/[cmucl]/src/lisp/gencgc.c
ViewVC logotype

Contents of /src/lisp/gencgc.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.95.2.1.2.3 - (hide annotations)
Wed Apr 29 21:28:04 2009 UTC (4 years, 11 months ago) by rtoy
Branch: unicode-utf16-extfmt-branch
Changes since 1.95.2.1.2.2: +5 -1 lines
File MIME type: text/plain
For completeness, do the same thing to gc_alloc_unboxed as we did for
gc_alloc in the last commit.
1 dtc 1.1 /*
2     * Generational Conservative Garbage Collector for CMUCL x86.
3     *
4     * This code was written by Douglas T. Crosher, based on Public Domain
5     * codes from Carnegie Mellon University. This code has been placed in
6     * the public domain, and is provided 'as is'.
7     *
8 dtc 1.14 * Douglas Crosher, 1996, 1997, 1998, 1999.
9 dtc 1.1 *
10 rtoy 1.95.2.1.2.3 * $Header: /tiger/var/lib/cvsroots/cmucl/src/lisp/gencgc.c,v 1.95.2.1.2.3 2009/04/29 21:28:04 rtoy Exp $
11 dtc 1.14 *
12     */
13 dtc 1.1
14 cshapiro 1.92 #include <limits.h>
15 dtc 1.1 #include <stdio.h>
16 gerd 1.32 #include <stdlib.h>
17 dtc 1.1 #include <signal.h>
18 rtoy 1.57 #include <string.h>
19 dtc 1.1 #include "lisp.h"
20 dtc 1.24 #include "arch.h"
21 dtc 1.1 #include "internals.h"
22     #include "os.h"
23     #include "globals.h"
24     #include "interrupt.h"
25     #include "validate.h"
26     #include "lispregs.h"
27 dtc 1.24 #include "interr.h"
28 dtc 1.1 #include "gencgc.h"
29    
30 rtoy 1.81 /*
31     * This value in a hash table hash-vector means that the key uses
32     * EQ-based hashing. That is, the key might be using EQ or EQL for
33     * the test. This MUST match the value used in hash-new.lisp!
34     */
35     #define EQ_BASED_HASH_VALUE 0x80000000
36 rtoy 1.67
37 dtc 1.1 #define gc_abort() lose("GC invariant lost! File \"%s\", line %d\n", \
38     __FILE__, __LINE__)
39    
40 cwang 1.55 #if (defined(i386) || defined(__x86_64))
41 gerd 1.35
42     #define set_alloc_pointer(value) \
43     SetSymbolValue (ALLOCATION_POINTER, (value))
44     #define get_alloc_pointer() \
45     SymbolValue (ALLOCATION_POINTER)
46     #define get_binding_stack_pointer() \
47     SymbolValue (BINDING_STACK_POINTER)
48     #define get_pseudo_atomic_atomic() \
49     SymbolValue (PSEUDO_ATOMIC_ATOMIC)
50     #define set_pseudo_atomic_atomic() \
51     SetSymbolValue (PSEUDO_ATOMIC_ATOMIC, make_fixnum (1))
52     #define clr_pseudo_atomic_atomic() \
53     SetSymbolValue (PSEUDO_ATOMIC_ATOMIC, make_fixnum (0))
54     #define get_pseudo_atomic_interrupted() \
55     SymbolValue (PSEUDO_ATOMIC_INTERRUPTED)
56     #define clr_pseudo_atomic_interrupted() \
57     SetSymbolValue (PSEUDO_ATOMIC_INTERRUPTED, make_fixnum (0))
58    
59 toy 1.47 #define set_current_region_free(value) \
60     SetSymbolValue(CURRENT_REGION_FREE_POINTER, (value))
61     #define set_current_region_end(value) \
62     SetSymbolValue(CURRENT_REGION_END_ADDR, (value))
63     #define get_current_region_free() \
64     SymbolValue(CURRENT_REGION_FREE_POINTER)
65    
66     #define set_current_region_end(value) \
67     SetSymbolValue(CURRENT_REGION_END_ADDR, (value))
68    
69 toy 1.33 #elif defined(sparc)
70 gerd 1.35
71 toy 1.37 /*
72     * current_dynamic_space_free_pointer contains the pseudo-atomic
73     * stuff, so we need to preserve those bits when we give it a value.
74     * This value better not have any bits set there either!
75     */
76 toy 1.50
77     /*
78     * On sparc, we don't need to set the alloc_pointer in the code here
79     * because the alloc pointer (current_dynamic_space_free_pointer) is
80     * the same as *current-region-free-pointer* and is stored in
81     * alloc-tn.
82     */
83 rtoy 1.66 #define set_alloc_pointer(value)
84 gerd 1.35 #define get_alloc_pointer() \
85 toy 1.45 ((unsigned long) current_dynamic_space_free_pointer & ~lowtag_Mask)
86 gerd 1.35 #define get_binding_stack_pointer() \
87     (current_binding_stack_pointer)
88 toy 1.33 #define get_pseudo_atomic_atomic() \
89 toy 1.41 ((unsigned long)current_dynamic_space_free_pointer & pseudo_atomic_Value)
90 toy 1.33 #define set_pseudo_atomic_atomic() \
91 gerd 1.35 (current_dynamic_space_free_pointer \
92 toy 1.41 = (lispobj*) ((unsigned long)current_dynamic_space_free_pointer | pseudo_atomic_Value))
93 toy 1.33 #define clr_pseudo_atomic_atomic() \
94 gerd 1.35 (current_dynamic_space_free_pointer \
95 toy 1.41 = (lispobj*) ((unsigned long) current_dynamic_space_free_pointer & ~pseudo_atomic_Value))
96 gerd 1.35 #define get_pseudo_atomic_interrupted() \
97 toy 1.41 ((unsigned long) current_dynamic_space_free_pointer & pseudo_atomic_InterruptedValue)
98 toy 1.33 #define clr_pseudo_atomic_interrupted() \
99 gerd 1.35 (current_dynamic_space_free_pointer \
100 toy 1.41 = (lispobj*) ((unsigned long) current_dynamic_space_free_pointer & ~pseudo_atomic_InterruptedValue))
101 gerd 1.35
102 toy 1.47 #define set_current_region_free(value) \
103     current_dynamic_space_free_pointer = (lispobj*)((value) | ((long)current_dynamic_space_free_pointer & lowtag_Mask))
104    
105     #define get_current_region_free() \
106     ((long)current_dynamic_space_free_pointer & (~(lowtag_Mask)))
107    
108     #define set_current_region_end(value) \
109     SetSymbolValue(CURRENT_REGION_END_ADDR, (value))
110    
111 cshapiro 1.87 #elif defined(DARWIN) && defined(__ppc__)
112 rtoy 1.67 #ifndef pseudo_atomic_InterruptedValue
113     #define pseudo_atomic_InterruptedValue 1
114     #endif
115     #ifndef pseudo_atomic_Value
116     #define pseudo_atomic_Value 4
117     #endif
118    
119     #define set_alloc_pointer(value)
120     #define get_alloc_pointer() \
121     ((unsigned long) current_dynamic_space_free_pointer & ~lowtag_Mask)
122     #define get_binding_stack_pointer() \
123     (current_binding_stack_pointer)
124     #define get_pseudo_atomic_atomic() \
125     ((unsigned long)current_dynamic_space_free_pointer & pseudo_atomic_Value)
126     #define set_pseudo_atomic_atomic() \
127     (current_dynamic_space_free_pointer \
128     = (lispobj*) ((unsigned long)current_dynamic_space_free_pointer | pseudo_atomic_Value))
129     #define clr_pseudo_atomic_atomic() \
130     (current_dynamic_space_free_pointer \
131     = (lispobj*) ((unsigned long) current_dynamic_space_free_pointer & ~pseudo_atomic_Value))
132     #define get_pseudo_atomic_interrupted() \
133     ((unsigned long) current_dynamic_space_free_pointer & pseudo_atomic_InterruptedValue)
