurrence for \(F_(n,k)\).
The algorithm yields a sequence \([s_1, s_2, ..., s_m]\) of solutions. Each solution has the form
\([R(n, k), [a_0, a_1, ..., a_d]].\)
parGosper
returns []
if it fails to find a recurrence.
Attempts to compute the indefinite hypergeometric summation of \(F_(n,k)\).
Zeilberger
first invokes Gosper
, and if that fails to find a solution, then invokes
parGosper
with order 1, 2, 3, ..., up to MAX_ORD
.
If Zeilberger finds a solution before reaching MAX_ORD
,
it stops and returns the solution.
The algorithms yields a sequence \([s_1, s_2, ..., s_m]\) of solutions. Each solution has the form
\([R(n,k), [a_0, a_1, ..., a_d]].\)
Zeilberger
returns []
if it fails to find a solution.
Zeilberger
invokes Gosper
only if Gosper_in_Zeilberger
is true
.
Default value: 5
MAX_ORD
is the maximum recurrence order attempted by Zeilberger
.
Default value: false
When simplified_output
is true
,
functions in the zeilberger
package attempt
further simplification of the solution.
Default value: linsolve
linear_solver
names the solver which is used to solve the system
of equations in Zeilberger’s algorithm.
Default value: true
When warnings
is true
,
functions in the zeilberger
package print
warning messages during execution.
Default value: true
When Gosper_in_Zeilberger
is true
,
the Zeilberger
function calls Gosper
before calling parGosper
.
Otherwise, Zeilberger
goes immediately to parGosper
.
Default value: true
When trivial_solutions
is true
,
Zeilberger
returns solutions
which have certificate equal to zero, or all coefficients equal to zero.
Previous: Introduction to zeilberger, Up: zeilberger [Contents][Index]