
Extensions to Common LISP to

Support International Character Sets

Michael Beckerle1 Paul Beiser2 Jerry Duggan3

Robert Kerns4 Kevin Layer5 Thom Linden6

Larry Masinter7 David Unietis8

June 10, 1989

1Gold Hill Computers
2Hewlett-Packard
3Hewlett-Packard
4Independent consultant
5Franz, Inc.
6IBM Research, Subcommittee Chair
7Xerox Research
8Lucid, Inc.

Contents

1 Introduction 2
1.1 Objectives . 2

2 Overview 4
2.1 Character Identity . 5
2.2 Standard and Semi-Standard Characters 7
2.3 Hierarchy of Types . 10

2.3.1 Character Type . 11
2.3.2 String Type . 12

2.4 Character Naming . 13
2.5 Streams and System I/O . 17
2.6 Miscellaneous . 20

1

Chapter 1

Introduction

This is a proposal to the X3 J13 committee for both extending and modifying
the Common LISP language definition to provide a standard basis for Common
LISP support of the variety of characters used to represent the languages of the
international community.

This proposal was created by the Character Subcommittee of X3 J13. We
would like to acknowledge discussions with T. Yuasa and other members of
the JIS Technical Working Group, comments from members of X3 J13, and
the proposals [Ida87], [Linden87], [Kerns87], and [Kurokawa88] for providing
the motivation and direction for these extensions. As all these documents and
discussions were created expressly for LISP standardization usage, we have bor-
rowed freely from their ideas as well as the texts themselves.

1.1 Objectives

The major objectives of this proposal are:

• To provide a consistent, well-defined scheme allowing support of both very
large character sets and multiple character sets. 1

Many software applications are intended for international use, or have
requirements for incorporation of language elements of multiple languages
within a single application. Also, many applications require specialized
languages including, for example, scientific and typesetting symbols. In
order to ensure some portability of these applications, data expressed in
a mixture of these languages must be treated uniformly by the software
language.

1The distinction between the terms character repertoire and coded character set is made
later. The usage of the term character set, avoided after this introduction, encompasses both
terms.

2

CHAPTER 1. INTRODUCTION 3

All character and string manipulations should operate uniformly, regard-
less of the character set(s) of the character objects. This applies to array
indexing, readtable definitions, read symbol construction and I/O opera-
tions.

• To ensure efficient performance of string and character operations.

Many languages, such as Japanese and Chinese, use character sets which
contain more characters than the Latin alphabet. Supporting larger sized
character sets frequently means employing larger data fields to uniquely
encode each character. Common LISP implementations using larger sized
character sets can incur performance penalties in terms of space, time, or
both.

The use of large and/or multiple character sets by an implementation im-
plies the need for a more complex character type representation. Given a
more complex character representation, the efficiency of language opera-
tions on characters (e.g. string operations) could be affected.

• To assure forward compatibility of the proposed model and definition with
existing Common LISP implementations.

Developers should not be required to re-write large amounts of either LISP
code or data representations in order to apply the proposed changes to
existing implementations. The proposed changes should provide an easy
portability path for existing code to many possible implementations.

There are a number of issues, some under the general rubric of internation-
alization, which this proposal does not cover. Among these issues are:

• Time and date formats

• Monetary formats

• Numeric punctuation

• Fonts

• Lexicographic orderings

• Right-to-left and bidirectional languages

Chapter 2

Overview

We use several terms within this document which are new in the context of
Common LISP. Definitions for the following prominent terms are provided for
the reader’s convenience.

A character repertoire defines a collection of characters independent of their
specific rendered image or font. This corresponds to the mathematical notion
of a set 1. Character repertoires are specified independent of coding and their
characters are only identified with a unique character label, a graphic symbol,
and a character description.

A coded character set is a character repertoire plus an encoding providing a
unique mapping between each character and a number which serves as the char-
acter representation. There are numerous internationally standardized coded
character sets; for example, [ISO 8859/1] and [ISO 646].

A character may be included in one or more character repertoires. Similarly,
a character may be included in one or more coded character sets. For example,
the Latin letter ”A” is contained in the coded character set standards: ISO
8859/1, ISO 8859/2, ISO 6937/2, and others.

To universally identify each character, we utilize a universal registry of char-
acters which incorporates a collection of repertoires called character scripts as
a partitioning of all characters. That is, each character is included in one and
only one character script. 2

In Common LISP a character data object is identified by its character code,
a unique numerical code. Each character code is composed from a character
script and a character label.

