Previous: , Up: Numbers   [Contents][Index]

5.1.2 Functions and Variables for Numbers

Function: bfloat (expr)

bfloat replaces integers, rationals, floating point numbers, and some symbolic constants in expr with bigfloat (variable-precision floating point) numbers.

The constants %e, %gamma, %phi, and %pi are replaced by a numerical approximation. However, %e in %e^x is not replaced by a numeric value unless bfloat(x) is a number.

bfloat also causes numerical evaluation of some built-in functions, namely trigonometric functions, exponential functions, abs, and log.

The number of significant digits in the resulting bigfloats is specified by the global variable fpprec. Bigfloats already present in expr are replaced with values which have precision specified by the current value of fpprec.

When float2bf is false, a warning message is printed when a floating point number is replaced by a bigfloat number with less precision.

Examples:

bfloat replaces integers, rationals, floating point numbers, and some symbolic constants in expr with bigfloat numbers.

(%i1) bfloat([123, 17/29, 1.75]);
(%o1)        [1.23b2, 5.862068965517241b-1, 1.75b0]
(%i2) bfloat([%e, %gamma, %phi, %pi]);
(%o2) [2.718281828459045b0, 5.772156649015329b-1, 
                        1.618033988749895b0, 3.141592653589793b0]
(%i3) bfloat((f(123) + g(h(17/29)))/(x + %gamma));
         1.0b0 (g(h(5.862068965517241b-1)) + f(1.23b2))
(%o3)    ----------------------------------------------
                    x + 5.772156649015329b-1

bfloat also causes numerical evaluation of some built-in functions.

(%i1) bfloat(sin(17/29));
(%o1)                 5.532051841609784b-1
(%i2) bfloat(exp(%pi));
(%o2)                  2.314069263277927b1
(%i3) bfloat(abs(-%gamma));
(%o3)                 5.772156649015329b-1
(%i4) bfloat(log(%phi));
(%o4)                 4.812118250596035b-1
Categories: Numerical evaluation ·
Function: bfloatp (expr)

Returns true if expr is a bigfloat number, otherwise false.

Option variable: bftorat

Default value: false

bftorat controls the conversion of bfloats to rational numbers. When bftorat is false, ratepsilon will be used to control the conversion (this results in relatively small rational numbers). When bftorat is true, the rational number generated will accurately represent the bfloat.

Note: bftorat has no effect on the transformation to rational numbers with the function rationalize.

Example:

(%i1) ratepsilon:1e-4;
(%o1)                         1.0e-4
(%i2) rat(bfloat(11111/111111)), bftorat:false;
`rat' replaced 9.99990999991B-2 by 1/10 = 1.0B-1
                               1
(%o2)/R/                       --
                               10
(%i3) rat(bfloat(11111/111111)), bftorat:true;
`rat' replaced 9.99990999991B-2 by 11111/111111 = 9.99990999991B-2
                             11111
(%o3)/R/                     ------
                             111111
Categories: Numerical evaluation ·
Option variable: bftrunc

Default value: true

bftrunc causes trailing zeroes in non-zero bigfloat numbers not to be displayed. Thus, if bftrunc is false, bfloat (1) displays as 1.000000000000000B0. Otherwise, this is displayed as 1.0B0.

Categories: Numerical evaluation ·
Function: evenp (expr)

Returns true if expr is a literal even integer, otherwise false.

evenp returns false if expr is a symbol, even if expr is declared even.

Categories: Predicate functions ·
Function: float (expr)

Converts integers, rational numbers and bigfloats in expr to floating point numbers. It is also an evflag, float causes non-integral rational numbers and bigfloat numbers to be converted to floating point.

Option variable: float2bf

Default value: true

When float2bf is false, a warning message is printed when a floating point number is replaced by a bigfloat number with less precision.

Categories: Numerical evaluation ·
Function: floatnump (expr)

Returns true if expr is a floating point number, otherwise false.

Option variable: fpprec

Default value: 16

fpprec is the number of significant digits for arithmetic on bigfloat numbers. fpprec does not affect computations on ordinary floating point numbers.

See also bfloat and fpprintprec.

Categories: Numerical evaluation ·
Option variable: fpprintprec

Default value: 0

fpprintprec is the number of digits to print when printing an ordinary float or bigfloat number.

For ordinary floating point numbers, when fpprintprec has a value between 2 and 16 (inclusive), the number of digits printed is equal to fpprintprec. Otherwise, fpprintprec is 0, or greater than 16, and the number of digits printed is 16.

For bigfloat numbers, when fpprintprec has a value between 2 and fpprec (inclusive), the number of digits printed is equal to fpprintprec. Otherwise, fpprintprec is 0, or greater than fpprec, and the number of digits printed is equal to fpprec.

For both ordinary floats and bigfloats, trailing zero digits are suppressed. The actual number of digits printed is less than fpprintprec if there are trailing zero digits.

fpprintprec cannot be 1.

Function: integerp (expr)

Returns true if expr is a literal numeric integer, otherwise false.

integerp returns false if expr is a symbol, even if expr is declared integer.

