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ABSTRACT
LIL, the Lisp Interface Library, is a data structure library based on
Interface-Passing Style. This programming style was designed to
allow for parametric polymorphism (abstracting over types, classes,
functions, data) as well as ad hoc polymorphism (incremental de-
velopment with inheritance and mixins). It consists in isolating al-
gorithmic information into first-class interfaces, explicitly passed
around as arguments dispatched upon by generic functions. As
compared to traditional objects, these interfaces typically lack iden-
tity and state, while they manipulate data structures without intrin-
sic behavior. This style makes it just as easy to use pure functional
persistent data structures without identity or state as to use stateful
imperative ephemeral data structures. Judicious Lisp macros allow
developers to avoid boilerplate and to abstract away interface ob-
jects to expose classic-looking Lisp APIs. Using only a very simple
linear type system to model the side-effects of methods, it is even
possible to transform pure interfaces into stateful interfaces or the
other way around, or to transform a stateful interface into a tradi-
tional object-oriented API.

1. INTRODUCTION
In dynamically typed languages such as Common Lisp or Python

(but also in some statically typed languages like the initial C++),
programmers usually rely on ad hoc polymorphism to provide a
uniform interface to multiple situations: a given function can ac-
cept arguments of many types, then dispatch on the type of these
arguments to select an appropriate behavior. Object-oriented pro-
gramming via user-defined classes or prototypes may then provide
extension mechanisms by which new types of objects may be spec-
ified that fit existing interfaces; this extension can be incremental
through the use of inheritance in a class (or prototype) hierarchy.
More advanced object systems such as the Common Lisp Object
System (CLOS) have further mechanisms such as multiple inheri-
tance, multiple dispatch, and method combinations, that allow for
a more decentralized specification of behavior.

In statically typed languages such as ML or Haskell (but also in
some dynamically typed languages such as in PLT Scheme when
using units (Felleisen 1998)), programmers usually rely on para-
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metric polymorphism to write generic algorithms applicable to a
large range of situations: algorithmic units can be parameterized
with types, functions and other similar algorithmic units. These
units can then be composed, allowing for elegant designs that make
it easier to reason about programs in modular ways; the composi-
tion also enables the bootstrapping of more elaborate implementa-
tions of a given interface type from simpler ones.

In the past, many languages, usually statically typed languages
(C++, OCaml, Haskell, Java, Scala, etc.), but also dynamically
typed languages (PLT Scheme (Flatt 1998)), have offered some
combination of both ad hoc polymorphism and parametric poly-
morphism, with a variety of results. In this paper, we present LIL,
the Lisp Interface Library (Rideau 2012), which brings parametric
polymorphism to Common Lisp in a way that nicely fits into the
language and its existing ad hoc polymorphism, taking full advan-
tage of the advanced features of CLOS.

In section 2, we describe the Interface-Passing Style (Rideau
2010) in which LIL is written: meta-data about the current algo-
rithm is encapsulated in a first-class interface object, and this object
is then explicitly passed around in computations that may require
specialization based on it. We show basic mechanisms by which
this makes it possible to express both ad hoc and parametric poly-
morphism.

In section 3, we demonstrate how we use this style to imple-
ment a library of classic data structures, both pure (persistent) and
stateful (ephemeral). We show how our library makes good use
of Interface-Passing Style to build up interesting data structures:
ad hoc polymorphism allows us to share code fragments through
mixins; various tree implementations can thus share most of their
code yet differ where it matters; parametric polymorphism allows
the composition of data structures and the bootstrapping of more
efficient ones from simpler but less efficient variants; first-class in-
terfaces allow the very same object to implement a given type of
interface in different ways.

In section 4, we show how adequate macros can bridge the gap
between different programming styles: between syntactically im-
plicit or explicit interfaces, between pure functional and stateful
data structures, between interface-passing and object-oriented style.
All these macros allow programmers to choose a programming
style that best fits the problem at hand and their own tastes, while
still enjoying the full benefits of Interface-Passing Style libraries.
They work based on a model of the effects of interface functions
according to a simple type system rooted in linear logic.

We conclude by describing how Interface-Passing Style in Lisp
relates to idioms in other programming languages and compares
to existing or potential mechanisms for polymorphism in these lan-
guages or to their underlying implementation, and what are the cur-
rent limitations of our library and our plans of future developments.



2. INTERFACE-PASSING STYLE

2.1 Using Interfaces

2.1.1 Interface Passing: An Extra Argument
For the user of a library written in Interface-Passing Style, inter-

faces are just one extra argument (more rarely, two or more) passed
as the first argument (or arguments) to appropriate function calls.
Each such interface argument provides these functions with some
contextual information about which specific variant of some algo-
rithm or data structure is being used.

As a syntactic convention followed by our library, symbols that
denote interface classes, variables bound to interface objects, or
functions returning interface objects will usually start and end with
respective angle brackets < and >. For instance, the interface to ob-
jects that may be empty is <emptyable>, whereas a prototypical
interface variable would be <i>.

2.1.2 Trivial Example: Maps
The most developed API in our library currently deals with (fi-

nite) maps, i.e. a finite set of mappings from keys to values. Our
examples will mainly draw from this API. Maps notably include
traditional Lisp alists (association lists) and hash-tables.

Thus, whereas a traditional object-oriented API might feature a
function

(lookup map key)

that would dispatch on the class of the object map to determine how
said map associates a value to the given key, an interface-passing
API will instead feature a function

(lookup <i> map key)

where information on which precise algorithm to use is instead en-
capsulated in the extra argument <i>, an interface.

You could thus look up the year in an alist of data about a con-
ference with code such as:

(lookup <alist>
’((name . "ILC") (year . 2010) (topic . "Lisp"))
’year)

In this case, the library-exported variable <alist> is bound to an
interface for association lists.

Similarly, to insert a new key-value mapping in an existing map,
you would call a function

(insert <i> map key value)

and depending on what interface <i> you specified, the generic
function (in the sense of CLOS) would select an algorithm and ap-
propriately update the data structure bound to variable map, return-
ing the expected results.

2.1.3 Pure vs Stateful Interfaces
Of course, which effects a function call has and which results it

returns may vary with the interface as well as the function.
For instance, our simplest map interface, <alist>, as the name

implies, implements maps as association lists in the usual Common
Lisp tradition: a list of pairs (cons cells), each specifying a key (as
the cell’s car) and a value (as the cell’s cdr). Our alist interface
is pure, meaning that the maps it manipulates are never modified
in place, but new lists and association pairs are created as required.
In particular, the function insert when applied to our <alist>
interface, will return a new alist object:

(insert <alist>
’((name . "ILC") (year . 2010) (topic . "Lisp"))
’year 2012)

will return

((name . "ILC") (year . 2012) (topic . "Lisp"))

or some equivalent alist, without modifying any previous data cell,
instead reusing the unmodified cells where possible.

If instead of alists, we had been using the interface <hash-
table> and a hash-table object, the function insert would have
returned no values, instead modifying the existing hash-table in
place.

Because insert means something quite different for pure and
stateful data structures, with incompatible invariants, our library
actually defines two different generic functions, pure:insert
and stateful:insert, each in its own package. 1

By contrast, there is only one function interface:lookup
that is shared by all pure and stateful interfaces and imported in
both the pure and stateful packages. Indeed, lookup has the
same specification in both cases: it takes an interface, a map and a
key as parameters, and it returns two values, the value associated to
the given key if a mapping was found, and a boolean that is true if
and only if a mapping was found.

It is easy to underestimate the importance of the semantic dif-
ferences between pure and stateful data structures, until you’ve ac-
tually tried to gloss over them. See in section 3 a more detailed
justification why we keep such a clear distinction between the two.

2.1.4 First-Class Interfaces
Interfaces are first-class objects. They don’t have to be compile-

time constants. Functions can abstract over interface objects, create
new interface objects, etc. By abstracting over the interface object,
accepting it as an argument and passing it to other functions, you
can write algorithms that are independent of the specifics of the
underlying data structure.

For instance, you can write functions that fold over a map (re-
duce it) without knowing how the map is implemented internally
(or indeed whether it’s pure or stateful, computing serially or in
parallel); and you can apply such functions to a wide variety of
situations, in each of which the map’s implementation may be suit-
ably optimized to the context at hand:

(defmethod sum-values ((<i> pure:<map>) map)
(let ((submaps (divide/list <i> map)))

;; see promised invariant of divide/list
(cond

((null submaps) ; no element
0)

((null (rest submaps))
;; only one mapping, extract its value
(nth-value 1 (first-key-value <i> map)))

(t ;; general case: recurse and map-reduce
(reduce #’+

(mapcar (λ (m) (sum-values <i> m))
submaps))))))

The method above abstracts over interface <i>, which is con-
strained to be a sub-interface of pure:<map>, and will notably
rely on the latter’s signature function divide/list. This func-
tion is defined in our library; it divides a map map into a list of non-
empty submaps each with strictly fewer mappings than the original

1Packages are the standard first-class namespace mechanism of Common Lisp. The
syntax for a symbol can either leave the package implicit, or explicitly specify a pack-
age name as a prefix followed by one or two colons and the symbol name.



map, unless said map has exactly one mapping, in which case it re-
turns a singleton list containing that map. The above method could
be trivially parallelized by replacing mapcar and/or reduce by
parallelizing, queueing variants.