Character data objects which are classified as graphic, or displayable, are
each associated with a glyph. The glyph is the visual representation of the

1We avoid the term character set as it has been (over)used in the context of character
repertoire as well as in the context of coded character set.

2The practical realization of this registry is the Draft ISO 10646 Coded Character Set
Standard. [ISO DP 10646]

4

CHAPTER 2. OVERVIEW 5

character. All other character data objects are classified as non-graphic (or
control).

The primary purpose of introducing these terms is to provide a consistent
naming to Common LISP concepts which are related to those found in ISO
standardization of coded character sets. 3 They also serve as a demarcation
between these standardization activities. For example, while Common LISP
is free to define unique manipulation facilities for characters, character scripts
and coded character sets, it should not define standard coded character sets nor
standard character scripts.

A secondary purpose is to detach the language specification from underlying
hardware representation. From a language specification viewpoint it is incon-
sequential whether characters occupy one or more (8-bit) bytes or whether a
Common LISP implementation’s internal representation for characters is dis-
tinct from or identical to any of the numerous external representations (for
example, the text interchange representation [ISO 6937/2]). We specifically do
not propose any standard coded character sets.

A final purpose is to serve as a basis for terminology within the standard
language specification.

Proposal 2.0.1 (Passed 03/89) The terminology introduced in this proposal
will be included in the language specification at the discretion of the editor.

2.1 Character Identity

Characters are uniquely distinguished by their codes, which are drawn from the
set of non-negative integers. That is, within Common LISP a unique numerical
code is assigned to each semantically different character.

It is important to separate the notion of glyph from the notion of charac-
ter data object when defining a scheme under which issues of identity can be
rigorously decided by a computer language. Glyphs are the visual aspects of
characters, writable on surfaces, and sometimes called ’graphics’. A language
specification valid for more than a narrow range of systems can only make as-
sumptions about the existence of abstract glyphs (for example, the Latin letter
A) and not about glyph variants (for example, the italicized Latin letter A) or
characteristics of display devices.

The notion of attributes of character objects within Common LISP has
proven to be either not used or not portable. The essential aspect of the fol-
lowing proposals is to what extent attributes continue to be supported by the
language specifications.

Proposal 2.1.1 (Alternative A) (Passed as Modified 03/89) Remove all dis-
cussion of attributes from the language specification. Add the following discus-
sion:

3The bibliography includes several relevant ISO coded character set standards.

CHAPTER 2. OVERVIEW 6

Earlier versions of Common LISP incorporated font and bits as at-
tributes of character objects. These and other supported attributes
are considered implementation-defined attributes and if supported by
an implementation effect the action of selected functions.

All types, constants and functions dealing with the bits and font attributes are
either removed or modified as follows:

• Modify char-=: If two characters differ in any implementation-defined
attributes, then they are not char-=.

• Modify char-<: If two characters have identical implementation-defined
attributes, then their ordering by char< is consistent with the numerical
ordering by the predicate < on their code. (Similarly for char>, char>=
and char<=.)

• Modify char-equal: The effect, if any, on char-equal of each implementation-
defined attribute has to be specified as part of the definition of that attribute
(and similarly for char-not-equal, char-lessp, char-greaterp, char-not-greaterp,
char-not-lessp).

• Modify char-upcase and char-downcase: The effect of char-upcase and
char-downcase is to preserve implementation-defined attributes.

• Modify read: It is implementation dependent which attributes are removed
from symbol names. It is implementation dependent which attributes are
removed from characters within double quotes.

• Modify intern: It is implementation dependent which implementation-
defined attributes are removed.

• Modify digit-char: remove the optional font argument.

• Modify code-char: remove the optional font and bits arguments.

• Remove char-font-limit

• Remove char-bits-limit

• Remove int-char

• Remove char-int

• Remove char-bits

• Remove char-font

• Remove make-char

• Remove char-control-bit

CHAPTER 2. OVERVIEW 7

• Remove char-meta-bit

• Remove char-super-bit

• Remove char-hyper-bit

• Remove char-bit

• Remove set-char-bit

• Remove string-char and string-char-p

• Modify readtable: If implementation-defined attributes are supported, an
implementation need not (but may) allow for such characters to have
syntax descriptions in the readtable. Otherwise, all characters are rep-
resentable in the readtable.