134     #define clr_pseudo_atomic_interrupted() \
135     (current_dynamic_space_free_pointer \
136     = (lispobj*) ((unsigned long) current_dynamic_space_free_pointer & ~pseudo_atomic_InterruptedValue))
137    
138     #define set_current_region_free(value) \
139     current_dynamic_space_free_pointer = (lispobj*)((value) | ((long)current_dynamic_space_free_pointer & lowtag_Mask))
140    
141     #define get_current_region_free() \
142     ((long)current_dynamic_space_free_pointer & (~(lowtag_Mask)))
143    
144     #define set_current_region_end(value) \
145     SetSymbolValue(CURRENT_REGION_END_ADDR, (value))
146    
147 toy 1.33 #else
148 gerd 1.35 #error gencgc is not supported on this platform
149 toy 1.33 #endif
150    
151 gerd 1.38 /* Define for activating assertions. */
152    
153 rtoy 1.67 #if defined(DARWIN)
154 gerd 1.38 #define GC_ASSERTIONS 1
155     #endif
156    
157     /* Check for references to stack-allocated objects. */
158    
159     #ifdef GC_ASSERTIONS
160    
161     static void *invalid_stack_start, *invalid_stack_end;
162    
163     static inline void
164 rtoy 1.66 check_escaped_stack_object(lispobj * where, lispobj obj)
165 gerd 1.38 {
166 cshapiro 1.87 #if !defined(DARWIN) && !defined(__ppc__)
167 rtoy 1.66 void *p;
168    
169     if (Pointerp(obj)
170     && (p = (void *) PTR(obj),
171     (p >= (void *) CONTROL_STACK_START
172     && p < (void *) CONTROL_STACK_END))) {
173     char *space;
174    
175     if (where >= (lispobj *) DYNAMIC_0_SPACE_START
176     && where < (lispobj *) (DYNAMIC_0_SPACE_START + DYNAMIC_SPACE_SIZE))
177     space = "dynamic space";
178     else if (where >= (lispobj *) STATIC_SPACE_START
179     && where <
180     (lispobj *) (STATIC_SPACE_START + STATIC_SPACE_SIZE)) space =
181     "static space";
182     else if (where >= (lispobj *) READ_ONLY_SPACE_START
183     && where <
184     (lispobj *) (READ_ONLY_SPACE_START +
185     READ_ONLY_SPACE_SIZE)) space = "read-only space";
186     else
187     space = NULL;
188    
189     /* GC itself uses some stack, so we can't tell exactly where the
190     invalid stack area starts. Usually, it should be an error if a
191     reference to a stack-allocated object is found, although it
192     is valid to store a reference to a stack-allocated object
193     temporarily in another reachable object, as long as the
194     reference goes away at the end of a dynamic extent. */
195    
196     if (p >= invalid_stack_start && p < invalid_stack_end)
197     lose("Escaped stack-allocated object 0x%08lx at %p in %s\n",
198     (unsigned long) obj, where, space);
199 toy 1.39 #ifndef i386
200 rtoy 1.66 else if ((where >= (lispobj *) CONTROL_STACK_START
201     && where < (lispobj *) (CONTROL_STACK_END))
202     || (space == NULL)) {
203     /* Do nothing if it the reference is from the control stack,
204     because that will happen, and that's ok. Or if it's from
205     an unknown space (typically from scavenging an interrupt
206     context. */
207     }
208 toy 1.39 #endif
209    
210 rtoy 1.66 else
211     fprintf(stderr,
212     "Reference to stack-allocated object 0x%08lx at %p in %s\n",
213     (unsigned long) obj, where,
214     space ? space : "Unknown space");
215 gerd 1.38 }
216 rtoy 1.67 #endif
217 gerd 1.38 }
218    
219     #endif /* GC_ASSERTIONS */
220    
221    
222     #ifdef GC_ASSERTIONS
223     #define gc_assert(ex) \
224     do { \
225     if (!(ex)) gc_abort (); \
226     } while (0)
227 dtc 1.1 #else
228 gerd 1.32 #define gc_assert(ex) (void) 0
229 dtc 1.1 #endif
230 rtoy 1.66
231 dtc 1.1
232 dtc 1.14 /*
233     * The number of generations, an extra is added to this for use as a temp.
234     */
235 dtc 1.1 #define NUM_GENERATIONS 6
236    
237     /* Debugging variables. */
238    
239 dtc 1.14 /*
240     * The verbose level. All non-error messages are disabled at level 0;
241     * and only a few rare messages are printed at level 1.
242     */
243 dtc 1.6 unsigned gencgc_verbose = 0;
244 cracauer 1.28 unsigned counters_verbose = 0;
245 dtc 1.1
246 dtc 1.14 /*
247     * To enable the use of page protection to help avoid the scavenging
248     * of pages that don't have pointers to younger generations.
249     */
250 rtoy 1.66 boolean enable_page_protection = TRUE;
251 dtc 1.1
252 dtc 1.14 /*
253     * Hunt for pointers to old-space, when GCing generations >= verify_gen.
254     * Set to NUM_GENERATIONS to disable.
255     */
256 dtc 1.3 int verify_gens = NUM_GENERATIONS;
257 dtc 1.1
258 dtc 1.14 /*
259 toy 1.33 * Enable a pre-scan verify of generation 0 before it's GCed. (This
260     * makes GC very, very slow, so don't enable this unless you really
261     * need it!)
262 dtc 1.14 */
263 dtc 1.1 boolean pre_verify_gen_0 = FALSE;
264    
265 dtc 1.3 /*
266 dtc 1.14 * Enable checking for bad pointers after gc_free_heap called from purify.
267 dtc 1.3 */
268 rtoy 1.70 #if 0 && defined(DARWIN)
269 rtoy 1.67 boolean verify_after_free_heap = TRUE;
270     #else
271 dtc 1.3 boolean verify_after_free_heap = FALSE;
272 rtoy 1.67 #endif
273 dtc 1.3
274 dtc 1.14 /*
275     * Enable the printing of a note when code objects are found in the
276     * dynamic space during a heap verify.
277     */
278 dtc 1.1 boolean verify_dynamic_code_check = FALSE;
279    
280 dtc 1.14 /*
281     * Enable the checking of code objects for fixup errors after they are
282 toy 1.33 * transported. (Only used for x86.)
283 dtc 1.14 */
284 dtc 1.3 boolean check_code_fixups = FALSE;
285 dtc 1.1
286 dtc 1.14 /*
287     * To enable unmapping of a page and re-mmaping it to have it zero filled.
288 pmai 1.26 * Note: this can waste a lot of swap on FreeBSD and Open/NetBSD(?) so
289     * don't unmap.
290 dtc 1.14 */
291 pmai 1.26 #if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__)
292 dtc 1.1 boolean gencgc_unmap_zero = FALSE;
293     #else
294     boolean gencgc_unmap_zero = TRUE;
295     #endif
296    
297 dtc 1.14 /*
298     * Enable checking that newly allocated regions are zero filled.
299     */
300 rtoy 1.70 #if 0 && defined(DARWIN)
301 rtoy 1.67 boolean gencgc_zero_check = TRUE;
302     boolean gencgc_enable_verify_zero_fill = TRUE;
303     #else
304 dtc 1.1 boolean gencgc_zero_check = FALSE;
305 dtc 1.10 boolean gencgc_enable_verify_zero_fill = FALSE;
306 rtoy 1.67 #endif
307 dtc 1.10
308 dtc 1.3 /*
309     * Enable checking that free pages are zero filled during gc_free_heap
310     * called after purify.