2.1.5 Functions of Multiple Interfaces
Most algorithms are parameterized by a single interface object.

Indeed, when multiple interface objects are required, they are usu-
ally uncurried into a single argument, with reader methods allowing
to extract the former interfaces from the argument and its param-
eter slots. For instance, instead of tree-manipulating functions re-
quiring two interface arguments, one to describe the tree structure
and another one to describe the key order, such functions will typ-
ically require only one interface argument, encapsulating both tree
structure and key order; then, from a given interface object <my-
tree>, the key interface can typically be obtained by evaluating
(key-interface <my-tree>).

Still, some functions naturally require several interfaces as argu-
ments. This typically happens when writing algorithms that bridge
between two different domains, rather than when dealing inside a
given domain. For instance, the function convert is defined as
follows:

(defgeneric convert
(<destination> <origin> object)

(:documentation "Convert an OBJECT
following interface <ORIGIN> into a new object
following interface <DESTINATION>."))

Thus, an algorithm working on finite maps will typically take
a single interface argument, and assume all maps used inside the
algorithm use the same representation strategy described by this
interface; but an algorithm that specifically federates access to sev-
eral databases will typically take several interface arguments, one
per federated database... and will typically return a single interface
(and possibly an object that follows this interface) so that normal
algorithms can access it all through that single interface (and ob-
ject, if any).

2.1.6 Caveat: No Type Checking
Interface-Passing Style in Common Lisp has a definite low-level

feeling, in that the user is given both full control and full responsi-
bility with respect to passing around appropriate interfaces, which
is compounded the fact that Common Lisp has dynamic typing
rather than static typing, so that the evaluator will not issue errors or
emit warnings at compile-time if you pass interfaces and arguments
that do not match each other.

The downside is that if the user fails to ensure consistency be-
tween the interfaces being used and data structures being passed
as arguments, unspecified behavior may ensue (usually resulting in
a runtime error at some point), as generic functions may or may
not check their arguments for consistency. While our library does
provide a function check-invariant as part of the signature
of interface <type>, most of the methods we provide do not call
said function, which in general is rather expensive (with a cost in-
creasing at least linearly with the size of the object), and instead
trust users to call it as appropriate, typically at the entry points of
their code, and often only while testing or debugging.

The upside of this lack of automatic type-based interface control
is that the user can explicitly specify an interface in some uncom-
mon cases where the “canonical” interface that could have been
deduced by type inference isn’t what he wants, and even in cases
where there isn’t any such “canonical” interface to begin with.

2.2 Defining Interfaces

2.2.1 define-interface
Interfaces can be defined with the define-interface macro,

which is an extension to defclass that handles several features
specific to interfaces.

For instance, here is a stripped-down excerpt from our library:

(define-interface <emptyable> (<type>) ()
(:abstract)
(:generic empty (<emptyable>)

(:values object) (:out 0)
(:documentation "Return an empty object"))

(:generic empty-p (<emptyable> object)
(:in 1) (:values boolean)
(:documentation "Is object empty?")))

It defines an interface <emptyable>, the name of which is
passed as first argument to the macro, as in defclass.

The second argument is a list specifying super-interfaces from
which to inherit behavior, also as in defclass. In this case,
there is one and only one super-interface, <type>. In our library,
<type> is an abstract interface specifying that some datatype is
targeted by interface functions. <emptyable> extends it with
the notion that elements of that type may be empty.

Still as in defclass, the third argument is a list of slots. A non-
empty list of slots is how parametric polymorphism is achieved. In
this case, this list is empty, as there are no parameters defined by
this interface.

Finally, and there again like defclass, define-interface
accepts a list of options. In addition to the regular defclass
options, it also recognizes a few of its own. For instance, the
<emptyable> interface above uses the :abstract option, to
declare that it doesn’t implement all its declared functions and must
not be instantiated.

This interface also uses the :generic option to declare two
generic functions that are part of the signature of the interface,
empty and empty-p. Furthermore, for each function, a return
value convention may be defined as well as a calling convention.
Indeed they are defined in this case: the first function takes no ar-
gument beyond the interface; the (:values object) specifies
that it returns exactly one value, named object, and the (:out 0)
specifies that return argument in first position is of the target type
(indexes are 0-based). Similarly, the second function is a predi-
cate, takes one argument of the target type and returns one boolean
value.

We will now go over each of these features in more detail.

2.2.2 Inheritance of Interfaces
Interfaces may inherit from other interfaces and be organized in

inheritance hierarchies.
For instance, <type> is an interface with an associated datatype.

<eq> is an interface that inherits from <type>, for datatypes with
an equality comparison predicate ==. <hashable> is an inter-
face that inherits from <eq>, for datatypes with a function hash
such that two equal values (as compared by ==) have the same
hash. <equal> is an interface that inherits from <hashable>,
and implements equality with the standard Common Lisp predi-
cate equal and hash with the standard Common Lisp function
sxhash. <eql> is an interface that inherits from <eq>, and im-
plements equality with the standard Common Lisp predicate eql;
since there is no standard Common Lisp hash function that corre-
sponds to it, it doesn’t inherit from <hashable>.



2.2.3 Multiple Inheritance of Interfaces
Interfaces may inherit from any number of super-interfaces. In-

deed, our interfaces are CLOS classes, and since CLOS supports
multiple-inheritance, they may easily inherit from multiple other
such classes. Interfaces may only inherit from other interfaces. In-
ternally they are instances of the CLOS metaclass interface-
class.

As an example of multiple inheritance, our pure:<tree> map
interface inherits from both interface:<tree>, an interface
specifying read-only signature functions on trees, and pure:<map>,
an interface specifying signature functions for maps with pure up-
date as well as mere lookup.

2.2.4 Interface Mixins
Our library also relies on multiple-inheritance extensively in the

form of mixins, also known as traits in other programming lan-
guages: small interface classes implement a small aspect of the
interface. Oftentimes, a mixin will be used to simply deduce the
implementation of some signature functions from other signature
functions. Depending on which signature functions are more “prim-
itive” for a given concrete data structure, converse mixins may be
used that deduce some functions from the others or the other way
around.

For instance, the <eq> interface actually has two associated
functions, (== <i> x y) that compares two objects x and y,
and equivalently (eq-function <i>) that returns a function
object that may be passed as an argument to various higher-order
functions. The mixin <eq-from-==> will automatically deduce
eq-function from == while the converse deduction is provided
by the mixin <eq-from-eq-function>.

2.2.5 Parametric Interfaces
Interfaces may be parameterized by other interfaces as well as

by any object.
For instance, consider the current definition of <alist> in our

library:

(define-interface <alist>
(<map-empty-as-nil>

<map-decons-from-first-key-value-drop>
<map-update-key-from-lookup-insert-drop>
<map-divide/list-from-divide>
<map-map/2-from-fold-left-lookup-insert-drop>
<map-join-from-fold-left-insert>
<map-join/list-from-join>
<map>)

((key-interface :type <eq>
:initarg :key-interface
:reader key-interface))

(:parametric (&optional (eq <eql>))
(make-interface :key-interface eq))

(:singleton))

The super-interface list contains several mixins to deduce various
methods from more primitive methods, together with the interface
<map> that provides the signature.

But most importantly, the list of slots contains a single slot key-
interface. Indeed, association lists crucially depend on an equal-
ity predicate with which to compare keys when looking up a given
key. Our <alist> interface therefore has this slot, the value of
which must be an instance of a concrete sub-interface of <eq>,
that will specify how to compare keys.

Slot definitions such as these are how we achieve parametric
polymorphism in Interface-Passing Style: an interface class with
such a slot get instantiated as interface objects with a specific value

in that slot, and a method defined on this interface class can extract
the value in said slot as a parameter to its behavior.

Our definition of <alist> also uses two options recognized
by define-interface that are not provided by defclass:
:parametric and :singleton.

2.2.6 Concrete Parametric Interfaces
The :parametric option automatically generates a function

to instantiate parameterized interface objects. This function fur-
ther uses memoization so interfaces with identical parameters end
up being the same interface object rather than a new object every
time.2

In the above <alist> example, the function takes one optional
parameter that defaults to <eql> (itself a variable bound to a sin-
gleton interface). This means that if no <eq> interface is spec-
ified, we will follow the Common Lisp convention and tradition
in providing the eql function as the default comparison function.
The body of the parametric function creates the interface object us-
ing the locally defined function make-interface that handles
memoization of an underlying CLOS make-instance.

Our library implements data structures more elaborate than al-
ists. For instance, you could use a balanced binary tree, in which
case you would have to provide the tree interface with a parameter
key-interface that inherits from <order>, so that keys may
be compared. Thus, (stateful:<avl-tree> <number>)
will return an interface that is ideal to maintain a sorted index of
numbered records, whereas (pure:<avl-tree> <string>)
is suitable to build persistent dictionary structures. However, if
you want your dictionary not in ASCIIbetical order but rather in
a proper collating sequence for Japanese, you’ll have to build an
interface <japanese-collation> around a Unicode library,
and pass it as an argument to pure:<avl-tree>, or to a variant
thereof that caches the collation key.