Proposal 2.1.2 (Alternative B) (Passed as Modified 03/89) This is iden-
tical to all of Alternative A (above) except that the function char-int is re-
tained. char-int returns a non-negative integer encoding the character object.
The manner in which the integer is computed is implementation dependent. In
contrast to sxhash, the result is not guaranteed independent of the particular
”incarnation” or ”core image”.

With the elimination of font and bits from the specification the usefulness
of char-code and code-char is diminished. They are no longer needed for
constructing characters. The portable mechanisms for hashing are provided by
char-int and sxhash.

In addition, using char-code-limit to iterate over characters is extremely
inefficient in implementations that support large or user-defined repertoires.

Proposal 2.1.3 (Alternative C) (Failed 03/89) This an amendment to Al-
ternative B (above).

• Remove char-code-limit

• Remove char-code

• Remove code-char

2.2 Standard and Semi-Standard Characters

The standard characters are the 96 characters used in the Common LISP defi-
nition or their equivalents.

This was the Common LISP [Steele84] definition, but equivalents is a vague
term.

CHAPTER 2. OVERVIEW 8

The standard characters are not defined by their glyphs, but by their roles
within the language. There are two aspects to the roles of the standard charac-
ters: one is their role in reader and format control string syntax; the second is
their role as components of the names of all Common LISP functions, macros,
constants, and global variables. As long as an implementation chooses 96 glyphs
and treats those 96 in a manner consistent with the language’s specification for
the standard characters (e.g. the naming of functions), it doesn’t matter what
glyphs the I/O hardware uses to represent those characters: they are the stan-
dard characters. Any program or data text written wholly in those characters
is portable through simple code conversion. 4

Additional mechanisms, such as in [Kurokawa88], which support establish-
ment of equivalency between otherwise distinct characters are not excluded by
this proposal. 5

Proposal 2.2.1 (Passed 03/89) The discussion of standard characters is re-
placed by the following:

Common LISP requires all implementations to support a standard character
subrepertoire. The Common LISP standard character subrepertoire consists of
a newline #\Newline, the graphic space character #\Space, and the following
additional ninety-four graphic characters or their equivalents: 6

4For example, the currency glyph, $, might be replaced uniformly by the currency glyph
available on a particular display.

5We believe this is an important issue but it requires additional implementation experience.
We also encourage new proposals from JIS and ISO LISP Working Groups on this issue.

6#\Space and #\Newline are omitted. graphic labels and descriptions are
from ISO 6937/2. The first letter of the graphic Id categorizes the character as
follows: L - Latin, N - Numeric, S - Special .

