CL-L10N: CL Localization Package

Copyright (©) 2004 Sean Ross. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The names of the authors and contributors may not be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents

1 Introduction............eeiiieieeeeeennns 1
1.1 Supported Implementations 1
2 Getting Started............................ 2
2.1 Downloadingooniimm 2
2.2 Imstalling ... 2
3 APIL. .. e e e e 3
3.1 Variables 3
3.2 Functions........... ... 3
3.3 Classes . oot 6
3.4 ConditionSt 6
N 1 < 7 7
4.1 Internationalisation............... 7
4.2 AP . 8
LS\ Lo) < 9
5.1 Locale Designators i 9
5.2 The Default Locale 9
5.3 Time Format Control Characters 9
5.4 Accessors to Locale Values. 10
5.0 Known ISSues 11
6 CreditS......ovein ittt enenenenenens 12
T IndeX ..vvni it e e e e e 13
7.1 Function Index....... 13

7.2 Variable Index 13

Chapter 1: Introduction 1

1 Introduction

CL-L10N is a portable localization package for Common Lisp which is more or less modelled
on the Allegro Common Lisp locale package. It currently supports various accessors (like
locale-mon), number printing, money printing and time/date printing.

The CL-L10N Home Page is at http://www.common-1lisp.net/project/cl-110n where
one can find details about mailing lists, cvs repositories and various releases.

Enjoy Sean.

1.1 Supported Implementations

e SBCL

e CMUCL
e CLISP

e Lispworks
e ECL

e Allegro CL

http://www.common-lisp.net/project/cl-l10n

Chapter 2: Getting Started 2

2 Getting Started

CL-L10N wuses asdf as it’s system definition tool and is required whenever you load the
package. You will need to download it, or if you have sbcl (require ’asdf)

2.1 Downloading

e ASDF-INSTALL CL-L10N is available through asdf-install. If you are new to Common
Lisp this is the suggested download method. With asdf-install loaded run (asdf-
install:install :c1-110n) This will download and install the package for you. Asdf-
install will try to verify that the package signature is correct and that you trust the
author. If the key is not found or the trust level is not sufficient a continuable error will
be signalled. You can choose to ignore the error and continue to install the package.
See the documentation of asdf-install for more details.

e DOWNLOAD
The latest cl-110n release will always be available from cl.net. Download and untar in an

appropriate directory then symlink ‘c1-110n.asd’ to a directory on asdf :*central-
registry* (see the documentation for asdf for details about setting up asdf).

e CVS

If you feel the need to be on the bleeding edge you can use anonymous CVS access, see
the Home Page for more details for accessing the archive. Once downloaded follow the
symlink instructions above.

2.2 Installing

Once downloaded and symlinked you can load CL-L10N at anytime using (asdf:oos
>asdf :load-op :c1-110n) This will compile CL-L10N the first time it is loaded.

Once installed run (asdf:oos ’asdf:test-op :c1-110n) to test the package. If any
tests fail please send an email to one of the mailing lists.

http://cliki.net/asdf
http://sbcl.org
http://www.common-lisp.net
http://www.common-lisp.net/project/cl-l10n

Chapter 3: API 3

3 API

3.1 Variables

xlocalex* [Variable]
The default locale which will be used.

xlocale-pathx* [Variable]
The default pathname where locale definition files can be found.

xlocales* [Variable]
A hash table containing loaded locales keyed on locale name.

xfloat-digits* [Variable]
An integer value which determines the number of digits after the decimal point when
all said digits are zero. This variable only has an effect when printing numbers as
monetary printing gets this value from the locale.

3.2 Functions

locale-name locale [Function]
Returns the name of locale.

locale name &key (use-cache t) (errorp t) [Function]
Loads the locale designated by the locale-designator name which is expected to be
found in *locale-path*. If use-cache is nil the locale will be forcibly reloaded from
path otherwise the cached locale will be returned. If the locale cannot be found and
errorp is not nil an error of type locale-error will be signalled.

locale-value locale category-name key [Function]
Returns the value of key in cagetory category-name found in the locale locale.

load-all-locales &optional (path *locale-path*) [Function]
Load all locales found in pathname path.

print-number number &key (stream *standard-output) no-ts no-dp [Function]
locale *locale*
Prints number using locale locale. If mo-ts is not nil no thousand seperators will
be used when printing number. If no-dp is not nil the decimal seperator will be
suppressed if number is not an integer.

format-number stream arg no-dp no-ts &optional (locale *locale*) [Function]
format-number is intended to be used as an argument to the ~/ / format directive.
Example (assuming *locale* is en_ZA)