Examples:

(%i1) integerp (0);
(%o1)                         true
(%i2) integerp (1);
(%o2)                         true
(%i3) integerp (-17);
(%o3)                         true
(%i4) integerp (0.0);
(%o4)                         false
(%i5) integerp (1.0);
(%o5)                         false
(%i6) integerp (%pi);
(%o6)                         false
(%i7) integerp (n);
(%o7)                         false
(%i8) declare (n, integer);
(%o8)                         done
(%i9) integerp (n);
(%o9)                         false
Categories: Predicate functions ·
Option variable: m1pbranch

Default value: false

m1pbranch is the principal branch for -1 to a power. Quantities such as (-1)^(1/3) (that is, an "odd" rational exponent) and (-1)^(1/4) (that is, an "even" rational exponent) are handled as follows:

              domain:real
                            
(-1)^(1/3):      -1         
(-1)^(1/4):   (-1)^(1/4)   

             domain:complex              
m1pbranch:false          m1pbranch:true
(-1)^(1/3)               1/2+%i*sqrt(3)/2
(-1)^(1/4)              sqrt(2)/2+%i*sqrt(2)/2
Categories: Expressions · Global flags ·
Function: nonnegintegerp (n)

Return true if and only if n >= 0 and n is an integer.

Categories: Predicate functions ·
Function: numberp (expr)

Returns true if expr is a literal integer, rational number, floating point number, or bigfloat, otherwise false.

numberp returns false if expr is a symbol, even if expr is a symbolic number such as %pi or %i, or declared to be even, odd, integer, rational, irrational, real, imaginary, or complex.

Examples:

(%i1) numberp (42);
(%o1)                         true
(%i2) numberp (-13/19);
(%o2)                         true
(%i3) numberp (3.14159);
(%o3)                         true
(%i4) numberp (-1729b-4);
(%o4)                         true
(%i5) map (numberp, [%e, %pi, %i, %phi, inf, minf]);
(%o5)      [false, false, false, false, false, false]
(%i6) declare (a, even, b, odd, c, integer, d, rational,
     e, irrational, f, real, g, imaginary, h, complex);
(%o6)                         done
(%i7) map (numberp, [a, b, c, d, e, f, g, h]);
(%o7) [false, false, false, false, false, false, false, false]
Categories: Predicate functions ·
Option variable: numer

numer causes some mathematical functions (including exponentiation) with numerical arguments to be evaluated in floating point. It causes variables in expr which have been given numerals to be replaced by their values. It also sets the float switch on.

See also %enumer.

Examples:

(%i1) [sqrt(2), sin(1), 1/(1+sqrt(3))];
                                        1
(%o1)            [sqrt(2), sin(1), -----------]
                                   sqrt(3) + 1
(%i2) [sqrt(2), sin(1), 1/(1+sqrt(3))],numer;
(%o2) [1.414213562373095, 0.8414709848078965, 0.3660254037844387]
Option variable: numer_pbranch

Default value: false

The option variable numer_pbranch controls the numerical evaluation of the power of a negative integer, rational, or floating point number. When numer_pbranch is true and the exponent is a floating point number or the option variable numer is true too, Maxima evaluates the numerical result using the principal branch. Otherwise a simplified, but not an evaluated result is returned.

Examples:

(%i1) (-2)^0.75;
                                 0.75
(%o1)                       (- 2)
(%i2) (-2)^0.75,numer_pbranch:true;
(%o2)       1.189207115002721 %i - 1.189207115002721
(%i3) (-2)^(3/4);
                               3/4  3/4
(%o3)                     (- 1)    2
(%i4) (-2)^(3/4),numer;
                                          0.75
(%o4)              1.681792830507429 (- 1)
(%i5) (-2)^(3/4),numer,numer_pbranch:true;
(%o5)       1.189207115002721 %i - 1.189207115002721
Categories: Numerical evaluation ·
Function: numerval (x_1, expr_1, …, var_n, expr_n)

Declares the variables x_1, …, x_n to have numeric values equal to expr_1, …, expr_n. The numeric value is evaluated and substituted for the variable in any expressions in which the variable occurs if the numer flag is true. See also ev.

The expressions expr_1, …, expr_n can be any expressions, not necessarily numeric.

Function: oddp (expr)

Returns true if expr is a literal odd integer, otherwise false.

oddp returns false if expr is a symbol, even if expr is declared odd.

Categories: Predicate functions ·
Option variable: ratepsilon

Default value: 2.0e-15

ratepsilon is the tolerance used in the conversion of floating point numbers to rational numbers, when the option variable bftorat has the value false. See bftorat for an example.

Function: rationalize (expr)

Convert all double floats and big floats in the Maxima expression expr to their exact rational equivalents. If you are not familiar with the binary representation of floating point numbers, you might be surprised that rationalize (0.1) does not equal 1/10. This behavior isn’t special to Maxima – the number 1/10 has a repeating, not a terminating, binary representation.

(%i1) rationalize (0.5);
                                1
(%o1)                           -
                                2
(%i2) rationalize (0.1);
                        3602879701896397
(%o2)                   -----------------
                        36028797018963968
(%i3) fpprec : 5$
(%i4) rationalize (0.1b0);
                             209715
(%o4)                        -------
                             2097152
(%i5) fpprec : 20$
(%i6) rationalize (0.1b0);
                     236118324143482260685
(%o6)                ----------------------
                     2361183241434822606848
(%i7) rationalize (sin (0.1*x + 5.6));
               3602879701896397 x   3152519739159347
(%o7)      sin(------------------ + ----------------)
               36028797018963968    562949953421312
Categories: Numerical evaluation ·
Function: ratnump (expr)

Returns true if expr is a literal integer or ratio of literal integers, otherwise false.


Previous: , Up: Numbers   [Contents][Index]