CHAPTER 2. OVERVIEW 9

Id Glyph Name or description Id Glyph Name or description

LA01 a small a ND01 1 digit 1

LA02 A capital A ND02 2 digit 2

LB01 b small b ND03 3 digit 3

LB02 B capital B ND04 4 digit 4

LC01 c small c ND05 5 digit 5

LC02 C capital C ND06 6 digit 6

LD01 d small d ND07 7 digit 7

LD02 D capital D ND08 8 digit 8

LE01 e small e ND09 9 digit 9

LE02 E capital E ND10 0 digit 0

LF01 f small f SC03 $ dollar sign

LF02 F capital F SP02 ! exclamation mark

LG01 g small g SP04 ” quotation mark

LG02 G capital G SP05 ’ apostrophe

LH01 h small h SP06 (left parenthesis

LH02 H capital H SP07) right parenthesis

LI01 i small i SP08 , comma

LI02 I capital I SP09 low line

LJ01 j small j SP10 - hyphen or minus sign

LJ02 J capital J SP11 . full stop, period

LK01 k small k SP12 / solidus

LK02 K capital K SP13 : colon

LL01 l small l SP14 ; semicolon

LL02 L capital L SP15 ? question mark

LM01 m small m SA01 + plus sign

LM02 M capital M SA03 < less-than sign

LN01 n small n SA04 = equals sign

LN02 N capital N SA05 > greater-than sign

LO01 o small o SM01 # number sign

LO02 O capital O SM02 % percent sign

LP01 p small p SM03 & ampersand

LP02 P capital P SM04 * asterisk

LQ01 q small q SM05 @ commercial at

LQ02 Q capital Q SM06 [left square bracket

LR01 r small r SM07 \ reverse solidus

LR02 R capital R SM08] right square bracket

LS01 s small s SM11 { left curly bracket

LS02 S capital S SM13 | vertical bar

LT01 t small t SM14 } right curly bracket

LT02 T capital T SD13 ` grave accent

LU01 u small u SD15 ˆ circumflex accent

LU02 U capital U SD19 ˜ tilde

LV01 v small v

LV02 V capital V

LW01 w small w

LW02 W capital W

LX01 x small x

LX02 X capital X

LY01 y small y

LY02 Y capital Y

LZ01 z small z

LZ02 Z capital Z

CHAPTER 2. OVERVIEW 10

The definition of semi-standard characters has been of minimum practical
use since implementations may or may not support any of these characters. The
essential feature is that, when supported, they have a predictable treatment by
the reader.

Proposal 2.2.2 (Failed 03/89) Remove all discussion of semi-standard charac-
ters. Add that in implementations supporting non-graphic characters other than
#\Newline, the read function is required to treat those as whitespace charac-
ters.

2.3 Hierarchy of Types

Providing support for extensive character repertoires may impact Common LISP
implementation performance in terms of space, time, or both. 7 In particular,
many existing implementations support variants of the ISO 8859/1 standard.
Supporting large repertoires argues for a multi-byte internal representation for
each character, even if an application primarily (or exclusively) uses the ISO
8859/1 characters.

This proposal extends the definition of the character and string type hier-
archy to allow specialized subtypes of character and string. An implementa-
tion is free to associate compact internal representation tailored to each sub-
type. The string type specifier, when used for object creation, for example in
make-sequence, is defined to mean the most general string subtype supported
by the implementation (similarly for the simple-string type specifier). This
definition emphasizes portability of existing Common LISP applications to in-
ternational character environments over performance. Applications emphasizing
efficiency of text processing in non-international environments will require some
modification to utilize subtypes with compact internal representations.

It has been suggested that either a single type is sufficient to support in-
ternational characters, or that a hierarchy of types could be used, in a manner
transparent to the user. A desire to provide flexibility which encourages imple-
mentations to support international characters without compromising applica-
tion efficiency led us to accept the need for more than one type. We believe that
these choices reflect a minimal modification of this aspect of the type system,
and that exposing the types for string and character construction while requiring
uniform treatment for characters otherwise is the most reasonable approach.

7This does not apply to all implementations. Unique hardware support and user community
requirements need to be taken into consideration.

CHAPTER 2. OVERVIEW 11

2.3.1 Character Type

Proposal 2.3.1 (Passed as Modified 03/89) Define base-character as (upgraded-array-element-type
’standard-char) and extended-character as type (and character (not base-character)).
Characters of type base-character are referred to as base characters. Charac-
ters of type extended-character) are referred to as extended characters.

This establishes the relationship between the string encoding and array up-
grading strategies of the implementation and the important character types.

An implementation may support additional subtypes of character which
may or may not be supertypes of base-character. In addition, an implemen-
tation may define base-character as equivalent to character.

The base characters are distinguished in the following respects:

• The standard characters are a subrepertoire of the base characters.

• The selection of base characters which are not standard characters is im-
plementation defined.

• Only members of the base character repertoire can be elements of a base
string.

• No upper bound is specified for the number of glyphs in the base character
repertoire–that is implementation dependent. The lower bound is 96, the
number of standard characters defined for Common LISP. 8

The distinction of base characters is largely a pragmatic choice. It per-
mits efficient handling of common situations, may be privileged for host system
I/O, and can serve as an intermediate basis for portability, less general than
the standard characters, but possibly more useful across a narrower range of
implementations.

Many computers have some ”base” character representation which is a func-
tion of hardware instructions for dealing with characters, as well as the organi-
zation of the file system. The base character representation is likely to be the
smallest transaction unit permitted for text file and terminal I/O operations.
On a system with a record based I/O paradigm, the base character representa-
tion is likely to be the smallest record quantum. On many computer systems,
this representation is a byte.

However, the proposal emphasizes that whether a character is ”base” to
Common LISP depends on the way that an implementation represents strings,
and not any other properties of the implementation or the host operating sys-
tem. Imagine two implementations, one of which encodes all strings as 16-bit
characters, and another which has two kinds of strings: 8-bit strings and 16-bit
strings. In the first implementation, the base-character is character: there’s
only one kind of string. In the second implementation, the base-character

8Or, in contrast, the base repertoire may include all implementation supported characters.