(format t "7 :/cl-110n:format-number/" 1002932)
prints ¢1,002,932°¢

Chapter 3: API 4

print-money value &key (stream *standard-output) use-int-sym no-ts [Function]
(locale *locale*)
Prints value as a monetary value using locale locale. If no-ts is not nil no thousand
seperators will be used when printing number. If use-int-sym is not nil locale-int-
curr-symbol will be used instead of the default locale-currency-symbol

format-money stream arg use-int-sym no-ts &optional (locale *locale*) [Function]
Prints value as a monetary value using locale locale. format-money is intended to be
used as the function to the ~/ / format directive Examples.
(format t "7/cl-110n:format-money/" 188232.2322)
prints ‘R188,232.23¢

;5 and

(format t "7:/cl-110n:format-money/" 188232.2322)
prints ‘ZAR 188,232.23°¢

print-time ut &key show-date show-time (stream *standard-output) [Function]
(locale *locale) fmt time-zone
Prints the universal-time ut as a locale specific time to stream. Equivalent to
(format-time stream ut show-date show-time locale fmt time-zone).

format-time stream ut show-date show-time &optional (Iocale *locale*) [function]
fmt time-zone
Prints the universal-time ut as a locale specific time to stream. The format of the
time printed is controlled by show-time and show-date.

show-time and show-date are not nil
locale-d-t-fmt

show-time and show-date are nil
locale-t-fmt-ampm or locale-t-fmt if locale-t-fmt-ampm has no ap-
parent value.

show-time is not nil and show-date is nil
locale-t-fmt

show-date is not nil and show-time is nil
locale-d-fmt

If fmt is not nil then show-date and show-time are ignored and fmt is used as the
format control string. See the Notes Section for the defined control characters which
can be used.

Examples (assuming *locale* is “en_ZA” and a CL -2 Time Zone)

(format t "~ :/cl-110n:format-time/" 3192624000)
prints €03/03/01°

(format t "~@/cl-110n:format-time/" 3192624000)

Chapter 3: API 5)

prints €18:00:00°

(format t "~:@/cl-110n:format-time/" 3192624000)
prints ‘Sat 03 Mar 2001 18:00:00 +0200°’

(format t "“v,v/cl-110n:format-time/" "fr_FR" "JA" 3192624000)
prints ‘samedi’

(format t "~,v/cl-110n:format-time/" "%A" 3192624000)
prints ‘Saturday’

; The Time Zone can be overriden with an extra v argument
(format t ""v,v,v/cl-110n:format-time/" "en_ZA" "%A" -8 3192624000)
print ‘Sunday’

format stream fmt-string &rest args [Function]
Format is an unexported symbol in the cl-110n package. It’s use is to make for-
matting of dates, times, numbers and monetary values simpler. Shadow importing
c1-110: :format into your package gives you a few new format directives. The new
directives are ~U : Time and Date (universal-time), "N : Numbers and "M : Monetary
values. All other format directives are unchanged and work as normal. These new
directives are drop in replacements for the ~/cl-110n:format-7/ calls.

;; These examples assume an en_ZA locale and a CL -2 Time Zone
(in-package :cl-user)

(shadowing-import ’cl-110n::format)

(format t "~:U" 3192624000)
prints €03/03/2001°

(format t "~,vU" "JA" 3192624000)
prints ‘Saturday’

(format t "~:N" 3192624000)
prints ¢3,192,624,000°

(format t "~ :M" 3192624000)
prints ‘ZAR 3,192,624,000.00°¢

formatter fmt-string [Macro]

Formatter is another unexported symbol in the cl-110n package Shadow importing
formatter gives support for the new format control directives.

parse-number num-string &optional (locale *locale*) [Function]
Parses the string num-string into a number using locale.

Chapter 3: API 6

parse-time time-string &key (start 0) (end (length time-string)) [Function]
(error-on-mismatch nil) (patterns *default-date-time-patterns®)
(default-seconds nil) (default-minutes nil) (default-hours nil) (default-day nil)
(default-month nil) (default-year nil) (default-zone nil) (default-weekday nil)
(locale *locale*)
Tries very hard to make sense out of the argument time-string using locale and returns
a single integer representing the universal time if successful. If not, it returns nil. If
the :error-on-mismatch keyword is true, parse-time will signal an error instead of
returning nil. Default values for each part of the time/date can be specified by the
appropriate :default- keyword. These keywords can be given a numeric value or the
keyword :current to set them to the current value. The default-default values are
00:00:00 on the current date, current time-zone.

Example, what date does the string “02/03/05” specify? parse-time will use the
current locale or the locale-designator passed to it to determine the correct format
for dates. In America (en_US) this date is the 3rd of February 2005, with an South
African English (en-ZA) locale this date is the 2nd of March 2005 and with a Swedish
locale (sv_SE) it’s the 5th of March 2002.

Note. This is not my work but was done by Jim Healy and is a part of the CMUCL
project, which has been modified to handle differt locales.