311     */
312 rtoy 1.70 #if 0 && defined(DARWIN)
313 rtoy 1.67 boolean gencgc_zero_check_during_free_heap = TRUE;
314     #else
315 dtc 1.3 boolean gencgc_zero_check_during_free_heap = FALSE;
316 rtoy 1.67 #endif
317 dtc 1.3
318 dtc 1.14 /*
319     * The minimum size for a large object.
320     */
321 dtc 1.17 unsigned large_object_size = 4 * PAGE_SIZE;
322 dtc 1.1
323 dtc 1.14 /*
324     * Enable the filtering of stack/register pointers. This could reduce
325     * the number of invalid pointers accepted. It will probably degrades
326     * interrupt safety during object initialisation.
327     */
328 dtc 1.1 boolean enable_pointer_filter = TRUE;
329 rtoy 1.66
330 dtc 1.1
331 dtc 1.14 /*
332     * The total bytes allocated. Seen by (dynamic-usage)
333     */
334 dtc 1.1 unsigned long bytes_allocated = 0;
335 dtc 1.22
336     /*
337 cracauer 1.28 * The total amount of bytes ever allocated. Not decreased by GC.
338     */
339    
340     volatile unsigned long long bytes_allocated_sum = 0;
341    
342     /*
343 dtc 1.22 * GC trigger; a value of 0xffffffff represents disabled.
344     */
345     unsigned long auto_gc_trigger = 0xffffffff;
346 dtc 1.1
347 dtc 1.14 /*
348 toy 1.46 * Number of pages to reserve for heap overflow. We want some space
349     * available on the heap when we are close to a heap overflow, so we
350     * can handle the overflow. But how much do we really need? I (rtoy)
351     * think 256 pages is probably a decent amount. (That's 1 MB for x86,
352     * 2 MB for sparc, which has 8K pages.)
353     */
354    
355     unsigned long reserved_heap_pages = 256;
356    
357     /*
358 dtc 1.14 * The src. and dest. generations. Set before a GC starts scavenging.
359     */
360 dtc 1.1 static int from_space;
361     static int new_space;
362 rtoy 1.66
363 dtc 1.1
364 dtc 1.14 /*
365     * GC structures and variables.
366     */
367 dtc 1.1
368 dtc 1.14 /*
369 dtc 1.23 * Number of pages within the dynamic heap, setup from the size of the
370     * dynamic space.
371     */
372     unsigned dynamic_space_pages;
373    
374     /*
375 dtc 1.14 * An array of page structures is statically allocated.
376 cwang 1.54 * This helps quickly map between an address and its page structure.
377 dtc 1.14 */
378 dtc 1.23 struct page *page_table;
379 dtc 1.1
380 dtc 1.14 /*
381     * Heap base, needed for mapping addresses to page structures.
382     */
383 toy 1.42 static char *heap_base = NULL;
384 dtc 1.1
385 dtc 1.14 /*
386     * Calculate the start address for the given page number.
387     */
388 rtoy 1.95.2.1.2.1 static char *
389 rtoy 1.66 page_address(int page_num)
390 dtc 1.1 {
391 rtoy 1.66 return heap_base + PAGE_SIZE * page_num;
392 dtc 1.1 }
393    
394 dtc 1.14 /*
395     * Find the page index within the page_table for the given address.
396     * Returns -1 on failure.
397     */
398 rtoy 1.95.2.1.2.1 int
399 rtoy 1.66 find_page_index(void *addr)
400 dtc 1.1 {
401 rtoy 1.66 int index = (char *) addr - heap_base;
402 dtc 1.1
403 rtoy 1.66 if (index >= 0) {
404     index = (unsigned int) index / PAGE_SIZE;
405     if (index < dynamic_space_pages)
406     return index;
407     }
408 dtc 1.1
409 rtoy 1.66 return -1;
410 dtc 1.1 }
411    
412 rtoy 1.95.2.1.2.1 /*
413     * This routine implements a write barrier used to record stores into
414     * to boxed regions outside of generation 0. When such a store occurs
415     * this routine will be automatically invoked by the page fault
416     * handler. If passed an address outside of the dynamic space, this
417     * routine will return immediately with a value of 0. Otherwise, the
418     * page belonging to the address is made writable, the protection
419     * change is recorded in the garbage collector page table, and a value
420     * of 1 is returned.
421     */
422     int
423     gc_write_barrier(void *addr)
424     {
425     int page_index = find_page_index(addr);
426    
427     /* Check if the fault is within the dynamic space. */
428     if (page_index == -1) {
429     return 0;
430     }
431    
432     /* The page should have been marked write protected */
433     if (!PAGE_WRITE_PROTECTED(page_index))
434     fprintf(stderr,
435     "*** Page fault in page not marked as write protected\n");
436    
437     /* Un-protect the page */
438     os_protect(page_address(page_index), PAGE_SIZE, OS_VM_PROT_ALL);
439     page_table[page_index].flags &= ~PAGE_WRITE_PROTECTED_MASK;
440     page_table[page_index].flags |= PAGE_WRITE_PROTECT_CLEARED_MASK;
441    
442     return 1;
443     }
444 dtc 1.1
445 dtc 1.14 /*
446     * A structure to hold the state of a generation.
447     */
448 dtc 1.1 struct generation {
449    
450 rtoy 1.66 /* The first page that gc_alloc checks on its next call. */
451     int alloc_start_page;
452    
453     /* The first page that gc_alloc_unboxed checks on its next call. */
454     int alloc_unboxed_start_page;
455    
456     /*
457     * The first page that gc_alloc_large (boxed) considers on its next call.
458     * Although it always allocates after the boxed_region.
459     */
460     int alloc_large_start_page;
461    
462     /*
463     * The first page that gc_alloc_large (unboxed) considers on its next call.
464     * Although it always allocates after the current_unboxed_region.
465     */
466     int alloc_large_unboxed_start_page;
467    
468     /* The bytes allocate to this generation. */
469     int bytes_allocated;
470    
471     /* The number of bytes at which to trigger a GC */
472     int gc_trigger;
473    
474     /* To calculate a new level for gc_trigger */
475     int bytes_consed_between_gc;
476    
477     /* The number of GCs since the last raise. */
478     int num_gc;
479 dtc 1.1
480 rtoy 1.66 /*
481     * The average age at after which a GC will raise objects to the
482     * next generation.
483     */
484     int trigger_age;
485    
486     /*
487     * The cumulative sum of the bytes allocated to this generation. It
488     * is cleared after a GC on this generation, and update before new
489     * objects are added from a GC of a younger generation. Dividing by
490     * the bytes_allocated will give the average age of the memory in
491     * this generation since its last GC.
492     */
493     int cum_sum_bytes_allocated;
494 dtc 1.1
495 rtoy 1.66 /*
496     * A minimum average memory age before a GC will occur helps prevent
497     * a GC when a large number of new live objects have been added, in
498     * which case a GC could be a waste of time.
499     */
500     double min_av_mem_age;
501 dtc 1.1 };
502    
503 dtc 1.14 /*
504     * An array of generation structures. There needs to be one more
505     * generation structure than actual generations as the oldest
506     * generations is temporarily raised then lowered.
507     */
508 dtc 1.17 static struct generation generations[NUM_GENERATIONS + 1];
509 dtc 1.1
510 moore 1.27 /* Statistics about a generation, extracted from the generations
511     array. This gets returned to Lisp.
512     */
513    
514     struct generation_stats {
515 rtoy 1.66 int bytes_allocated;
516     int gc_trigger;
517     int bytes_consed_between_gc;
518     int num_gc;
519     int trigger_age;
520     int cum_sum_bytes_allocated;
521     double min_av_mem_age;
522 moore 1.27 };
523 rtoy 1.66
524 moore 1.27
525 dtc 1.14 /*
526     * The oldest generation that will currently be GCed by default.