CHAPTER 2. OVERVIEW 12

would be those that could be stored in an 8-bit string, and it would be a proper
sub-type of character.

2.3.2 String Type

Proposal 2.3.2 (Passed 03/89) The string type is defined as a union type.
More precisely, a string is a specialized vector whose elements are of type character
or a subtype of character. string used as a type specifier for object creation
means (vector character).

Proposal 2.3.3 (Passed as Modified 03/89) The following string subtypes are
distinguished with standardized names.

• base-string is equivalent to (vector base-character). Strings of type
base-string are referred to as base strings.

• base-string is valid as a type specifier that abbreviates.

Proposal 2.3.4 (Passed as Modified 03/89) Define simple-string as a union
type. A simple string is a specialized simple one dimensional array whose ele-
ments are of type character or a subtype of character. simple-string used as
a type specifier for object creation means (simple-array character (size)).

Proposal 2.3.5 (Passed as Modified 03/89) The following simple string sub-
types are distinguished with standardized names:

• simple-base-string is equivalent to (simple-array base-character
(*)). simple-base-string is a subtype of base-string.

• simple-base-string is valid as a type specifier that abbreviates.

A base string is the most efficient string which can hold the standard char-
acters.

All Common LISP functions defined to operate on strings treat all strings
strings uniformly with the following caveat: for any function which inserts a
character into a string, it is an error to insert an extended character into a base
string. 9

An implementation may support string subtypes in addition to base-string.
For example, a hypothetical implementation supporting Arabic and Cyrillic
characters might provide as extended characters:

• string – may contain Arabic, Cyrillic or base characters in any mixture.

• region-specialized-string – may contain installation selected reper-
toire (Arabic/Cyrillic) or base characters in any mixture.

9An implementation may, optionally, provide automatic coercion to an extended string.

CHAPTER 2. OVERVIEW 13

• base-string – may contain base characters

Though, clearly, portability of applications using region-specialized-string
is limited, a performance advantage might argue for its use. 10

Alternatively, an implementation supporting a large base character reper-
toire including, say, Japanese Kanji may define base-character as equivalent
to character.

We expect that applications sensitive to the performance of character han-
dling in some host environments will utilize the string subtypes to provide per-
formance improvement. Applications with emphasis on international portability
will likely utilize only string.

The base string type allows for more compact representation of strings of
base characters, which are likely to predominate in any system. Note that in any
particular implementation the base characters need not be the most compactly
representable, since others might have a smaller repertoire. However, in most
implementations base strings are likely to be more space efficient than extended
strings.

Proposal 2.3.6 (Passed 03/89) Extend the make-string function to allow an
element-type keyword argument:

• make-string size &key :initial-element :element-type [Function]

This returns a simple string of length size, each of whose characters has
been initialized to the :initial-element argument. If an :initial-element
argument is not specified, then the string will be initialized in an implementation-
dependent way. The :element-type argument names the type of the el-
ements of the string; a string is constructed of the most specialized type
that can accommodate elements of the given type. If :element-type is
omitted, the type character is the default.

2.4 Character Naming

A Common LISP program should be able to name, compose and decompose
characters in a uniform, portable manner, independent of any underlying rep-
resentation. One possible composition is by the pair < coded character set
standard, decimal representation > 11. Thus, for example, one might compose
the Latin ’A’ with the pair < ISO8859/2-1987, 65 >, < ISO8859/6-1987, 65 >,
or < ISO646-1983, 65 >, etc.. The difficulty here is two-fold. First, there are
several ways to compose the same character and second, there may be multi-
ple answers to the question: To what coded character set does character object

10region-specialized-string is used here for illustration only; it is not being pro-
posed as a standardized string subtype.

11This syntax is for illustration only and is not being proposed.

CHAPTER 2. OVERVIEW 14

x belong?12 The identical problems occur if the pair < character repertoire
standard, decimal representation > is used. 13

The concept of character registry is introduced by this proposal to resolve the
problem of character naming, composition and decomposition. Each character
is universally defined by the pair < character script, character label >. For
this to be a portable definition, it must have a standard meaning. Thus we
propose the formation of an ISO Working Group to define an international
Character Registry Standard. At this writing there is no existing Character
Registry Standard nor ISO Working Group organized to define such a standard.
14

Proposal 2.4.1 (Passed 03/89) Common LISP character codes are composed
from a character script and a character label. The convention by which a char-
acter label and character script compose a character code is implementation
dependent.