2.2.7 Singleton Interface Variable
The define-interface extension option :singleton au-

tomatically defines a special variable bound to a canonical instance
of a concrete interface class. If a :parametric option was pro-
vided, its function will be called with default values. Otherwise, a
trivial version of such a function will be defined and used.

Clients can therefore use the variable <alist> to refer to the
one default such interface, instead of having either to create a new
instance every time, be it with (<alist>) or using (make-
instance ’<alist> :key-interface <eq>).

2.2.8 Multiple Dispatch
Because CLOS has multiple dispatch, our generic functions can

dispatch on more than the first argument, thus preserving the lan-
guage’s object-oriented style on arguments beyond the initial inter-
face argument. In a language with single-dispatch, we couldn’t do
that, at least not directly, as dispatching on the interface would use
up the object-oriented ability to specialize behavior depending on
arguments.

As the simplest example, an interface <empty-object> could
implement the <emptyable> signature functions as follows, given
a class empty-object for its empty objects:

(defmethod empty-p
((<i> <empty-object>) (x t))

nil)

2This memoization is effectively a hash-consing strategy. It works because interfaces
don’t usually have intensional identity, only extensional content. Indeed, they em-
body behavioral meta-information notionally meant to be expanded before any code is
actually run. See in section 4.3 how interfaces compare to traditional objects.



(defmethod empty-p
((<i> <empty-object>) (x empty-object))

t)

Non-empty objects would be matched by the first method, while
empty objects would be matched by the more specific second method.

More complex examples could involve more methods, with big-
ger class hierarchies or dispatch on more than two arguments.

2.2.9 Interface Signatures
Each interface is attached to a set of functions declared as part

of the interface’s signature. The functions from the interface’s
super-interfaces are inherited; additional functions can be directly
declared using the :generic option of declare-interface.

Some interfaces, such as <emptyable> above, exist for the
sole purpose of declaring such functions, while leaving full free-
dom to sub-interfaces as to how to implement them. That is why
<emptyable> was marked as :abstract: it is an error to try to
instantiate it, its purpose is to be inherited from by other interfaces,
and dispatched upon in some methods.

We saw that some abstract interfaces have the opposite purpose:
they implement one or several signature functions in terms of other
signature functions, that may be more “primitive” in various con-
crete interfaces.

Finally, some interfaces do implement the complete declared sig-
nature, either directly or through inheritance of appropriate mix-
ins. They are concrete interfaces meant to be instantiated, such as
pure:<alist> above. Instantiation usually happens through a
function declared by the :parametric option or a variable de-
clared by the :singleton option. These options are mutually
exclusive with the :abstract option.

The fact that some interfaces are concrete is one notable differ-
ence between our interfaces and interfaces in other languages such
as Java. Another notable difference is that interfaces are not to be
implemented by a class of objects, with the first argument to ev-
ery function in the signature being treated specially and having to
be of an object class implementing the interface. Instead, our sig-
nature functions treat all arguments uniformly, and none of these
arguments have to be restricted to any particular class.

In particular, with our approach of detached interfaces, there is
no problem whatsoever with having “binary methods”; no special
status is required for “constructor” methods that create an object
of some target type when there was no object yet on which to dis-
patch methods; and there is no dilemma regarding contravariance
or covariance of types when inheriting from a parametric interface.
Interface-Passing Style solves these issues by making subtyping be-
tween interfaces independent from subtyping between data struc-
tures, eschewing the need to resolve the sometimes contradictory
constraints between the two kinds of subtyping. Note that many
of these issues could be avoided or glossed over in Common Lisp
thanks to its multimethods and dynamic typing; however, our ap-
proach could solve these issues even in a language without single
dispatch and/or with static typing; and indeed, an essentially equiv-
alent approach already solves these issues in Haskell.

3. REVISITING CLASSIC STRUCTURES

3.1 Pure and Stateful Data Structures

3.1.1 Pure, Stateful, their Intersection, and Beyond
We built LIL, the Lisp Interface Library, with the ambition that it

should become the definitive library for data structures in Common
Lisp. While we initially chose Interface-Passing Style to achieve

parametric polymorphism, which was not previously available in
Common Lisp, this style was also helpful to address other issues in
developing our library.

For instance, so that we may improve on all existing libraries, we
decided to provide both pure (functional) (persistent) data struc-
tures and stateful (imperative) (ephemeral) data structures. Fur-
thermore, we decided to do the Right Thing™ by sharing as much
as possible of the interface and implementation between these two
styles of data structures, with APIs congruent enough with each
other that it is possible to build automated bridges between the two
styles.

The interfaces in Interface-Passing Style proved to be a great
locus at which to formalize both the commonalities and divergences
between pure and stateful data structures.

3.1.2 Common Interfaces: Read-Only Access
The interface::<map> interface directly declares functions

lookup, first-key-value, fold-left, fold-right and
map-alist that access an existing map in a read-only way (the
latter builds an alist from the map). It also declares a function
alist-map that creates a map initialized from an alist, and is
quite useful for specifying non-empty constant maps. These func-
tions are applicable to pure as well as to stateful maps. There are
also inherited functions such as check-invariant, empty and
empty-p.

Thus, it is possible to write generic read-only tests for map data
structures that work for all map implementations, pure as well as
stateful. Indeed, LIL includes such tests in its test suite.

3.1.3 Interface Divergence: Update
We mentioned how the two distinct functions pure:insert

and stateful:insert have different signatures as far as return
values go. The same difference exists between the pure:drop
and stateful:drop functions: both have the same input signa-
ture

(<map> map key) (:in 1).
But whereas the former has the output signature

(:values map value foundp) (:out 0),
the latter has the output signature

(:values value foundp) (:out t).
This means that the pure function returns an updated version of
the original map data structure as its first return value, whereas the
stateful function omits this return value and instead side-effects the
map passed as input argument.

Other functions that update data structures have similar differ-
ences in their signatures: pure methods tend to return new updated
data structures as additional values, whereas such return values are
omitted by stateful methods that instead update existing data struc-
tures in place through side-effects.

3.1.4 Keeping Pure and Stateful Apart
It was a deliberate decision to avoid further unification between

the pure and stateful interfaces, and to not make them follow the
exact same convention for return values as well as for calling argu-
ments. Indeed our very first API had fewer divergences than it now
does; however, after a lot of experimentation, we discovered many
convergent reasons why it is a good idea to maintain a very clear
separation between the two:3

• Most important of all, publishing interfaces that have iden-
tical signatures yet essential semantic differences (i.e. side-

3It was suggested we name our two packages church and state rather than pure
and stateful, to insist on the need to keep them separate.



effects versus no side-effects) is an invitation to confused,
erroneous programs: functions will be written that look like
they work in both cases and get invoked as if they did, yet
somewhere along the way they will make crucial assump-
tions about the presence or absence of side-effects, and they
will fail when called with the wrong kind of interface.

• The only programs that would work in both cases are pro-
grams that strictly follow the functional paradigm while fol-
lowing the linear logic discipline that no object is ever mod-
ified more than once nor read after it has been modified. Our
API still allows users to write such programs, using the pure
interface; and thanks to the transformers we describe in sec-
tion 4 these programs may use or provide interfaces to state-
ful data structures.

• Therefore, maintaining a fake compatibility of calling con-
vention between these two APIs with actually different se-
mantics is often detrimental and never useful. It must be
avoided. That’s a case where punning causes confusion with-
out bringing expressive power.

• Moreover, it is more consistent both with previous practice of
stateful OO APIs and with the principle of least redundancy
that no value should be returned that is specified to always
be identical to an input argument, where for stateful meth-
ods, identical usually means eq. (Notable exceptions in our
API are divide where the initial map is returned as second
value, or divide/list where it is returned (if not empty)
as the first element of the result list; these exceptions are in
the sake of preserving another invariant, that the results of
division can be respectively be join’ed or join/list’ed
back into the original map.)

• Abiding by these simple principles allowed the transforma-
tions in section 4, between pure and stateful interfaces and
between Interface-Passing Style and object-oriented style, to
work based on a simpler effect language than might other-
wise have been needed. In this case, simpler is better not
only because it makes things easier to explain in this article,
but also because it already took a month to write and debug
the initial 175-line macros with 19 nested levels of binding
forms that lie at the heart of these transformations. 4

• Making for clearly different interfaces between pure and state-
ful makes for a better demonstration of the adapter between
pure and stateful interfaces. Our transformers would still
work and be required if the interfaces were the same, but the
confusion between the two similar-looking interfaces might
make it harder to explain what is going on versus what isn’t,
while hiding the fact that our transformations work even if
the interfaces differ.

3.1.5 Incremental Layers of Functionality
We have striven to implement our data structures in small incre-

mental layers by taking full advantage of CLOS features such as
multiple inheritance, multiple dispatch and method combinations.

For instance, here is an abstract mixin that adds a layer of self-
balancing to a binary tree, taking advantage of CLOS :after
method combination:
4Such deep nesting is the best case we’ve seen for the use of nest:
(defmacro nest (&rest r)

(reduce (λ (o i) ‘(,@o ,i)) r :from-end t))
Note with our system lambda-reader one can actually use λ instead of lambda.