3.3 Classes

locale [Class]
Class Precedence: standard-object The class representing a loaded locale.

category [Class]
Class Precedence: standard-object The class representing a loaded category within
a locale.

3.4 Conditions

locale-error [Condition]
Class Precedence: error

Root CL-L10N condition which will be signalled when an exceptional situation occurs.

parser-error [Condition]
Class Precedence: error Error which is signalled when an error occurs when parsing
numbers or time strings.

Chapter 4: 118N 7

4 118N

4.1 Internationalisation

CL-L10N supports internationalised strings through the use of bundles. The process is
currently extremely basic, and is bound to change in the future, but is flexible and does
what is expected of it.
First you define a bundle using make-instance.
(defvar *my-bundle* (make-instance ’bundle))
Then you add resources to your bundle using either add-resource or add-resources.

(add-resources (bundle "af_")
"showtime" "Dankie, die tyd is ~:@/cl-110n:format-time/~%")

;; an empty string as the locale matcher becomes the default
(add-resources (bundle "")

"showtime" "Thanks, the time is ~:@/cl-110n:format-time/~%")

Then by using gettext you can lookup locale specific strings.
(defun timey () (format t (gettext "showtime" bundle) 3310880446))
(timey) ;; with locale en_ZA
prints ‘Thanks, the time is Wed 01 Dec 2004 11:00:46 +0200°

(let ((*locale* (locale "af_ZA")))
(timey))
prints ‘Dankie, di tyd is Wo 01 Des 2004 11:00:46 +0200°

A useful trick is to define either a macro or reader macro wrapping gettext for your
specific bundle eg.

(set-dispatch-macro-character
#\# #\"
#’ (lambda (s cl c2)
(declare (ignore c2))
(unread-char cl s)
‘(cl-110n:gettext ,(read s) bundle)))

;3 or this

(defmacro (text)

‘(cl-110n:gettext ,text bundle))

which would change the timey function to
(defun timey () (format t #"showtime" 3310880446))
;5 or
(defun timey () (format t (_ "showtime") 3310880446))

Chapter 4: 118N 8

4.2 API

add-resource bundle from to locale-name [Generic]
Adds an entry to bundle for locale-name mapping from to to. The locale-name does
not have to be a full name like “en_US” but can be a partial match like “en_”. Adding
mappings for these two locale-names will result in the mapping for “en_US” being
used when the locale is “en_US” and the mapping for “en_” being used when using
any other english locale. Adding a mapping for an empty locale-name will become
the default.

;3 Add mapping for welcome for Afrikaans languages.
(add-resource *my-bundle* "welcome" "welkom" "af_")

add-resources (bundle locale-name) &rest entries [Macro]
Utility macro to group large amounts of entries into a single logical block for a locale.

(add-resources (bundle "af_")
"hello" "hallo"
"goodbye" "totsiens"
llyes J'all
llno llnee")

(add-resource bundle "hello" "hallo" "af_")
(add-resource bundle "goodbye" "totsiens" "af_")
(add-resource bundle "yes" "ja" "af_")
(add-resource bundle "no" "nee" "af_")

gettext name bundle &optional (*locale* *locale*) [Function]
Looks for a mapping for name in bundle. If no mapping is found returns name.

Chapter 5: Notes 9

5 Notes

5.1 Locale Designators
The locale argument to the various locale accessors and to the print functions is a locale
designator. A locale designator is one of three things

e A locale object returned by (locale name)

e A string designating a locale, “en_ZA”.

e A symbol eg. :len_ZA|

5.2 The Default Locale

The default locale is found by looking at various environment variables. If the CL_LLOCALE
environment variable is set then this locale is loaded. Failing that the locale designated by
the environment variable LC_CTYPE is loaded. If these two have failed then the POSIX
locale is loaded as the default.

5.3 Time Format Control Characters
The following is a list of each legal control character in a time format string followed by a
description of what is does.
e %% A percentage sign.
e %a locale’s abbreviated weekday name (Sun..Sat)
o %A locale’s full weekday name, variable length (Sunday..Saturday)
e %D locale’s abbreviated month name (Jan..Dec)
e %B locale’s full month name, variable length (January..December)
e Yc locale’s date and time (Sat Nov 04 12:02:33 EST 1989)
e %C century [00-99]
e %d day of month (01..31)
e %D date (mm/dd/yy)
e %e day of month, blank padded (1..31)
e %F same as %Y-%m-%d
e %g the 2-digit year corresponding to the %V week number
e %G the 4-digit year corresponding to the %V week number
e %h same as %b
e %H hour (00..23)
e %I hour (01..12)
e %j day of year (001..366)
e %k hour (0..23)
e %I hour (1..12)
e %m month (01..12)
e %M minute (00..59)

Chapter 5: Notes 10

%n a newline

%N nanoseconds (Always 000000000)