The naming and content of the standard character scripts is left unspecified
by this proposal. 15 Below are some candidate character script names:

• latin

• extended-latin

• international-african-alphabet

• extended-symbols

• diacritics

• cyrillic-for-major-languages

• cyrillic-for-minor-languages

• greek

• arabic

• armenian

• georgian
12Even worse, the answer might change yearly.
13Existing ISO repertoires seem to be defined exclusively in the context of coded character

sets and not as standards in their own right.
14It is the intention of X3 J13 to promote and adopt an eventual ANSI or ISO Character

Registry Standard. In particular, we acknowledge that X3 J13 is not the appropriate forum
to define the standard. We believe it is a required component of all programming languages
providing support for international characters.

15The only constraint is that character scripts and labels be named using only the Latin
capital letters A-Z, hyphen and digits 0-9.

CHAPTER 2. OVERVIEW 15

• hebrew

• hiragana-symbols

• katakana

• control (meaning the collection of standard text communication control
codes)

The list above is provided as a starting point for discussion and is not intended
to be representative nor exhaustive. 16 The Common LISP language definition
does not depend on these names nor any specific content (for example: Where
should the plus sign appear?). It is application programs which require a reli-
able definition of the script names and their constituents. The Common LISP
language definition imposes the framework for constructing and manipulating
character objects.

Proposal 2.4.2 Standardized Character Scripts are fixed; an implementation
may not extend a standard script’s constituent set of characters beyond the stan-
dard definition.

An implementation may provide support for all or part of any character
script and may provide new character scripts which include characters having
unique semantics (i.e. not defined in any standard character script). Imple-
mentation scripts must be uniquely named using only Latin capital letters A-Z,
hyphen and digits 0-9.

An implementation must document the scripts it supports. For each script
supported the documentation must include at least the following:

• Character Labels, Glyphs, and Descriptions. Character labels must be
uniquely named using only Latin capital letters A-Z, hyphen and digits
0-9.

• Reader Canonicalization. 17

• Effect of character predicates. In particular,

– alpha-char-p

– lower-case-p

– upper-case-p

– both-case-p

– graphic-char-p

– alphanumericp

16In fact, they are simply 15 of the scripts represented within [ISO DP 10646]
17Any mechanisms by which the read function treats distinct characters as equivalent.

CHAPTER 2. OVERVIEW 16

• Interaction with File I/O. In particular, the coded character sets 18 and
external encoding schemes supported are documented.

We introduce new functions to compose and decompose character objects.
We also extend the characterp predicate to support testing membership of a
character in a given character repertoire. 19 A global variable *all-character-script-names*
is added to allow application determination of implementation supported char-
acter scripts.

Proposal 2.4.3 Add the type specifier and (modified) type predicate:

• (character repertoire)

This denotes a character type specialized to members of the specified reper-
toire. Repertoire may be :base or :standard or any supported character
repertoire name (a symbol), or a list of names.

(character :base) is equivalent to base-character and (character
:standard) is equivalent to standard-char

• (characterp object &optional repertoire)

If repertoire is omitted, characterp is true if object is a character object,
and otherwise is false. If a repertoire argument is specified, characterp is
true if object is a character object and a member of the specified repertoire,
and otherwise is false. Repertoire may be any supported character reper-
toire name (a symbol) or the names :base or :standard. (characterp
x :standard) is equivalent to (standard-char-p x). (characterp x
:base) is true if x is a member of the base character repertoire.

Proposal 2.4.4 Add the following variable and functions:

• *all-character-script-names* [Variable]

The value of *all-character-script-names* is a list of all character
repertoire names (symbols) supported by the implementation.

• char-label char [Function]

char-label returns a string representing the character label of char. It is
an error if the argument is not a character object.

• char-script-name char [Function]

char-script-name returns a string representing the character script to
which char belongs. It is an error if the argument is not a character
object.

18For example, ISO8859/1-1987.
19For example, testing membership in the Japanese Katakana character repertoire.

CHAPTER 2. OVERVIEW 17

• find-char script label [Function]

find-char returns a character object. The arguments script and label are
names (symbols) of a character script and label. label uniquely identifies a
character within the character script named script. If the implementation
does not support the specified character, nil is returned.