(define-interface <post-self-balanced-binary-tree>
(<binary-tree>) ()

(:abstract))

(defmethod insert :after
((i <post-self-balanced-binary-tree>)

node key value)
(declare (ignore key value))
(balance-node i node))

(defmethod drop :after
((i <post-self-balanced-binary-tree>)

node key)
(declare (ignore key))
(balance-node i node))

And here is how stateful AVL trees are implemented on top of
previous layers:

(define-interface <avl-tree>
(interface::<avl-tree>

<heighted-binary-tree>
<post-self-balanced-binary-tree>) ()

(:abstract))

(defclass avl-tree-node
(interface::avl-tree-node

heighted-binary-tree-node) ())

(defmethod node-class ((i <avl-tree>))
’avl-tree-node)

(defmethod balance-node ((i <avl-tree>)
(node empty-object))

(values))

(defmethod balance-node
((i <avl-tree>) (node avl-tree-node))

(ecase (node-balance node)
((-1 0 1) ;; already balanced

(update-height node))
((-2)

(ecase (node-balance (left node))
((-1 0))
((1)

(rotate-node-left (left node))))
(rotate-node-right node))

((2)
(ecase (node-balance (right node))

((-1)
(rotate-node-right (right node)))

((0 1)))
(rotate-node-left node))))

The superclasses already handle the read-only aspect of AVL
trees (mostly invariant checking, in this case), and the stateful as-
pects of maintaining the tree height and having to rebalance after
updates. The only incremental code we need is the specification of
how to rebalance nodes.

This decomposition of interfaces into lots of incremental inter-
faces makes for a very clean programming style where each inter-
face is a small mixin that is quite easy to understand.

Note however the current burden of having to explicitly main-
tain two class hierarchies, one for the interfaces, and one for each
type of object that the interfaces may manipulate. We have hopes
of eliminating this boilerplate in the future, by having define-
interface manage for each interface such a set of object classes;
but we have not started work on such a solution yet.

3.2 Interface Tricks and Puns
A clear disadvantage of Interface-Passing Style, as compared to

means by which other languages achieve similar expression, is that



it imposes upon the user the cost of keeping track of the interface
objects that are passed around. But as a trade-off, there are some
advantages to balance the equation. We are going to enumerate a
few of these advantages, from the most trivial to the most advanced.

3.2.1 Dispatch without Object
As a first advantage, interfaces as separate detached arguments

allow users to manipulate data where there is no object to dispatch
on. This is very clear in the case of the pure:<alist> inter-
face: it operates on primitive entities (cons cells, nil) without
requiring these entities to be full-fledged objects, and without re-
quiring the user to retroactively add a superclass to these entities
for dispatch purposes. (Note however that normal CLOS multiple
dispatch also works without this limitation.) This is also clear for
constructor functions, where no object exists yet on which to dis-
patch.

3.2.2 Bootstrapping Data Structures
A second advantage of explicit interfaces is that different in-

stances of a given interface class can apply to the same object. One
way that we put this technique to profit on LIL is in how we boot-
strap pure hash-tables.

A hash-table is a generic implementation of a finite map with
fast access time, supposing the existence of a hopefully fast hash
function (typically mapping keys to integers) as well as an equality
predicate. The hash function will hopefully distinguish with high
probability any two unequal objects that may be used as keys in
the map. The location of the entry mapping the key to its value
can then be quickly computed from the key hash; in case several
keys collide (have the same hash), some compensation strategy is
used, such as putting all those keys in the same bucket, or using an
alternate key.

In the well-known stateful case, the key-indexed table is typi-
cally implemented as a random-access array with O(1) access time.
In the pure case, the key-indexed table will typically be a balanced
binary tree, which has slightly worse O(log n) access time but al-
lows for persistent data structures (i.e. old copies are still valid after
update).

The Common Lisp standard specifies a class hash-table, but
this only provides a stateful variant of hash-tables. We built an in-
terface stateful:<hash-table> that matches the signature
of stateful:<map> while using those standard hash-tables un-
derneath, but also needed a pure:<hash-table> as a generic
pure map mechanism.

Our pure:<hash-table> is constructed in a straightforward
way from the principles we recalled above: from a slow but generic
map interface mapping keys to values (generic meaning that keys
can be anything) and a fast but specialized map interface mapping
key hashes to key buckets (specialized meaning that keys are inte-
gers), we bootstrap a fast generic map interface mapping of keys to
values; we achieve this by composing the above together with the
fast implementation handling the common case and the slow imple-
mentation handling the collisions. By default our slow generic map
implementation is (<alist> <equal>) and our fast special-
ized map implementation is (<avl-tree> <number>), under
the nickname <number-map>; but these parameters are under
user control.

Our pure:<hash-table> is defined parametrically as fol-
lows (the following paragraphs are to be read in package pure):

(define-interface <hash-table>
(<map-join-from-fold-left-insert>

<map-join/list-from-join>
<map-update-key-from-lookup-insert-drop>

<map-map/2-from-fold-left-lookup-insert-drop>
<map>)

((key-interface :type <hashable>
:reader key-interface
:initarg :key)

(hashmap-interface :type <map>
:reader hashmap-interface
:initarg :hashmap)

(bucketmap-interface :type <map>
:reader bucketmap-interface
:initarg :bucketmap))

(:parametric
(&key (key <equal>)

(hashmap <number-map>)
(bucketmap (<alist> key)))

(make-interface :key key
:hashmap hashmap :bucketmap bucketmap))

(:singleton)
(:documentation "pure hash table"))

Methods are then straightforward. For instance, see the insert
method, and notice the pun:

(defmethod insert
((<i> <hash-table>) map key value)

(let ((hash (hash (key-interface <i>) key)))
(insert

(hashmap-interface <i>) map hash
(insert

(bucketmap-interface <i>)
(multiple-value-bind (bucket foundp)

(lookup (hashmap-interface <i>)
map hash)

(if foundp
bucket
(empty (bucketmap-interface <i>))))

key
value))))

Indeed the very same object map is passed as an argument to the
same function insert through two different <map> interfaces:
the outer one is the original <i> which is a <hash-table>;
the inner map is (hashmap-interface <i>), which is pre-
sumably a <number-map>. There is a third call to insert,
with the interface (bucketmap-interface <i>) which is
presumably a <alist>; however, this time its argument is not
map but the proper hash bucket, which was a value in the map ob-
ject seen with the inner interface, or a new empty bucket if none
was found.

Note, however, that even though the punning is nice, and can
potentially save both in memory and in API complexity, systems
that disallow punning might allow us to express the same concepts
via an indirection. For instance, in Haskell, you could hide the
“same” underlying structures under different unary constructors to
distinguish the various stages of such a bootstrap. The important
property of parametric polymorphism is that interfaces are com-
positional. You can build new interfaces by composing existing
interfaces, abstracting away patterns and reproduce them automat-
ically; you are not limited to agglutinating exponentially ever more
unrelatable cases.

In the near future, we would like to bootstrap more data struc-
tures this way, for instance following some of the algorithms docu-
mented by Chris Okasaki (Okasaki 1996).

3.2.3 Same Data, Multiple Interfaces
As a more general kind of pun, an object can be in the target type

of several interfaces, not necessarily instances of the same interface
class. There is no need to wrap and unwrap data inside constructors
of different classes to see that data through a different viewpoint;



simply change the interface, and the same data can be punned into
meaning usefully different things. For instance, one can see an ar-
ray as a sequence of elements one way, or the reverse way; one can
view it as the support for a binary queue or a hash-table. No need to
shuffle around the array elements in memory, or to indirect access
to the array through several view or façade objects that have to be
managed and still may cause extra allocation. Just look through the
lens of a different interface.

We haven’t yet implemented any non-trivial example of such
heavy punning. The following two paragraphs are simply ideas
we have for future work.

Because an interface is not tied to the data, the data can remain
unchanged while the interface changes. This way, some algorithms
can be simplified by factoring data access through a single more
compact data structure visited with a finite or evolving set of in-
terfaces. In extreme cases, punning data with multiple interfaces
can make a program work simply where naive wrappers would fail
by leaking memory, and where non-leaky wrappers would require
additional complexity through layers of “optimization” or memo-
ization in such wrappers.

Punning data with multiple interfaces could also help build com-
posite data structures, whereby each node in the object graph is part
of several structures: a hash-table for fast retrieval by key, a priority
heap for scheduling a job queue, a sequence for a consistent enu-
meration order, some lazily balanced tree for retrieval with a more
rarely used key, etc. We suspect that to make such non-trivial pun-
ning easy, we will have to build new infrastructure, to manage the
heavily-punned classes that implement such composite structures
incrementally yet without extra boxing. This will involve having a
model of class labels associated to an interface, and a list of mix-
ins attached to each of these labels; when instantiating a concrete
interface, the system will have to ensure that an actual class exists
for each of these labels, that inherits from each of these mixins and
no more; for extra punning, there may be the need to rename some
of the mixins to avoid clashes.

Obviously, anything that can be done through the formal use of
interfaces can be done without, in the first come Turing tar-pit of a
programming language. Still we contend that interfaces can be an
elegant solution to many problems, particularly in situations where
a problem has symmetries and regularities that can be expressed as
the same parametric interface applying to multiple situations.