527     * Valid values are: 0, 1, ... (NUM_GENERATIONS - 1)
528     *
529     * The default of (NUM_GENERATIONS - 1) enables GC on all generations.
530     *
531     * Setting this to 0 effectively disables the generational nature of
532     * the GC. In some applications generational GC may not be useful
533     * because there are no long-lived objects.
534     *
535     * An intermediate value could be handy after moving long-lived data
536     * into an older generation so an unnecessary GC of this long-lived
537     * data can be avoided.
538     */
539 rtoy 1.66 unsigned int gencgc_oldest_gen_to_gc = NUM_GENERATIONS - 1;
540 dtc 1.1
541    
542 dtc 1.14 /*
543     * The maximum free page in the heap is maintained and used to update
544     * ALLOCATION_POINTER which is used by the room function to limit its
545     * search of the heap. XX Gencgc obviously needs to be better
546     * integrated with the lisp code.
547 rtoy 1.73 *
548     * Except on sparc and ppc, there's no ALLOCATION_POINTER, so it's
549     * never updated. So make this available (non-static).
550 dtc 1.14 */
551 rtoy 1.73 int last_free_page;
552 rtoy 1.66
553 dtc 1.1
554 cshapiro 1.87 static void scan_weak_tables(void);
555     static void scan_weak_objects(void);
556 dtc 1.1
557 dtc 1.14 /*
558     * Misc. heap functions.
559     */
560 dtc 1.1
561 dtc 1.14 /*
562     * Count the number of write protected pages within the given generation.
563     */
564 rtoy 1.66 static int
565     count_write_protect_generation_pages(int generation)
566 dtc 1.1 {
567 rtoy 1.66 int i;
568     int cnt = 0;
569     int mmask, mflags;
570    
571     mmask = PAGE_ALLOCATED_MASK | PAGE_WRITE_PROTECTED_MASK
572     | PAGE_GENERATION_MASK;
573     mflags = PAGE_ALLOCATED_MASK | PAGE_WRITE_PROTECTED_MASK | generation;
574    
575     for (i = 0; i < last_free_page; i++)
576     if (PAGE_FLAGS(i, mmask) == mflags)
577     cnt++;
578     return cnt;
579 dtc 1.1 }
580    
581 dtc 1.14 /*
582     * Count the number of pages within the given generation.
583     */
584 rtoy 1.66 static int
585     count_generation_pages(int generation)
586 dtc 1.1 {
587 rtoy 1.66 int i;
588     int cnt = 0;
589     int mmask, mflags;
590    
591     mmask = PAGE_ALLOCATED_MASK | PAGE_GENERATION_MASK;
592     mflags = PAGE_ALLOCATED_MASK | generation;
593    
594     for (i = 0; i < last_free_page; i++)
595     if (PAGE_FLAGS(i, mmask) == mflags)
596     cnt++;
597     return cnt;
598 dtc 1.1 }
599    
600 dtc 1.14 /*
601     * Count the number of dont_move pages.
602     */
603 rtoy 1.66 static int
604     count_dont_move_pages(void)
605 dtc 1.1 {
606 rtoy 1.66 int i;
607     int cnt = 0;
608     int mmask;
609    
610     mmask = PAGE_ALLOCATED_MASK | PAGE_DONT_MOVE_MASK;
611    
612     for (i = 0; i < last_free_page; i++)
613     if (PAGE_FLAGS(i, mmask) == mmask)
614     cnt++;
615     return cnt;
616 dtc 1.1 }
617    
618 dtc 1.14 /*
619     * Work through the pages and add up the number of bytes used for the
620     * given generation.
621     */
622 rtoy 1.58 #ifdef GC_ASSERTIONS
623 rtoy 1.66 static int
624     generation_bytes_allocated(int generation)
625 dtc 1.1 {
626 rtoy 1.66 int i;
627     int bytes_allocated = 0;
628     int mmask, mflags;
629    
630     mmask = PAGE_ALLOCATED_MASK | PAGE_GENERATION_MASK;
631     mflags = PAGE_ALLOCATED_MASK | generation;
632    
633     for (i = 0; i < last_free_page; i++) {
634     if (PAGE_FLAGS(i, mmask) == mflags)
635     bytes_allocated += page_table[i].bytes_used;
636     }
637     return bytes_allocated;
638 dtc 1.1 }
639 rtoy 1.58 #endif
640 dtc 1.1
641 dtc 1.14 /*
642     * Return the average age of the memory in a generation.
643     */
644 rtoy 1.66 static double
645     gen_av_mem_age(int gen)
646 dtc 1.1 {
647 rtoy 1.66 if (generations[gen].bytes_allocated == 0)
648     return 0.0;
649 dtc 1.14
650 rtoy 1.66 return (double) generations[gen].cum_sum_bytes_allocated /
651     (double) generations[gen].bytes_allocated;
652 dtc 1.1 }
653    
654 dtc 1.14 /*
655     * The verbose argument controls how much to print out:
656     * 0 for normal level of detail; 1 for debugging.
657     */
658 rtoy 1.66 void
659     print_generation_stats(int verbose)
660 dtc 1.1 {
661 rtoy 1.66 int i, gens;
662    
663 cwang 1.55 #if defined(i386) || defined(__x86_64)
664 toy 1.33 #define FPU_STATE_SIZE 27
665 rtoy 1.66 int fpu_state[FPU_STATE_SIZE];
666 toy 1.33 #elif defined(sparc)
667 rtoy 1.66 /*
668     * 32 (single-precision) FP registers, and the FP state register.
669     * But Sparc V9 has 32 double-precision registers (equivalent to 64
670     * single-precision, but can't be accessed), so we leave enough room
671     * for that.
672     */
673 toy 1.33 #define FPU_STATE_SIZE (((32 + 32 + 1) + 1)/2)
674 rtoy 1.66 long long fpu_state[FPU_STATE_SIZE];
675 cshapiro 1.87 #elif defined(DARWIN) && defined(__ppc__)
676 rtoy 1.67 #define FPU_STATE_SIZE 32
677     long long fpu_state[FPU_STATE_SIZE];
678 toy 1.33 #endif
679 dtc 1.11
680 rtoy 1.66 /*
681     * This code uses the FP instructions which may be setup for Lisp so
682     * they need to the saved and reset for C.
683     */
684 rtoy 1.67
685 rtoy 1.66 fpu_save(fpu_state);
686    
687 rtoy 1.67
688 rtoy 1.66 /* Number of generations to print out. */
689     if (verbose)
690     gens = NUM_GENERATIONS + 1;
691     else
692     gens = NUM_GENERATIONS;
693    
694     /* Print the heap stats */
695     fprintf(stderr, " Page count (%d KB)\n", PAGE_SIZE / 1024);
696     fprintf(stderr,
697     " Gen Boxed Unboxed LB LUB Alloc Waste Trigger WP GCs Mem-age\n");
698    
699     for (i = 0; i < gens; i++) {
700     int j;
701     int boxed_cnt = 0;
702     int unboxed_cnt = 0;
703     int large_boxed_cnt = 0;
704     int large_unboxed_cnt = 0;
705    
706     for (j = 0; j < last_free_page; j++) {
707     int flags = page_table[j].flags;
708    
709     if ((flags & PAGE_GENERATION_MASK) == i) {
710     if (flags & PAGE_ALLOCATED_MASK) {
711     /*
712     * Count the number of boxed and unboxed pages within the
713     * given generation.