%p locale’s upper case AM or PM indicator (blank in many locales)
%P locale’s lower case am or pm indicator (blank in many locales)
%r time, 12-hour (hh:mm:ss [AP]M)

%R time, 24-hour (hh:mm)

%s seconds since ‘00:00:00 1970-01-01 UTC’

%S second (00..60)

%t a horizontal tab

%T time, 24-hour (hh:mm:ss)

%u day of week (1..7); 1 represents Monday

%U week number of year with Sunday as first day of week (00..53)
%V week number of year with Monday as first day of week (01..53)
%w day of week (0..6); 0 represents Sunday

%W week number of year with Monday as first day of week (00..53)
%x locale’s date representation (locale-d-fmt)

%X locale’s time representation (locale-t-fmt)

%y last two digits of year (00..99)

%Y year (1900...)

%z RFC-2822 style numeric timezone (-0500)

%Z RFC-2822 style numeric timezone (-0500)

5.4 Accessors to Locale Values.

There are a number of accessor functions to the various locale attributes defined. The
functions are named by replacing underscores with hypens and prepending locale- to the
name. The following is each defined accessor function in the format Category, Keyword and
the accessor function for it.

LC_MONETARY int_curr_symbol locale-int-curr-symbol
LC_MONETARY currency_symbol locale-currency-symbol
LC_MONETARY mon_decimal_point locale-mon-decimal-point
LC_MONETARY mon_thousands_sep locale-mon-thousands-sep
LC_MONETARY mon_grouping locale-mon-grouping
LC_MONETARY positive_sign locale-positive-sign
LC_MONETARY negative_sign locale-negative-sign
LC_MONETARY int_frac_digits locale-int-frac-digits
LC_MONETARY frac_digits locale-frac-digits
LC_MONETARY p_cs_precedes locale-p-cs-precedes
LC_MONETARY p_sep_by_space locale-p-sep-by-space
LC_MONETARY n_cs_precedes locale-n-cs-precedes

Chapter 5: Notes

LC_MONETARY n_sep_by_space locale-n-sep-by-space
LC_MONETARY p_sign_posn locale-p-sign-posn
LC_MONETARY n_sign_posn locale-n-sign-posn
LC_NUMERIC decimal_point locale-decimal-point
LC_NUMERIC thousands_sep locale-thousands-sep
LC_NUMERIC grouping locale-grouping

LC_TIME abday locale-abday

LC_TIME day locale-day

LC_TIME abmon locale-abmon

LC_TIME mon locale-mon

LC_TIME d_t_fmt locale-d-t-fmt

LC_TIME d_fmt locale-d-fmt

LC_TIME t_fmt locale-t-fmt

LC_TIME am_pm locale-am-pm

LC_TIME t_fmt_ampm locale-t-fmt-ampm
LC_TIME date_fmt locale-date-fmt
LC_MESSAGES yesexpr locale-yesexpr
LC_MESSAGES noexpr locale-noexpr

LC_PAPER height locale-height

LC_PAPER width locale-width

LC_NAME name_fmt locale-name-fmt

LC_NAME name_gen locale-name-gen

LC_NAME name_mr locale-name-mr

LC_NAME name_mrs locale-name-mrs

LC_NAME name_miss locale-name-miss

LC_NAME name_ms locale-name-ms

LC_ADDRESS postal_fmt locale-postal-fmt
LC_TELEPHONE tel_int_fmt locale-tel-int-fmt
LC_MEASUREMENT measurement locale-measurement

5.5 Known Issues

LC_COLLATE and LC_CTYPE categories in the locale files are currently ignored.

Not all time format directives are supported (U, V and W are not implemented).

11

Chapter 6: Credits

6 Credits

Thanks To

e Common-Lisp.net: For project hosting.

12

Chapter 7: Index

7 Index

7.1 Function Index
A

add—TesSOoUrCe oottt
Aadd-TeSOUTCEeSttt

F

format........
format-money L.
format-number
format-time
formatter........

G

gettext......

7.2 Variable Index

float-digits..............................
*¥localeX.

13
load-all-locales.............coviuiinnnnn.... 3
locale. ... 3
locale-nameiiiiiiiiiiii 3
locale-valuecooiiniiiinannnnn... 3
parse-numberiaa.. 5
parse-time 6
print-moneyl 4
print-number 3
print-timel 4
locale-path 3
¥locales*.......... 3

	Introduction
	Supported Implementations

	Getting Started
	Downloading
	Installing

	API
	Variables
	Functions
	Classes
	Conditions

	I18N
	Internationalisation
	API

	Notes
	Locale Designators
	The Default Locale
	Time Format Control Characters
	Accessors to Locale Values.
	Known Issues

	Credits
	Index
	Function Index
	Variable Index