4. INTERFACE TRANSFORMATIONS

4.1 Making Interfaces Implicit or Explicit

4.1.1 Making Interfaces Implicit in a Scope
Even though arbitrary first-class interface objects can be passed

as argument in any function call, it is quite often obvious from the
context that an interface object under consideration is going to be
passed around in each and every call to a function in that interface’s
signature, or almost every such call.

Therefore, we provide a macro evaluating a body of code in a
lexical scope in which it is syntactically implicit that a given object
interface is being passed around in all calls to some functions
specified by functions-spec:

(with-interface
(interface functions-spec &key prefix package)
&body body)

The functions-spec is a compile-time constant that can be
a list of function names, but more often than not is the name of
single interface class, in which case it denotes all the names of the

functions declared as part of the signature of that interface class.
Other keyword arguments provide control over which package is
to be used for fast aliases (by default the current one, for shorter
names) and what optional prefix to use (by default none as that
would defeat the purpose).

For instance, the following code implements an insertion sort for
number-indexed alists, by inserting all its entries in an ordered tree
then walking the tree entries in order:

(defun mysort (alist)
(with-interface (<number-map> <map>)

(let ((m (alist-map alist)))
(fold-right m #’acons nil))))

Notice how the <number-map> interface object was implicitly
passed to calls to two functions in the <map> interface class, alist-
map and fold-right. This macro of course gets more interest-
ing as you write longer functions that have more such calls. (Inter-
estingly, since the repeated insertion is hidden behind the generic
function alist-map, this function works in both pure and state-
ful contexts.)

4.1.2 Implicit Interface in Method Definition
Many interfaces have methods implementing their declared func-

tions in the context of which this situation definitely applies: the in-
terface argument will be passed unchanged to other methods in the
interface signature. Therefore define-interface also has an
option :method> that defines methods with an implicit with-
interface. For instance, here is the definition of the previously
mentioned <eq-from-==> mixin:

(define-interface <eq-from-==> (<eq>) ()
(:abstract)
(:method> eq-function ()

(λ (x y) (== x y))))

Notice how the interface argument is omitted from the lambda-list.
Notice also how no interface argument is explicitly passed to ==.

In case the interface is needed for some explicit call, the inter-
face argument is bound to the symbol naming the interface (in this
case <eq-from-==>), rather than to a special symbol (such as
self as in other languages). In case one of the shadowed interface
functions is needed for some call with an explicit interface differ-
ent from the implicit one, the symbol naming this function can be
called (in this case eq-function), since in Common Lisp its
global binding isn’t shadowed. Obviously, the adaptation of this
syntactic facility to a language different from Common Lisp would
require a different solution, such as requiring use of a name prefix
when invoking the long-form functions.

4.1.3 Global Elision of Interface Argument
Once you have built an interface that is perfect for a lot of your

algorithms, instead of passing it around over and over, you can
make it altogether globally implicit. Choose a package and/or a
prefix, and use the macro:

(define-interface-specialized-functions
interface functions-spec &key prefix package)

It will create in the current or specified package some global
functions (with optional prefix added to their name) that internally
call the specified interface functions, implicitly passing around your
global interface object.

For instance, if you find yourself using pure hash-tables a whole
lot, you could create a package pure-hash-table in which you
would evaluate:



(define-interface-specialized-functions
pure:<hash-table> pure:<map>)

and voilà, all the functions you need are there for you to use in that
package.

4.1.4 Making Interfaces Explicit
It might happen that you have some classes that implement in a

classic object-oriented style some interface that you are interested
in using as a parameter. Then you may have to define a singleton
interface with wrapper methods adapting between the two APIs.

If it happened that the APIs were indeed identical but for the
extra argument, a macro could be trivially written to automati-
cally provide for the adaptation. However, in practice, the case
doesn’t happen, because odds are low a legacy or third-party object-
oriented interface will exactly match your modern Interface-Passing
Style signature. And odds are similarly low that if you’re inter-
ested in the flexibility of interfaces, you would start with the more
rigid object-oriented style and need to convert to the more flexi-
ble Interface-Passing Style, rather than start with Interface-Passing
Style and extract an object-oriented API from there through one of
the above or below mechanisms.

4.2 From Pure to Stateful and Back
In previous sections, we explained how interfaces maintain meta-

information about the call arguments and return value conventions
of functions in their signature. We also saw that the signature of
the pure variant of an interface was systematically related to the
signature of the stateful variant of the “same” interface. What
if we could formalize this systematic relation? Then this meta-
information would be more than mere documentation: we could
implement automatic correspondences between the pure and state-
ful variants of an interface.

This is what we have implemented in LIL: we have built a model
of what effects declared interface functions have on objects of the
targeted interface type. Within the constraints of this model, we can
automatically emit wrappers that convert between pure and stateful
interfaces.

4.2.1 Mutating and Linearized
In a pure (functional) interface implementing a persistent data

structure, input arguments are values that are never modified. In-
stead, some functions have output values that represent an updated
value for the “same” notional object as one of the input values. In a
stateful (imperative) interface to an ephemeral data structure, input
arguments are objects that may be inspected read-only or modified
in-place; functions that update an object modify it in place and do
not usually return a new object.

The correspondences between these two styles are as follows.
From a pure interface, a stateful interface may be deduced by putting
the persistent values in a mutating box that stores the current value
of the object; given a box, a value is extracted from the box into the
input, and an update value if any is put back into the box on out-
put. We call the above transformation mutating and its result the
mutating interface. From a stateful interface, a pure interface may
be deduced by putting ephemeral values in a linearized box that en-
sures any value is only modified once, and not used thereafter; the
object is extracted from the box into the input, and is invalidated if
there are any modifications, while a fresh box is created to hold the
object in its new state if modified. We call the above transforma-
tion linearize and its result or argument (depending on context) the
linearized interface.5

5The pure functions can be seen as the state-passing style expansion of implementing

Interestingly, a stateful data structure linearized then mutating
is isomorphic to the original data structure; however, a pure data
structure mutating then linearized isn’t isomorphic to the original,
unless we require that users should make an explicit copy of the
data structure each time it may be used more than once, as per
Linear Logic. Indeed, the mutating transform is all about introduc-
ing the discipline of an object having a single current value that
is only used once to produce the new current value (unless explic-
itly copied), and the linearized transform is all about enforcing the
discipline that any value may only be used once (unless explicitly
copied). Now, the entire point of (pure) persistent data structures
is usually that they make copying a data structure practically free,
and that using a data structure multiple times is made free by copy-
ing it implicitly as needed; therefore this limitation in how the two
transforms aren’t quite inverse of each other is as designed.

4.2.2 Trivially Modeling Effects
LIL has a very simple model of the effects that a function may

have, the simplest with which we could get results:

• Some input arguments and output values are marked as being
of the interface-targeted type.

• Each input argument is put in correspondence with either an
output value or nil or t.

• An output value can be in correspondence with one input ar-
gument only; it can be in correspondence with none or equiv-
alently with nil.

• A correspondence between input argument and output value
means that the output has the same identity as the input after
possible modifications.

• A correspondence between an input argument and nil means
that the argument may be read but not modified.

• A correspondence between an input argument and t means
that the argument may be modified.

• A correspondence between an output value and nil means
that the value is created.

Syntactically, the marking happens in the :generic declara-
tion of define-interface. A :in keyword introduces a list
of input arguments or nil markers. A :out keyword introduces
a list of output values or nil or t markers. The correspondence
is simply that the nth element in one list corresponds to the nth
element in the other, or nil if the other list is shorter.

Keeping things really simple, this model only considers effects
on required arguments; our model cannot express effects on &op-
tional arguments, &rest arguments, &keyword arguments. 6.

This model is as simple as can be, and yet it fits most of the
functions in our map API.

the imperative interface with an explicit state monad. Stateful functions can be seen as
pure linear functions with some arguments and results made implicit. The transforma-
tions are all about making these details implicit or explicit, depending on which way
you go.
6In Common Lisp, the list specifying how arguments are bound to what variables
when a function is invoked is called a lambda-list. A lambda-list may specify required
arguments, then optional arguments introduced by &optional, then a rest argument
introduced by &rest, then keyword arguments introduced by &key. We remember
the lambda-list of the input arguments the function accepts, and we record a lambda-
list of the output values it returns, which may be considered as the lambda-list of the
function’s continuation.



4.2.3 Pure Interface in a Mutating Box
LIL includes a macro to automatically transform a pure interface

into a stateful interface. For instance, here is how we define a mu-
tating map interface, parameterized by the pure map interface that
implements its underlying operations:

(define-mutating-interface
<mutating-map> (stateful:<map>) (pure:<map>)
()
...
(:parametric (interface)

(make-interface :pure-interface interface)))

The first argument is the name of the new interface. The sec-
ond argument is a list of super-interfaces of the new stateful in-
terface being created by mutating. The third argument is a list of
super-interfaces of the underlying pure interfaces being wrapped.
The fourth argument is a list of slot definitions and overrides for
parametrization, completing what’s implicit in mutating. What re-
mains is a list of options to define-interface; elided are sev-
eral manual method definitions for functions that our macro fails to
automatically wrap; included is a :parametric function defini-
tion.

The macro defines a new interface class, and wrapper methods
for all declared interface functions with a matching name between
the pure and stateful packages that also have declared effects as per
our model.