714     */
715     if (flags & PAGE_UNBOXED_MASK)
716     if (flags & PAGE_LARGE_OBJECT_MASK)
717     large_unboxed_cnt++;
718     else
719     unboxed_cnt++;
720     else if (flags & PAGE_LARGE_OBJECT_MASK)
721     large_boxed_cnt++;
722     else
723     boxed_cnt++;
724     }
725     }
726 dtc 1.15 }
727 rtoy 1.66
728     gc_assert(generations[i].bytes_allocated ==
729     generation_bytes_allocated(i));
730     fprintf(stderr, " %5d: %5d %5d %5d %5d %10d %6d %10d %4d %3d %7.4f\n",
731     i, boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
732     generations[i].bytes_allocated,
733     PAGE_SIZE * count_generation_pages(i) -
734     generations[i].bytes_allocated, generations[i].gc_trigger,
735     count_write_protect_generation_pages(i), generations[i].num_gc,
736     gen_av_mem_age(i));
737 dtc 1.15 }
738 rtoy 1.66 fprintf(stderr, " Total bytes alloc=%ld\n", bytes_allocated);
739 dtc 1.14
740 rtoy 1.66 fpu_restore(fpu_state);
741 dtc 1.1 }
742    
743 moore 1.27 /* Get statistics that are kept "on the fly" out of the generation
744     array.
745     */
746 rtoy 1.66 void
747     get_generation_stats(int gen, struct generation_stats *stats)
748 moore 1.27 {
749 rtoy 1.66 if (gen <= NUM_GENERATIONS) {
750     stats->bytes_allocated = generations[gen].bytes_allocated;
751     stats->gc_trigger = generations[gen].gc_trigger;
752     stats->bytes_consed_between_gc =
753     generations[gen].bytes_consed_between_gc;
754     stats->num_gc = generations[gen].num_gc;
755     stats->trigger_age = generations[gen].trigger_age;
756     stats->cum_sum_bytes_allocated =
757     generations[gen].cum_sum_bytes_allocated;
758     stats->min_av_mem_age = generations[gen].min_av_mem_age;
759     }
760 moore 1.27 }
761    
762 rtoy 1.66 void
763     set_gc_trigger(int gen, int trigger)
764 moore 1.27 {
765 rtoy 1.66 if (gen <= NUM_GENERATIONS) {
766     generations[gen].gc_trigger = trigger;
767     }
768 moore 1.27 }
769 dtc 1.1
770 rtoy 1.66 void
771     set_trigger_age(int gen, int trigger_age)
772 moore 1.27 {
773 rtoy 1.66 if (gen <= NUM_GENERATIONS) {
774     generations[gen].trigger_age = trigger_age;
775     }
776 moore 1.27 }
777    
778 rtoy 1.66 void
779     set_min_mem_age(int gen, double min_mem_age)
780 moore 1.27 {
781 rtoy 1.66 if (gen <= NUM_GENERATIONS) {
782     generations[gen].min_av_mem_age = min_mem_age;
783     }
784 moore 1.27 }
785 dtc 1.1
786 dtc 1.14 /*
787     * Allocation routines.
788     *
789     *
790     * To support quick and inline allocation, regions of memory can be
791     * allocated and then allocated from with just a free pointer and a
792     * check against an end address.
793     *
794     * Since objects can be allocated to spaces with different properties
795     * e.g. boxed/unboxed, generation, ages; there may need to be many
796     * allocation regions.
797     *
798     * Each allocation region may be start within a partly used page.
799     * Many features of memory use are noted on a page wise basis,
800     * E.g. the generation; so if a region starts within an existing
801     * allocated page it must be consistent with this page.
802     *
803     * During the scavenging of the newspace, objects will be transported
804     * into an allocation region, and pointers updated to point to this
805     * allocation region. It is possible that these pointers will be
806     * scavenged again before the allocation region is closed, E.g. due to
807     * trans_list which jumps all over the place to cleanup the list. It
808     * is important to be able to determine properties of all objects
809     * pointed to when scavenging, E.g to detect pointers to the
810     * oldspace. Thus it's important that the allocation regions have the
811     * correct properties set when allocated, and not just set when
812     * closed. The region allocation routines return regions with the
813     * specified properties, and grab all the pages, setting there
814     * properties appropriately, except that the amount used is not known.
815     *
816     * These regions are used to support quicker allocation using just a
817     * free pointer. The actual space used by the region is not reflected
818     * in the pages tables until it is closed. It can't be scavenged until
819     * closed.
820     *
821     * When finished with the region it should be closed, which will
822     * update the page tables for the actual space used returning unused
823     * space. Further it may be noted in the new regions which is
824     * necessary when scavenging the newspace.
825     *
826     * Large objects may be allocated directly without an allocation
827     * region, the page tables are updated immediately.
828     *
829     * Unboxed objects don't contain points to other objects so don't need
830     * scavenging. Further they can't contain pointers to younger
831     * generations so WP is not needed. By allocating pages to unboxed
832     * objects the whole page never needs scavenging or write protecting.
833     */
834 dtc 1.1
835 dtc 1.14 /*
836     * Only using two regions at present, both are for the current
837     * newspace generation.
838     */
839 rtoy 1.66 struct alloc_region boxed_region;
840     struct alloc_region unboxed_region;
841 dtc 1.1
842 moore 1.27 #if 0
843 dtc 1.14 /*
844     * X hack. current lisp code uses the following. Need coping in/out.
845     */
846 dtc 1.1 void *current_region_free_pointer;
847     void *current_region_end_addr;
848 moore 1.27 #endif
849 dtc 1.1
850     /* The generation currently being allocated to. X */
851 rtoy 1.89 static int gc_alloc_generation = 0;
852 dtc 1.1
853 rtoy 1.57 extern void do_dynamic_space_overflow_warning(void);
854     extern void do_dynamic_space_overflow_error(void);
855    
856 toy 1.46 /* Handle heap overflow here, maybe. */
857     static void
858 rtoy 1.66 handle_heap_overflow(const char *msg, int size)
859 toy 1.46 {
860 rtoy 1.66 unsigned long heap_size_mb;
861    
862     if (msg) {
863     fprintf(stderr, msg, size);
864 toy 1.46 }
865     #ifndef SPARSE_BLOCK_SIZE
866     #define SPARSE_BLOCK_SIZE (0)
867 rtoy 1.66 #endif
868 toy 1.46
869 rtoy 1.66 /* Figure out how many MB of heap we have */
870     heap_size_mb = (dynamic_space_size + SPARSE_BLOCK_SIZE) >> 20;
871    
872     fprintf(stderr, " CMUCL has run out of dynamic heap space (%lu MB).\n",
873     heap_size_mb);
874     /* Try to handle heap overflow somewhat gracefully if we can. */
875 toy 1.46 #if defined(trap_DynamicSpaceOverflow) || defined(FEATURE_HEAP_OVERFLOW_CHECK)
876 rtoy 1.66 if (reserved_heap_pages == 0) {
877     fprintf(stderr, "\n Returning to top-level.\n");
878     do_dynamic_space_overflow_error();
879     } else {
880     fprintf(stderr,
881     " You can control heap size with the -dynamic-space-size commandline option.\n");
882     do_dynamic_space_overflow_warning();
883 toy 1.46 }
884     #else
885 rtoy 1.66 print_generation_stats(1);
886 toy 1.46
887 rtoy 1.66 exit(1);
888 toy 1.46 #endif
889     }
890    
891 dtc 1.14 /*
892     * Find a new region with room for at least the given number of bytes.
893     *
894     * It starts looking at the current generations alloc_start_page. So
895     * may pick up from the previous region if there is enough space. This
896     * keeps the allocation contiguous when scavenging the newspace.
897     *
898     * The alloc_region should have been closed by a call to
899     * gc_alloc_update_page_tables, and will thus be in an empty state.
900     *
901     * To assist the scavenging functions, write protected pages are not
902     * used. Free pages should not be write protected.