Proposal 2.4.5 Character names accepted and constructed by char-name, name-char,
and #\ are extended to include character script names of the form script:label.

2.5 Streams and System I/O

A lot of the work of ensuring that a Common LISP implementation operates
correctly in a multiple coded character set environment must be performed
by the I/O interface. The system I/O interface, abstracted in Common LISP
as streams, is responsible for ensuring that text input from outside LISP is
properly mapped into character objects internally, and that the inverse mapping
is performed on output. It is beyond the scope of a language definition to specify
the details of this operation, but options are specified which allow runtime
indication from the user as to what coded character sets a stream uses, and how
the mappings should be done. It is expected that implementations will provide
reasonable defaults and invocation options to accommodate desired use at an
installation.

There are often multiple coded character sets supportable on a computer,
through the use of special display and entry hardware, which are varying in-
terpretations of the basic system character representation. For example, ISO
8859/1 and ISO 6937/2 are two different interpretations of the same 1-byte code
representations. Many countries have their own glyph-to-code mappings for 1-
byte character codes addressing the special requirements of national languages.
Differentiating between these, without reference to display hardware, is a mat-
ter of convention, since they all use the same set of code representations. When
a single byte is not enough, two or more bytes are sometimes used for character
encoding. This makes character handling even more difficult on machines where
the natural representation size is a byte, since not only is the semantic value
of a character code a matter of convention, which may vary within the same
computing system, but so is the identification of a set of bits as a complete
character code.

Given that multiple coded character sets exist, it is useful to provide portable
mechanisms based on their definitions.

Proposal 2.5.1 Add the following functions:

• char-external-code char name [Function]

char-external-code returns the non-negative integer representing the
encoding of the character char in the coded character set named by name, a

CHAPTER 2. OVERVIEW 18

symbol. If the implementation does not support the specified coded charac-
ter set, nil is returned. If the named coded character set does not contain
the character, nil is returned.

• find-external-char name index [Function]

find-external-char returns a character object. The argument index is a
non-negative integer representing the encoding of a character in the coded
character set named by name, a symbol. If the implementation does not
support the specified coded character set, nil is returned. If the named
coded character set does not contain the character, nil is returned.

An implementation supporting multiple coded character sets must allow for
the external representation of characters to be separately (and perhaps multiply)
specified to open, since there can be circumstances under which more than one
external representation for characters is in use, or more than one coded character
set is mixed together in an external representation convention.

Which coded character sets and encoding schemes are supported by the
overall computing system and the details of the mapping of glyphs to characters
to character codes are left unspecified by Common LISP.

Proposal 2.5.2 Add the additional keyword argument to open:

• :external-format which specifies a name, or list of names (keyword sym-
bols) indicating an implementation recognized scheme for representing 1 or
more coded character sets with non-homogeneous codes.

The default value is :default and is implementation defined but must
include the base characters.

As many coded character set names must be provided as the implementa-
tion requires for that external coding convention.

Coded character set names must include the full reference number and ap-
proval year. For example, :ISO8859P1V1987 and :ISO6937P2V1983. All
implementation recognized schemes are formed from the Latin uppercase
A-Z, hyphen, and digit 0-9 characters.

This argument is provided for input, output, and bidirectional streams. It
is an error to try to write a character other than a member of the specified
coded character sets to a stream. (This excludes the #\Newline character. Im-
plementations must provide atopopriate line division behavior for all character
streams.)

The existing default for the :element-type argument of open is string-char.
This is no longer appropriate given the elimination of string-char within the
standard specification.

CHAPTER 2. OVERVIEW 19

Proposal 2.5.3 (Withdrawn 03/89) Modify the :element-type argument to
open as follows:

• Add base-character as a valid type.

• Remove string-char as a valid type.

The following alternative is consistent with the general premise that porta-
bility is emphasized over efficiency.

Proposal 2.5.4 (Alternative A) The default for the :element-type argument
of open is character.

The following alternative (B), allows implementations to match the behavior
of open to the expected behavior of their file systems.

Proposal 2.5.5 (Alternative B) The default for the :element-type argument
of open is implementation defined as a super-type of base-character and a
sub-type of character.

Proposal 2.5.6 Modify the following functions:

• with-output-to-string if no string argument is provided, produces a
stream that accepts all characters and returns a string of the most special-
ized type that accommodates the characters that were actually output.