Values are put into an object box containing the current value. As
seen in the examples below, we use a function box! that takes one
argument and creates a box object with a mutable slot value ini-
tialized with the argument; the slot can be read with box-value
which takes the box as argument and returns its value; they can be
written with set-box-value which takes the value and the box
as arguments and sets the box value.

The wrapping of a read-only function works by extracting the
value from the box and passing it to the pure function. For instance,
the cleaned up7 macroexpansion of the wrapping for lookup is as
follows:

(defmethod lookup
((<interface> <mutating-map>) map key)

(let* ((<pure-interface>
(pure-interface <interface>))

(pure-map (box-value map)))
(multiple-value-bind (value foundp)

(lookup <pure-interface>
pure-map key)

(values value foundp))))

When a function updates an old value into a new one, we simply
extract the updated value from the pure function’s results and store
it into the box. For instance, the cleaned up wrapper for insert is:

7The clean up we did is for readability only. The actual macroexpansion uses gen-
syms; instead we renamed gensyms and other symbols so they are more explana-
tory. The actual macroexpansion has (declare (ignore ...)) clauses; we
omit such clauses when no variable was ignored. The macroexpansion also includes
trivial renaming of variables to bridge between the calling conventions of the inner
and outer functions; we beta-expand these renamings away, and omit binding forms
without non-trivial bindings. In presence of rest or keyword arguments, the macroex-
pansion uses apply for the inner function and/or for values; it uses funcall in
absence of such arguments; we simplify the funcall case into a direct call, and
do away with unnecessary values statements. Finally, we omit some the pack-
age of symbols where it isn’t relevant to our explanation. But we neither simplify
a multiple-value-bind with a single binding into a let nor merge it with a
previous or subsequent binding forms, as it would blur rather than demonstrate the
general pattern of the macro.

(defmethod stateful:insert
((<interface> <mutating-map>) map key value)

(let* ((<pure-interface>
(pure-interface <interface>))

(pure-map (box-value map)))
(multiple-value-bind (updated-map)

(pure:insert <pure-interface>
pure-map key value)

(set-box-value updated-map map)
(values))))

Finally, if a new object is created, we grab the value returned by
the pure function and put it in a box, such as in this wrapper for
empty:

(defmethod stateful:empty
((<interface> <mutating-map>))

(let* ((<pure-interface>
(pure-interface <interface>)))

(multiple-value-bind (pure-empty)
(pure:empty <pure-interface>)

(let* ((empty-object (box! pure-empty)))
empty-object))))

Not only is this transformation useful, it is how our stateful alists
are implemented: indeed, the naive direct implementation of alists
without boxing falls short when you want to add entries to an empty
list, for whereas non-empty alists are cons cells with state and
identity, the empty list is represented as nil which has neither.
Boxing is the correct way to do stateful alists: it has essentially the
same performance profile, doesn’t require ugly hacks to specially
handle empty alists, and with our transformer, it minimizes the need
to write redundant code.

4.2.4 Manual Method Transformation
Unhappily, our very simple model for effects cannot cover meth-

ods with more advanced calling conventions. Our transformation
macros allow for users to manually specify methods where our au-
tomation falls short or fails.

Interestingly, amongst the many functions we initially came up
with while developing our map API, the only that didn’t fit this
simplest of models were join/list and divide/list. The
former respectively takes a list of map objects as argument, and the
latter returns a list of map objects.

Here is a how we manually wrap divide/list:

(:method> stateful:divide/list (map)
(let ((list

(pure:divide/list
(pure-interface <mutating-map>)
(box-value map))))

(when list
(set-box-value (first list) map)
(cons map

(mapcar #’box! (rest list))))))

Note how the first element in the list is special in that it shares the
identity of the map being divided, which is part of the contract of
divide/list. (LIL, following Common Lisp tradition, neither
imposes nor provides any means to automate the enforcement of
these contracts.)

Also note that as a limitation in our current transformation macros,
methods in the original and transformed APIs are simply matched
by name. In the future, it would be easy to allow the user to cus-
tomize the way method names are processed, transformed or over-
ridden during these transformations.



4.2.5 Stateful Interface in a Linear Box
The reverse transformation works in a very similar way. For in-

stance, stateful map interfaces are transformed into linearized pure
map interfaces as follows:

(define-linearized-interface
<linearized-map> (pure:<map>) (stateful:<map>)
()
(:method> join/list (list) ...)
(:method> divide/list (map)

(let ((list
(stateful:divide/list

(stateful-interface <linearized-map>)
(box-ref map))))

(and list
(mapcar ’one-use-value-box list))))

(:parametric (interface)
(make-interface

:stateful-interface interface)))

Everything works in a way similar to the mutating transforma-
tion. We elide the body of the join/list manual method, but
offer the divide/list manual method for contrast with the re-
verse transformation.

Note that one-use-value-box is a one-argument function
that creates a box with a slot value initialized to that argument,
that can be read many times with box-value, but is used up and
not further readable when read by box-ref. We use the latter
invalidating read function before any operation that modifies the
contents of the box; therefore, it is invalid to try to access an old
version of the wrapped object. If you want to keep a version of an
object for future use, you must explicit copy its contents into a new
object before you make any modification, as per Linear Logic.

Here are the cleaned up macroexpansions for the wrappers around
lookup, insert and empty respectively:

(defmethod lookup
((<interface> <linearized-map>) map key)

(let* ((<stateful-interface>
(stateful-interface <interface>))

(stateful-map (box-value map)))
(multiple-value-bind (value foundp)

(lookup <stateful-interface>
stateful-map key)

(values value foundp))))

(defmethod pure:insert
((<interface> <linearized-map>) map key value)

(let* ((<stateful-interface>
(stateful-interface <interface>))

(stateful-map (box-ref map)))
(stateful:insert <stateful-interface>

stateful-map key value)
(let* ((updated-map

(one-use-value-box stateful-map)))
updated-map)))

(defmethod empty
((<interface> <linearized-map>))

(let* ((<stateful-interface>
(stateful-interface <interface>)))

(multiple-value-bind (empty-object)
(empty <stateful-interface>)

(let* ((one-use-empty
(one-use-value-box empty-object)))

one-use-empty))))

4.2.6 Using Transformed Maps
Mutating or linearized interfaces are not just a mathematical cu-

riosity, they have applications to actual systems.

For instance, a stateful algorithm may sometime involve snap-
shotting the state of objects; if the objects are big or if snapshotting
happens often enough, the usual stateful data structures can be pro-
hibitively expensive; but by simply wrapping a purely functional
persistent data structure designed to make copying essentially free,
you can remove such a speed or space bottleneck. And all you need
to do is to start using a mutating interface instead of the vanilla
stateful interface. Using Interface-Passing Style, you can also eas-
ily defer this kind of decision until you know enough about the
constraints of your application, and revise the decision after these
constraints evolve.

Conversely, you may have great algorithms developed in a func-
tional style that allow them to combine easily and to apply to sit-
uations beyond the limitations of linear state. Yet, some of these
algorithms may also apply within the limitations of linear state, in
which case you may want to use them together with the less cum-
bersome stateful programming style. A linearized interface allows
you to use your functional library with your stateful data structures.

4.2.7 Limits of Our Effect Model
Our effect model is sufficient to cover a complete API for the ma-

nipulation of maps, both pure or stateful. Indeed, the divide/list
and join/list functions, which it did not cover, can be consid-
ered as convenience optimizations for what can be done without,
using fixed-arity functions divide and join. Still, we have al-
ready reached the limits of our model, and we must mention how
our model may be fixed to handle such cases.

Our signature annotations can be seen as some very simple first-
order linear type system. We believe that our automatic transfor-
mations can be formalized as functors, and that it is possible to
generalize both our model and our transformations as part of some
higher-order type system rooted in Linear Logic. Efforts toward
such a generalization would probably be an interesting venue for
further research, but are beyond the scope of our current projects.

4.3 From Interfaces to Classes and Back

4.3.1 Interfaces as Detached Classes
An object-oriented API is a set of classes and generic functions

operating on objects, objects having at the same time identity, data
content, and behavior attached to them; behavior of generic func-
tions happen by dispatching on the class of the first object (and
sometimes those of subsequent objects). An Interface-Passing API
is a set of interfaces, datatypes and generic functions operating on
data that may or may not have identity; behavior is attached to inter-
faces, and generic functions dispatch primarily on the first interface
(and sometimes subsequent interfaces).

One way of looking at things is by distinguishing concerns of be-
havior (code and meta-data) and state (data and identity). Interface-
Passing Style separates them, with the interface carrying only the
behavior. Object-oriented Style conflates them, with an object car-
rying all of it. A correspondence can be drawn between Interface-
Passing Style and traditional object-oriented Style by viewing an
interface as “detached” class information, as the part of an object
that doesn’t include its state, and by viewing an object as a “sub-
jective” interface, one where some state has been moved into the
interface.

Using this viewpoint, it is possible to mechanically derive an
Interface-Passing API from an object-oriented API or an object-
oriented API from an Interface-Passing API. To go from one style
to the other is a matter of splitting or joining back the behavior,
identity and data aspects that the respective other style preferred to
join or split. Depending on whether joining or splitting makes more



sense for a given API, it can be written in the style that yields the
cleanest code, yet used by clients using the other style if needed.