903     *
904     * It is critical to the conservative GC that the start of regions be
905     * known. To help achieve this only small regions are allocated at a
906     * time.
907     *
908     * During scavenging, pointers may be found that point within the
909     * current region and the page generation must be set so pointers to
910     * the from space can be recognised. So the generation of pages in
911     * the region are set to gc_alloc_generation. To prevent another
912     * allocation call using the same pages, all the pages in the region
913     * are allocated, although they will initially be empty.
914     */
915 rtoy 1.66 static void
916     gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
917 dtc 1.1 {
918 rtoy 1.66 int first_page;
919     int last_page;
920     int region_size;
921     int restart_page;
922     int bytes_found;
923     int num_pages;
924     int i;
925     int mmask, mflags;
926    
927     /* Shut up some compiler warnings */
928     last_page = bytes_found = 0;
929 dtc 1.15
930 toy 1.47 #if 0
931 rtoy 1.66 fprintf(stderr, "alloc_new_region for %d bytes from gen %d\n",
932     nbytes, gc_alloc_generation);
933 toy 1.47 #endif
934 dtc 1.14
935 rtoy 1.66 /* Check that the region is in a reset state. */
936     gc_assert(alloc_region->first_page == 0
937     && alloc_region->last_page == -1
938     && alloc_region->free_pointer == alloc_region->end_addr);
939 dtc 1.14
940 rtoy 1.66 if (unboxed)
941     restart_page =
942     generations[gc_alloc_generation].alloc_unboxed_start_page;
943     else
944     restart_page = generations[gc_alloc_generation].alloc_start_page;
945 dtc 1.14
946     /*
947 rtoy 1.66 * Search for a contiguous free region of at least nbytes with the
948     * given properties: boxed/unboxed, generation. First setting up the
949     * mask and matching flags.
950 dtc 1.14 */
951    
952 rtoy 1.66 mmask = PAGE_ALLOCATED_MASK | PAGE_WRITE_PROTECTED_MASK
953     | PAGE_LARGE_OBJECT_MASK | PAGE_DONT_MOVE_MASK
954     | PAGE_UNBOXED_MASK | PAGE_GENERATION_MASK;
955     mflags = PAGE_ALLOCATED_MASK | (unboxed << PAGE_UNBOXED_SHIFT)
956     | gc_alloc_generation;
957    
958     do {
959     first_page = restart_page;
960    
961     /*
962     * First search for a page with at least 32 bytes free, that is
963     * not write protected, or marked dont_move.
964     */
965    
966     while (first_page < dynamic_space_pages) {
967     int flags = page_table[first_page].flags;
968    
969     if (!(flags & PAGE_ALLOCATED_MASK)
970     || ((flags & mmask) == mflags &&
971     page_table[first_page].bytes_used < PAGE_SIZE - 32))
972     break;
973     first_page++;
974     }
975    
976     /* Check for a failure */
977     if (first_page >= dynamic_space_pages - reserved_heap_pages) {
978     #if 0
979     handle_heap_overflow("*A2 gc_alloc_new_region failed, nbytes=%d.\n",
980     nbytes);
981     #else
982     break;
983     #endif
984     }
985 dtc 1.14
986 rtoy 1.66 gc_assert(!PAGE_WRITE_PROTECTED(first_page));
987 dtc 1.14
988     #if 0
989 rtoy 1.66 fprintf(stderr, " first_page=%d bytes_used=%d\n",
990     first_page, page_table[first_page].bytes_used);
991 dtc 1.14 #endif
992    
993 rtoy 1.66 /*
994     * Now search forward to calculate the available region size. It
995     * tries to keeps going until nbytes are found and the number of
996     * pages is greater than some level. This helps keep down the
997     * number of pages in a region.
998     */
999     last_page = first_page;
1000     bytes_found = PAGE_SIZE - page_table[first_page].bytes_used;
1001     num_pages = 1;
1002     while ((bytes_found < nbytes || num_pages < 2)
1003     && last_page < dynamic_space_pages - 1
1004     && !PAGE_ALLOCATED(last_page + 1)) {
1005     last_page++;
1006     num_pages++;
1007     bytes_found += PAGE_SIZE;
1008     gc_assert(!PAGE_WRITE_PROTECTED(last_page));
1009     }
1010    
1011     region_size = (PAGE_SIZE - page_table[first_page].bytes_used)
1012     + PAGE_SIZE * (last_page - first_page);
1013 dtc 1.14
1014 rtoy 1.66 gc_assert(bytes_found == region_size);
1015 dtc 1.14
1016     #if 0
1017 rtoy 1.66 fprintf(stderr, " last_page=%d bytes_found=%d num_pages=%d\n",
1018     last_page, bytes_found, num_pages);
1019 dtc 1.14 #endif
1020    
1021 rtoy 1.66 restart_page = last_page + 1;
1022     }
1023     while (restart_page < dynamic_space_pages && bytes_found < nbytes);
1024 dtc 1.1
1025 rtoy 1.66 if (first_page >= dynamic_space_pages - reserved_heap_pages) {
1026     handle_heap_overflow("*A2 gc_alloc_new_region failed, nbytes=%d.\n",
1027     nbytes);
1028     }
1029 dtc 1.1
1030 rtoy 1.66 /* Check for a failure */
1031     if (restart_page >= (dynamic_space_pages - reserved_heap_pages)
1032     && bytes_found < nbytes) {
1033     handle_heap_overflow("*A1 gc_alloc_new_region failed, nbytes=%d.\n",
1034     nbytes);
1035     }
1036     #if 0
1037     fprintf(stderr,
1038     "gc_alloc_new_region gen %d: %d bytes: from pages %d to %d: addr=%x\n",
1039     gc_alloc_generation, bytes_found, first_page, last_page,
1040     page_address(first_page));
1041     #endif
1042    
1043     /* Setup the alloc_region. */
1044     alloc_region->first_page = first_page;
1045     alloc_region->last_page = last_page;
1046     alloc_region->start_addr = page_table[first_page].bytes_used
1047     + page_address(first_page);
1048     alloc_region->free_pointer = alloc_region->start_addr;
1049     alloc_region->end_addr = alloc_region->start_addr + bytes_found;
1050    
1051     if (gencgc_zero_check) {
1052     int *p;
1053    
1054     for (p = (int *) alloc_region->start_addr;
1055     p < (int *) alloc_region->end_addr; p++)
1056     if (*p != 0)
1057     fprintf(stderr, "** new region not zero @ %lx\n",
1058     (unsigned long) p);
1059     }
1060    
1061     /* Setup the pages. */
1062    
1063     /* The first page may have already been in use. */
1064     if (page_table[first_page].bytes_used == 0) {
1065     PAGE_FLAGS_UPDATE(first_page, mmask, mflags);
1066     page_table[first_page].first_object_offset = 0;
1067     }
1068 dtc 1.1
1069 rtoy 1.66 gc_assert(PAGE_ALLOCATED(first_page));
1070     gc_assert(PAGE_UNBOXED_VAL(first_page) == unboxed);
1071     gc_assert(PAGE_GENERATION(first_page) == gc_alloc_generation);
1072     gc_assert(!PAGE_LARGE_OBJECT(first_page));
1073 dtc 1.14
1074 rtoy 1.66 for (i = first_page + 1; i <= last_page; i++) {
1075     PAGE_FLAGS_UPDATE(i, PAGE_ALLOCATED_MASK | PAGE_LARGE_OBJECT_MASK
1076     | PAGE_UNBOXED_MASK | PAGE_GENERATION_MASK,
1077     PAGE_ALLOCATED_MASK | (unboxed << PAGE_UNBOXED_SHIFT)
1078     | gc_alloc_generation);
1079     /*
1080     * This may not be necessary for unboxed regions (think it was
1081     * broken before!)
