Next: Beta Random Variable, Previous: Lognormal Random Variable, Up: Functions and Variables for continuous distributions [Contents][Index]
The gamma distribution is a two-parameter family of probability distributions. Maxima uses the parameterization using the shape and scale for the first and second parameters of the distribution.
Returns the value at x of the density function of a
load("distrib")
.
The shape parameter is
The pdf is
Returns the value at x of the distribution function of a
The cdf is
where
(%i1) load ("distrib")$
(%i2) cdf_gamma(3,5,21); 1 (%o2) 1 - gamma_incomplete_regularized(5, -) 7
(%i3) float(%); (%o3) 4.402663157376807e-7
Returns the q-quantile of a
cdf_gamma
. Argument q must be an element of load("distrib")
.
Returns the mean of a
load("distrib")
.
The mean is
Returns the variance of a
load("distrib")
.
The variance is
Returns the standard deviation of a
load("distrib")
.
The standard deviation is
Returns the skewness coefficient of a
load("distrib")
.
The skewness coefficient is
Returns the kurtosis coefficient of a
load("distrib")
.
The kurtosis coefficient is
Returns a
random_gamma
with a third argument n, a random sample of size n will be simulated.
The implemented algorithm is a combination of two procedures, depending on the value of parameter a:
For
For
To make use of this function, write first load("distrib")
.
Next: Beta Random Variable, Previous: Lognormal Random Variable, Up: Functions and Variables for continuous distributions [Contents][Index]