An interface can be seen as an object that doesn’t carry any iden-
tity or data but only class-related behavioral information. Any data
slot of interface objects is then seen as a class parameter (as in a
C++ template parameters), and dynamically created interface ob-
jects are akin to dynamically created first-class classes. Explicitly
passing the interface around is as if an object’s “virtual method
table” or equivalent were passed as a separate argument. This is
somewhat similar related to the self argument of many object sys-
tems, except than an interface includes all the meta-level class in-
formation but none of the identity and runtime data associated with
the object. And it applies even when there is no self object (yet)
with the identity or data to dispatch on (e.g. for constructor meth-
ods).

Conversely, you can view traditional objects as “subjective” in-
terfaces, where no explicit state object is passed, but rather where
any state has been moved inside the interface itself.

To extract an Interface-Passing API from an object-oriented API
is easy: it suffices to introduce a dummy interface object, which
can be done as per the above section 4.1.1.

To extract an object-oriented API from an Interface-Passing API
is harder, but we can reuse the same effect system we developed
above for that purpose: our objects will be boxes that at the same
time have their identity, an attached data value, and a reference
to the interface that is being transformed to object-oriented style.
Function dispatch happens by locating the first object, extracting
the interface, applying the corresponding interface function to the
unboxed data, and wrapping new objects into boxes as appropriate.

4.3.2 Parametric Classification
LIL includes a macro to automatically transform a stateful inter-

face into an object-oriented API, a process we dub classification.
However, this macro requires a little bit of configuration by the user
to deal with constructor methods for which there isn’t an object to
dispatch on.

Let us first examine the case where we want to generate a general-
purpose object-oriented API out of a general-purpose abstract inter-
face. For instance, here is how we export our stateful:<map>
interface parametrically into a >map< class API, evaluating this in
package classified:

(define-classified-interface-class
>map< (object-box) stateful:<map>
((interface :initarg :interface))
(:interface-argument (<interface> stateful:<map>)))

The wrappers for lookup, insert are then as follows:

(defmethod lookup ((map >map<) key)
(let* ((<interface> (class-interface map))

(map-data (box-ref map)))
(multiple-value-bind (value foundp)

(interface:lookup <interface> map key)
(values value foundp))))

(defmethod insert ((map >map<) key value)
(let* ((<interface> (class-interface map))

(map-data (box-ref map)))
(stateful:insert <interface> map key value)
(values)))

So far, so good: in good object-oriented style, the behavior is
controlled by the first object supplied, from which the interface was
extracted. However, the wrapper for empty is awkwardly differ-
ent:

(defmethod empty ((<interface> stateful:<map>))
(multiple-value-bind (empty-data)

(interface:empty <interface>)
(let* ((object (make-instance ’>map<

:interface <interface>
:value empty-data)))

object)))

This difference reflects a general problem that object-oriented
style has with constructors. Because object-oriented style locates
class dispatch information in the first object, it has nothing to dis-
patch on where there is no object yet. That is why object-oriented
style has to treat constructors specially. In CLOS, objects are con-
structed by the make-instance function, which is special in
that it takes as its first argument a class meta-object (or a class
name, resolving to the former). Unhappily, this makes make-
instance (and constructors in general in other languages) a part
of the meta-object protocol rather than of the interface protocol.
Interface-Passing Style is more uniform there, which enables us to
do automatic transformations of interface protocols that just work
with constructors without having to special-case them. Interface-
Passing Style also allows for several constructors in an interface to
a sum type, without having to go through the hoops of having a sin-
gle multiplexing constructor or having to have a different interface
for each object type in the sum. For instance, in Interface-Passing
Style, both empty and cons would be regular members of the
interface signature for lists or sequences.

Nevertheless, our transformation from Interface-Passing Style to
object-oriented style has to do something about constructors. Since
in this case we are transforming an abstract interface, objects need
to carry a parameter for the actual concrete interface with which
the object was created. We use the slot interface for that, and
the above definition overrides its default definition so it may be
initialized with keyword :interface. This keyword is also the
default value of the :interface-keyword option (which we
don’t override), and that tells our transformer how to pass the in-
terface in its call to make-instance. When creating the ob-
ject, we need to supply this interface to constructor functions. The
:interface-argument option in define-classified-
interface-class tells constructors such as empty to accept
an extra argument which will become the interface to be attached to
the constructed object. How the interface is extracted from that ar-
gument could have been overridden with the :extract-interface
option, but we rely on the default, which is to use it directly. All
this customization was necessary to generate the empty wrapper
above.

Also note how, in this example, we constrain the argument to
be of type stateful:<map> before we construct a >map< ob-
ject, so that other methods of empty could construct other kind
of empty objects based on a different interface. Thus, the API we
extract from our parametric classification is truly object-oriented,
and can be extended, or shared with other classes beyond our trans-
formed interfaces.

4.3.3 Singleton Classification
The user may opt to create an object-oriented API out of a sin-

gleton concrete interface. Then, constructor functions do not need
an extra argument to be supplied the interface: the interface is a
constant that is wired into the function. We can specify it with
the :extract-interface option, though there is no interface
argument from which to extract it. For instance, we could create
an API for a singleton interface stateful:<number-map>, by
evaluating the following form in its own package classified-
number-map:



(define-classified-interface-class
>nm< (object-box) stateful:<number-map>
((interface :initform stateful:<number-map>

:allocation :class))
(:interface-keyword nil)
(:extract-interface stateful:<number-map>))

Here the :allocation :class means that the interface slot
is the same for all objects of that class. Indeed, when classify-
ing an interface API, instance-specific data of the interface be-
comes class-specific data of the class of the manipulated objects.
The :extract-interface option tells us how to get the inter-
face in constructor methods despite the absence of extra interface
argument. The :interface-keyword option, being overrid-
den to nil instead of the default :interface, tells us that we
don’t need to provide an interface argument to the internal make-
instance constructor, since it is a class constant rather than an
object-specific parameter. We could have further customized object
wrapping and unwrapping with the :wrap and :unwrap options;
they specify the prefix of a form to build the object from interface
data or extract the interface data from the object respectively; they
default respectively to ‘(make-instance ’,class) and ‘(box-
ref), where ,class will actually be the name of the class being
defined by define-classified-interface-class.

With the definition above, the wrapper for the empty construc-
tor will then be:

(defmethod empty ()
(let* ((<interface> <number-map>))

(multiple-value-bind (empty-data)
(interface:empty <interface>)

(let* ((object (make-instance ’>nm<
:value empty-data)))

object))))

With such transformations of singleton interfaces, it becomes
possible to develop libraries using the power of parametric poly-
morphism, composing simple parametric interfaces into more elab-
orate ones, and yet expose the result as a traditional API so users
do not even have to know that Interface-Passing Style was used
internally.

Note however that unless you follow some protocol to param-
eterize your constructors as in our parametric classification above,
your API will not be object-oriented but simply imperative. Indeed,
if constructors do not take an extra parameter but instantiate a con-
stant class and interface, this part of the API is not extensible and
cannot be shared with other classes. A future version of our library
might have an option to add a prefix or suffix to names of construc-
tor methods, so normal methods can be part of an object-oriented
API without a clash because of unsharable constructors.

5. CONCLUSION

5.1 Related Work

5.1.1 Many Well-Known Predecessors
Interface-Passing Style is a novel tool that has proven partic-

ularly effective for implementing a generic data structure library
in Common Lisp. Indeed, Interface-Passing Style was developed
specifically to fit both the shortcomings and the assets of Common
Lisp. But the underlying ideas are hardly original; both the inter-
face aspect and the passing-style aspect of Interface-Passing Style
have many predecessors in the tradition of programming languages.

The runtime objects that we expose as explicit user-visible inter-
faces are typically how existing implementations of languages with

parametric polymorphism have implicitly implemented this feature
for decades, under the hood. For instance, that is how Haskell im-
plements Type Classes (Jones 1993), PLT Scheme implements
Units (Felleisen 1998), and ML implements functors: an extra
interface argument is implicitly passed around to the lower-level
functions implementing these various constructs, and this extra ar-
gument encapsulates the parameters to said constructs.

As for passing-style, people who study the semantics of com-
puter programs have long practiced the principle of reifying some
previously implicit aspect of their programs into new explicit ob-
jects that are passed around, as a means to formalize the mean-
ing of their computations. Continuation Passing Style is a famous
instance of this practice, as are all kinds of environment passing
styles.

5.1.2 Interface-Passing Style Specificities
However, there are several ways in which our Interface-Passing

Style differs from any of the above-mentioned systems; these ways,
some of them innovative, are all related to our embracing the pow-
ers and limitations of Common Lisp in implementing parametric
polymorphism:

• We do not rely on static information, either purely syntactic
(via scoping as in PLT) or somewhat semantic (via type in-
ference as in Haskell), to statically resolve interfaces, or oth-
erwise hide them behind a language abstraction. Instead, we
embrace the dynamic nature of Common Lisp and let inter-
faces be first-class objects that may be determined at runtime
at any call site. This can be viewed either as a restriction
on the capabilities of our technique, or as the absence of a
restriction on its applicability.

• Interface arguments are passed around explicitly rather than
implicitly. We embrace the opening up of what in other sys-
tems is an implementation detail. This gives our library a
low-level flavor of control and responsibility; while the re-
sponsibility is indeed sometimes burdensome, we can take
advantage of that control to access the same data structure
through multiple interfaces.