1082     */
1083     page_table[i].first_object_offset =
1084     alloc_region->start_addr - page_address(i);
1085     }
1086 dtc 1.15
1087 rtoy 1.66 /* Bump up the last_free_page */
1088     if (last_page + 1 > last_free_page) {
1089     last_free_page = last_page + 1;
1090     set_alloc_pointer((lispobj) ((char *) heap_base +
1091     PAGE_SIZE * last_free_page));
1092 dtc 1.1
1093 rtoy 1.66 }
1094 dtc 1.1 }
1095    
1096    
1097    
1098 dtc 1.14 /*
1099     * If the record_new_objects flag is 2 then all new regions created
1100     * are recorded.
1101     *
1102 cwang 1.54 * If it's 1 then it is only recorded if the first page of the
1103 dtc 1.14 * current region is <= new_areas_ignore_page. This helps avoid
1104     * unnecessary recording when doing full scavenge pass.
1105     *
1106     * The new_object structure holds the page, byte offset, and size of
1107     * new regions of objects. Each new area is placed in the array of
1108     * these structures pointed to by new_areas; new_areas_index holds the
1109     * offset into new_areas.
1110     *
1111     * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
1112     * later code must detect this an handle it, probably by doing a full
1113     * scavenge of a generation.
1114     */
1115 dtc 1.1
1116     #define NUM_NEW_AREAS 512
1117     static int record_new_objects = 0;
1118     static int new_areas_ignore_page;
1119     struct new_area {
1120 rtoy 1.66 int page;
1121     int offset;
1122     int size;
1123 dtc 1.1 };
1124     static struct new_area (*new_areas)[];
1125 rtoy 1.89 static int new_areas_index = 0;
1126 dtc 1.1 int max_new_areas;
1127    
1128     /* Add a new area to new_areas. */
1129 rtoy 1.66 static void
1130     add_new_area(int first_page, int offset, int size)
1131 dtc 1.1 {
1132 rtoy 1.66 unsigned new_area_start, c;
1133     int i;
1134    
1135     /* Ignore if full */
1136     if (new_areas_index >= NUM_NEW_AREAS)
1137     return;
1138 dtc 1.1
1139 rtoy 1.66 switch (record_new_objects) {
1140     case 0:
1141     return;
1142     case 1:
1143     if (first_page > new_areas_ignore_page)
1144     return;
1145     break;
1146     case 2:
1147     break;
1148     default:
1149     gc_abort();
1150     }
1151 dtc 1.1
1152 rtoy 1.66 new_area_start = PAGE_SIZE * first_page + offset;
1153 dtc 1.1
1154 rtoy 1.66 /*
1155     * Search backwards for a prior area that this follows from. If
1156     * found this will save adding a new area.
1157     */
1158     for (i = new_areas_index - 1, c = 0; i >= 0 && c < 8; i--, c++) {
1159     unsigned area_end = PAGE_SIZE * (*new_areas)[i].page
1160     + (*new_areas)[i].offset + (*new_areas)[i].size;
1161 dtc 1.14
1162     #if 0
1163 rtoy 1.66 fprintf(stderr, "*S1 %d %d %d %d\n", i, c, new_area_start, area_end);
1164 dtc 1.14 #endif
1165 rtoy 1.66 if (new_area_start == area_end) {
1166 dtc 1.14 #if 0
1167 rtoy 1.66 fprintf(stderr, "-> Adding to [%d] %d %d %d with %d %d %d:\n",
1168     i, (*new_areas)[i].page, (*new_areas)[i].offset,
1169     (*new_areas)[i].size, first_page, offset, size);
1170 dtc 1.14 #endif
1171 rtoy 1.66 (*new_areas)[i].size += size;
1172     return;
1173     }
1174 dtc 1.1 }
1175 dtc 1.14 #if 0
1176 rtoy 1.66 fprintf(stderr, "*S1 %d %d %d\n", i, c, new_area_start);
1177 dtc 1.14 #endif
1178 dtc 1.1
1179 rtoy 1.66 (*new_areas)[new_areas_index].page = first_page;
1180     (*new_areas)[new_areas_index].offset = offset;
1181     (*new_areas)[new_areas_index].size = size;
1182 dtc 1.14 #if 0
1183 rtoy 1.66 fprintf(stderr, " new_area %d page %d offset %d size %d\n",
1184     new_areas_index, first_page, offset, size);
1185 dtc 1.14 #endif
1186 rtoy 1.66 new_areas_index++;
1187 dtc 1.14
1188 rtoy 1.66 /* Note the max new_areas used. */
1189     if (new_areas_index > max_new_areas)
1190     max_new_areas = new_areas_index;
1191 dtc 1.1 }
1192    
1193    
1194 dtc 1.14 /*
1195     * Update the tables for the alloc_region. The region may be added to
1196     * the new_areas.
1197     *
1198     * When done the alloc_region its setup so that the next quick alloc
1199     * will fail safely and thus a new region will be allocated. Further
1200     * it is safe to try and re-update the page table of this reset
1201     * alloc_region.
1202     */
1203 rtoy 1.66 void
1204     gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
1205 dtc 1.1 {
1206 rtoy 1.66 int more;
1207     int first_page;
1208     int next_page;
1209     int bytes_used;
1210     int orig_first_page_bytes_used;
1211     int region_size;
1212     int byte_cnt;
1213 dtc 1.1
1214 dtc 1.14 #if 0
1215 rtoy 1.66 fprintf(stderr, "gc_alloc_update_page_tables to gen %d: ",
1216     gc_alloc_generation);
1217 dtc 1.14 #endif
1218 dtc 1.1
1219 rtoy 1.66 first_page = alloc_region->first_page;
1220 dtc 1.1
1221 rtoy 1.66 /* Catch an unused alloc_region. */
1222     if (first_page == 0 && alloc_region->last_page == -1)
1223     return;
1224 dtc 1.1
1225 rtoy 1.66 next_page = first_page + 1;
1226 dtc 1.1
1227 rtoy 1.66 /* Skip if no bytes were allocated */
1228     if (alloc_region->free_pointer != alloc_region->start_addr) {
1229     orig_first_page_bytes_used = page_table[first_page].bytes_used;
1230 dtc 1.14
1231 rtoy 1.66 gc_assert(alloc_region->start_addr == page_address(first_page) +
1232     page_table[first_page].bytes_used);
1233 dtc 1.14
1234 rtoy 1.66 /* All the pages used need to be updated */
1235 dtc 1.14
1236 rtoy 1.66 /* Update the first page. */
1237 dtc 1.14
1238 rtoy 1.66 #if 0
1239     fprintf(stderr, "0");
1240 dtc 1.14 #endif
1241    
1242 rtoy 1.66 /* If the page was free then setup the gen, and first_object_offset. */
1243     if (page_table[first_page].bytes_used == 0)
1244     gc_assert(page_table[first_page].first_object_offset == 0);
1245 dtc 1.14
1246 rtoy 1.66 gc_assert(PAGE_ALLOCATED(first_page));
1247     gc_assert(PAGE_UNBOXED_VAL(first_page) == unboxed);
1248     gc_assert(PAGE_GENERATION(first_page) == gc_alloc_generation);
1249     gc_assert(!PAGE_LARGE_OBJECT(first_page));
1250 dtc 1.14
1251 rtoy 1.66 byte_cnt = 0;
1252 dtc 1.14
1253 rtoy 1.66 /*
1254     * Calc. the number of bytes used in this page. This is not always
1255     * the number of new bytes, unless it was free.