• make-string-output-stream produces a stream that accepts all charac-
ters and returns (via get-output-stream-string) a string of the most
specialized type that accommodates the characters that were actually out-
put.

In addition to supporting conversion at the system interface, the language
must allow user programs to determine how much space data objects will require
when output in whichever external representations are available.

This function is necessary to determine if strings can be written to fixed
length fields in databases. Note that this function does not address the problem
of calculating screen width of strings printed in proportional fonts.

Proposal 2.5.7 Add the following function:

• file-string-length file-stream object [Function]

file-string-length returns a non-negative integer which represents the
difference between what (file-position file-stream) would be after writ-
ing the object and its current value, or nil if this cannot be determined.
object must be a string or character.

This integer corresponds to the current state of the stream and may change
if there has been intervening output.

CHAPTER 2. OVERVIEW 20

2.6 Miscellaneous

In the process of creating this document, some comments were found within
CLtL which seem appropriate to modify independently of the other proposals
mentioned previously. For each, we identify the existing statement of CLtL and
the recommended change.

Proposal 2.6.1 (Passed 03/89)
⇒‡(p12) Chapter 2 Data Types
replace provides for a rich character set, including ways to represent char-

acters of various type styles.
with provides support for international language characters as well as

characters used in specialized arenas, eg. mathematics.

Proposal 2.6.2 (Passed as Modified 03/89)
⇒‡(p25) Chapter 2 Symbols
clarify A symbol may have any character in its print name.

Proposal 2.6.3 (Passed 03/89)
⇒‡(p163) Chapter 10 Symbols
replace It is ordinarily not permitted to alter a symbol’s print name.
with It is an error to alter a symbol’s print name.

Proposal 2.6.4 (Passed 03/89)
⇒‡(p168) Chapter 10 The Print Name
replace It is an extremely bad idea to modify a string being used as the

print name of a symbol.
with It is an error to modify a string being used as the print name of a

symbol.

Proposal 2.6.5 (Passed 03/89)
⇒‡(p249,make-sequence) Chapter 14 Simple Sequence Functions
append If type string is specified, the result is equivalent to make-string.

Bibliography

[Ida87] M. Ida, et al., JEIDA Common LISP Committee Proposal on
Embedding Multi-Byte Characters , ANSI X3J13 document
87-022, (1987).

[ISO 646] ISO, Information processing – ISO 7-bit coded character set
for information interchange , ISO (1983).

[ISO DP 10646] ISO, Draft Proposal Information processing – Multiple octet
coded character set , ISO (1983).

[ISO 4873] ISO, Information processing – ISO 8-bit code for information
interchange – Structure and rules for implementation , ISO
(1986).

[ISO 6937/1] ISO, Information processing – Coded character sets for text
communication – Part 1: General introduction , ISO (1983).

[ISO 6937/2] ISO, Information processing – Coded character sets for text
communication – Part 2: Latin alphabetic and non-alphabetic
graphic characters , ISO (1983).

[ISO 8859/1] ISO, Information processing – 8-bit single-byte coded graphic
character sets – Part 1: Latin alphabet No. 1 , ISO (1987).

[ISO 8859/2] ISO, Information processing – 8-bit single-byte coded graphic
character sets – Part 2: Latin alphabet No. 2 , ISO (1987).

[ISO 8859/6] ISO, Information processing – 8-bit single-byte coded graphic
character sets – Part 6: Latin/Arabic alphabet , ISO (1987).

[ISO 8859/7] ISO, Information processing – 8-bit single-byte coded graphic
character sets – Part 7: Latin/Greek alphabet , ISO (1987).

[Kerns87] R. Kerns, Extended Characters in Common LISP , X3J13
Character Subcommittee document, Symbolics Inc (1987).

21

BIBLIOGRAPHY 22

[Kurokawa88] T. Kurokawa, et al., Technical Issues on International Char-
acter Set Handling in Lisp , ISO/IEC SC22 WG16 document
N33, (1988).

[Linden87] T. Linden, Common LISP - Proposed Extensions for Interna-
tional Character Set Handling , Version 01.11.87, IBM Cor-
poration (1987).

[Steele84] G. Steele Jr., Common LISP: the Language , Digital Press
(1984).

[Xerox87] Xerox, Character Code Standard, Xerox System Integration
Standard , Xerox Corp. (1987).