• Our interfaces can be parameterized by arbitrary first-class
data. The parameters are not constrained to be second-class
entities to allow for termination of a type inference algo-
rithm. This does raise the difficulty for authors of compil-
ers to optimize our code, or for authors of proof systems to
accommodate the complexity.

• We make it easy for users to hide these interfaces in usual
cases thanks to Common Lisp macros, with facilities both
syntactic (such as with-interface) and semantic (such
as our macros to go from interfaces to classes). In common
cases, we can therefore eschew the burden of explicitly pass-
ing around interface objects.

• We support ad hoc polymorphism by explicitly dispatching
on interface arguments. These interfaces need not be uni-
form dictionaries (like the implicit arguments in the respec-
tive implementations of the above-mentioned systems), but
can be objects of arbitrary user-defined classes, subject to
the usual object-oriented dispatch techniques.

• Our ad hoc polymorphism is scoped outside of parameters,
not inside. This lambda lifting of interface objects matters
a lot for Common Lisp, because Common Lisp has neither
first-class class combinators nor cheap portable anonymous



classes, but instead has a global public namespace that fa-
vors dynamic linking of new methods to existing generic
functions and dynamic instantiation of new interface objects
with runtime parameters. Note that this starkly contrasts with
classes inside parameterized units, as done in the PLT unit ar-
ticle (Flatt 1998), where parameterized classes are statically
linked and strictly scoped via an assemblage of units; though
the PLT approach allows for dynamic instantiation of unit
assemblages with runtime parameters, any such assemblage
is semantically sealed and unextensible after instantiation.
Once again, the Common Lisp approach has a lower-level
feel overall.

• We rely on multiple-dispatch to not sacrifice object-oriented
style when using interface dispatch. In a language with single-
dispatch, dispatch on our explicit interface argument will use
up the programmer’s ability to rely on ad hoc polymorphism
to express his algorithms. In LIL, we leverage the multi-
method capabilities of CLOS to dispatch on our interface ob-
jects and still be able to dispatch on further arguments as per
normal object-oriented style.

Our solution would fit any other dynamic language, especially if
it also has multiple dispatch and/or syntax extension facilities.

Our base design could also fit a static language, but it would
be extremely painful unless the static type system were expres-
sive enough, at which point language designers probably already
have solutions to the issues we address. At that point, our con-
tribution would probably be limited to inspiring the development
of Interface-Passing Style libraries as an alternative to traditional
object-oriented style.

5.1.3 Innovation: Interface Transformations
Thanks notably to the syntax extensibility of Common Lisp, we

could also achieve a few interesting features beside the addition of
parametric polymorphism to Common Lisp:

• Our library provides both pure and stateful data structures
that share a common interface for read-only methods.

• We provide macros to make interfaces implicit again in the
usual cases.

• For the sake of the above and below, we associate generic
functions to interfaces.

• Additionally, we annotate generic functions with trivial meta-
data about their side-effects.

• Based on such effect types, we implemented automated trans-
formations bridging between pure (persistent) and correspond-
ing stateful (ephemeral) data structure.

• Based on the same effect types, we implemented automated
transformations bridging between Interface-Passing Style and
traditional object-oriented style.

While the ideas behind these features will sound quite well un-
derstood by people familiar with programming language theory, we
are not aware of any existing library in any previous programming
language that could in theory or would in practice leverage those
ideas.

We hope our success will generate more widespread interest in
supporting multiple programming styles with automated library trans-
formations.

5.2 Current Status and Future Work

5.2.1 Current Status
LIL at this point is already a usable data structure library that

has contributed features not previously available to Common Lisp
users: it offers an infrastructure for users to develop their own para-
metrically polymorphic data structures, or to easily extend existing
ones; and it provides a generic map interface with pure and stateful
variants, and implementations as balanced binary trees, hash-tables
or Patricia trees. Some of these data structures were not previously
available in free software libraries for Common Lisp.

Yet, in many ways, LIL is still in its early stages; at the current
moment it is a usable proof of concept more so than a full-fledged
library. It sports as few usable features as necessary to illustrate
its concepts, and each of its features is as bare as possible while
remaining functional. There are thus many axes for development,
both in terms of actually provided algorithms and in terms of lin-
guistic abstraction.

5.2.2 Obvious Potential Improvements
Obviously, more known data structures could be provided: Stacks,

queues, double-queues, arrays, heaps, sets, multi-sets, both pure
and stateful, could be fit in the existing framework. We notably
intend to port the algorithms from Chris Okasaki’s now classic
book (Okasaki 1996) and other currently popular pure functional
data structures; and of course matching interfaces to well-known
stateful variants. Also, provisions for safe concurrent access to data
structures could be introduced.

Just as obviously, our linguistic features could offer more bells
and whistles: users could have more flexibility in mapping names,
parameters and other aspects of their interfaces when translating
between variants of algorithms, pure and stateful, interface-based
and class-based, single-threaded or concurrent, etc. These transfor-
mations could be more mindful of interface and class hierarchies
rather than operating on all the generic functions of one pair of
APIs at a time. The packaging of the current features could be
improved, with internals being refactored and exported. We could
use Context-Oriented Programming techniques (Costanza 2008) to
dynamically bind extra implicit arguments to function calls and re-
expose an Interface-Passing Style API as a classic object-oriented
style API. Our interfaces could integrate with deftype and typep
via the same technique we used to implement the list-of library.

Finally, we could try to study the performance impact of our
code, and improve it where it matters. For instance, SBCL is known
to dynamically optimize method dispatch; we could make sure that
it does a proper job with our data structures. In case compilers
have trouble with code in Interface-Passing Style, we could develop
some protocol for partial evaluation that will ensure proper inlining
is done.

5.2.3 More Advanced Projects
Now, here are a few less-obvious ways in which we’d like to

improve LIL.
Firstly, we’d like to explore how algorithms can be developed

in terms of combining small individual features, each embodied in
an interface mixin: controlling whether any given property is im-
plemented as a slot or a user-defined method; controlling whether
some data is indirectly accessible through a box or inlined in the
current object; combining multiple data structures to achieve bet-
ter access guarantees (i.e. records are both nodes of a hash-table
for constant-time lookup and of a doubly-linked list for preserv-
ing insertion order), or implementing the same data structure twice
with a different view (i.e. records are part of several trees that in-



dex several fields or computed expressions from fields). Mixins
would be combined in the style of cl-containers (contribu-
tors 2005) and its macro find-or-create-class, which im-
plements first-class class combination on top of Common Lisp’s
second-class class object-system but first-class reflection. Some
protocol would manage the several classes of objects associated to
an interface, and combine them all (or the relevant subset) with ad-
ditional mixins when such mixins are specified; this would also be
used for extracting “classified” APIs from Interface-Passing Style
APIs. Possibly, we could also provide some way for abstract inter-
faces to provide default concrete implementations; thus, in simple
cases one could obtain a full implementation just by specifying the
high-level properties of the desired algorithm, yet in more complex
cases, manual specialization would be possible.

Second, we’d like to explore how both pure and stateful variants
of some algorithms can be extracted from a single specification:
the specification would essentially combine a pure node-building
algorithm with annotations on which object identities are to be pre-
served between original and new objects. The pure variant would
just create new values and drop the identities. A stateful variant
would clobber old identities using change-class on previous nodes.
New variants could purely pass around or statefully side-effect an
additional explicit store object. The main ambition though is that a
single specification should simply make all the variants possible, so
that each user may fine-tuning which variant makes sense for him
while being able to share his algorithms with other users that need
the “same” algorithm viewed from a totally different angle.

Third, and relatedly, we’d like to explore how to improve the so
far trivial language by which we currently express “effects” of API
functions. The current first-order specifications can probably be
generalized into some kind of higher-order type system. Presum-
ably, API transformations could be automatically extracted from
expressions in that more elaborate effect specification language.
Possibly, simple API implementations themselves could in some
cases be automatically extracted from the API specification itself.
If the specifications also include annotations about performance
guarantees, this opens a venue for a more declarative approach to
data structure development.

5.2.4 Why And Wherefore
The proximate trigger for what became this article was a study

we made on how to introduce modularity in the overly monolithic
code base we were working on; we started the library as a proof of
concept of our proposal for introducing parametric polymorphism
in Common Lisp. Interestingly, though, the idea of detaching be-
havioral meta-data about objects in an entity separate from their
state data and passed as an extra argument dates from our very first
dabbling in implementing an Object Oriented language; indeed, our
dissatisfaction with how traditional object-oriented style conflates
behavior and state in the same “object” package-deal dates from
the same time, as we were trying to figure out semantics for object
systems and ways to modularly express mathematical concepts.

As for the goal we are aiming for, it is the automated unifica-
tion of different programming styles: programmers shall be able
to write incremental contributions each in a style most suited to
express its meaning, yet be able to combine them all despite their
being written in different styles. The program fragments would be
automatically aligned along a common semantic framework thanks
to declarative specifications of the style in which they are intended
(some more constrained bits of code can be viewed in many ways).
And it should thereafter be possible to seamlessly combine these
contributions into a common result, made available to the user ac-
cording to whichever point of view best suits his needs.
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