1256     */
1257     more = 0;
1258     bytes_used = alloc_region->free_pointer - page_address(first_page);
1259     if (bytes_used > PAGE_SIZE) {
1260     bytes_used = PAGE_SIZE;
1261     more = 1;
1262     }
1263     page_table[first_page].bytes_used = bytes_used;
1264     byte_cnt += bytes_used;
1265 dtc 1.14
1266 rtoy 1.66 /*
1267     * All the rest of the pages should be free. Need to set their
1268     * first_object_offset pointer to the start of the region, and set
1269     * the bytes_used.
1270     */
1271     while (more) {
1272 dtc 1.14 #if 0
1273 rtoy 1.66 fprintf(stderr, "+");
1274 dtc 1.14 #endif
1275 rtoy 1.66 gc_assert(PAGE_ALLOCATED(next_page));
1276     gc_assert(PAGE_UNBOXED_VAL(next_page) == unboxed);
1277     gc_assert(page_table[next_page].bytes_used == 0);
1278     gc_assert(PAGE_GENERATION(next_page) == gc_alloc_generation);
1279     gc_assert(!PAGE_LARGE_OBJECT(next_page));
1280    
1281     gc_assert(page_table[next_page].first_object_offset ==
1282     alloc_region->start_addr - page_address(next_page));
1283    
1284     /* Calc. the number of bytes used in this page. */
1285     more = 0;
1286     bytes_used = alloc_region->free_pointer - page_address(next_page);
1287     if (bytes_used > PAGE_SIZE) {
1288     bytes_used = PAGE_SIZE;
1289     more = 1;
1290     }
1291     page_table[next_page].bytes_used = bytes_used;
1292     byte_cnt += bytes_used;
1293 dtc 1.14
1294 rtoy 1.66 next_page++;
1295     }
1296 dtc 1.14
1297 rtoy 1.66 region_size = alloc_region->free_pointer - alloc_region->start_addr;
1298     bytes_allocated += region_size;
1299     generations[gc_alloc_generation].bytes_allocated += region_size;
1300 dtc 1.14
1301 rtoy 1.66 gc_assert(byte_cnt - orig_first_page_bytes_used == region_size);
1302 dtc 1.14
1303 rtoy 1.66 /*
1304     * Set the generations alloc restart page to the last page of
1305     * the region.
1306     */
1307     if (unboxed)
1308     generations[gc_alloc_generation].alloc_unboxed_start_page =
1309     next_page - 1;
1310     else
1311     generations[gc_alloc_generation].alloc_start_page = next_page - 1;
1312 dtc 1.14
1313 rtoy 1.66 /* Add the region to the new_areas if requested. */
1314     if (!unboxed)
1315     add_new_area(first_page, orig_first_page_bytes_used, region_size);
1316 dtc 1.14
1317     #if 0
1318 rtoy 1.66 fprintf(stderr,
1319     " gc_alloc_update_page_tables update %d bytes to gen %d\n",
1320     region_size, gc_alloc_generation);
1321 dtc 1.14 #endif
1322 rtoy 1.66 } else
1323     /*
1324     * No bytes allocated. Unallocate the first_page if there are 0 bytes_used.
1325     */
1326 dtc 1.1 if (page_table[first_page].bytes_used == 0)
1327 rtoy 1.66 page_table[first_page].flags &= ~PAGE_ALLOCATED_MASK;
1328 dtc 1.14
1329 rtoy 1.66 /* Unallocate any unused pages. */
1330     while (next_page <= alloc_region->last_page) {
1331     gc_assert(page_table[next_page].bytes_used == 0);
1332     page_table[next_page].flags &= ~PAGE_ALLOCATED_MASK;
1333     next_page++;
1334     }
1335 dtc 1.1
1336 rtoy 1.66 /* Reset the alloc_region. */
1337     alloc_region->first_page = 0;
1338     alloc_region->last_page = -1;
1339     alloc_region->start_addr = page_address(0);
1340     alloc_region->free_pointer = page_address(0);
1341     alloc_region->end_addr = page_address(0);
1342 dtc 1.1
1343 dtc 1.14 #if 0
1344 rtoy 1.66 fprintf(stderr, "\n");
1345 dtc 1.14 #endif
1346 dtc 1.1 }
1347    
1348    
1349    
1350     static inline void *gc_quick_alloc(int nbytes);
1351    
1352 dtc 1.14 /*
1353     * Allocate a possibly large object.
1354     */
1355 rtoy 1.66 static void *
1356     gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
1357 dtc 1.1 {
1358 rtoy 1.66 int first_page;
1359     int last_page;
1360     int region_size;
1361     int restart_page;
1362     int bytes_found;
1363     int num_pages;
1364     int orig_first_page_bytes_used;
1365     int byte_cnt;
1366     int more;
1367     int bytes_used;
1368     int next_page;
1369     int large = (nbytes >= large_object_size);
1370     int mmask, mflags;
1371 dtc 1.15
1372 dtc 1.14
1373 rtoy 1.66 /* Shut up some compiler warnings */
1374     last_page = bytes_found = 0;
1375 dtc 1.14
1376 toy 1.47 #if 0
1377 rtoy 1.66 if (nbytes > 200000)
1378     fprintf(stderr, "*** alloc_large %d\n", nbytes);
1379 toy 1.47 #endif
1380 dtc 1.14
1381     #if 0
1382 rtoy 1.66 fprintf(stderr, "gc_alloc_large for %d bytes from gen %d\n",
1383     nbytes, gc_alloc_generation);
1384 dtc 1.14 #endif
1385    
1386 rtoy 1.66 /*
1387     * If the object is small, and there is room in the current region
1388     * then allocation it in the current region.
1389     */
1390     if (!large && alloc_region->end_addr - alloc_region->free_pointer >= nbytes)
1391     return gc_quick_alloc(nbytes);
1392 dtc 1.14
1393 rtoy 1.66 /*
1394     * Search for a contiguous free region of at least nbytes. If it's a
1395     * large object then align it on a page boundary by searching for a
1396     * free page.
1397     */
1398 dtc 1.14
1399 rtoy 1.66 /*
1400     * To allow the allocation of small objects without the danger of
1401     * using a page in the current boxed region, the search starts after
1402     * the current boxed free region. XX could probably keep a page
1403     * index ahead of the current region and bumped up here to save a
1404     * lot of re-scanning.
1405     */
1406     if (unboxed)
1407     restart_page =
1408     generations[gc_alloc_generation].alloc_large_unboxed_start_page;
1409     else
1410     restart_page = generations[gc_alloc_generation].alloc_large_start_page;
1411     if (restart_page <= alloc_region->last_page)
1412     restart_page = alloc_region->last_page + 1;
1413    
1414     /* Setup the mask and matching flags. */
1415    
1416     mmask = PAGE_ALLOCATED_MASK | PAGE_WRITE_PROTECTED_MASK
1417     | PAGE_LARGE_OBJECT_MASK | PAGE_DONT_MOVE_MASK
1418     | PAGE_UNBOXED_MASK | PAGE_GENERATION_MASK;
1419     mflags = PAGE_ALLOCATED_MASK | (unboxed << PAGE_UNBOXED_SHIFT)
1420     | gc_alloc_generation;
1421 dtc 1.14
1422 rtoy 1.66 do {
1423     first_page = restart_page;
1424 dtc 1.14
1425 rtoy 1.66 if (large)
1426     while (first_page < dynamic_space_pages
1427     && PAGE_ALLOCATED(first_page)) first_page++;
1428     else
1429     while (first_page < dynamic_space_pages) {
1430     int flags = page_table[first_page].flags;
1431 dtc 1.14
1432 rtoy 1.66 if (!(flags & PAGE_ALLOCATED_MASK)
1433     || ((flags & mmask) == mflags &&
1434     page_table[first_page].bytes_used < PAGE_SIZE - 32))
1435     break;
1436     first_page++;
1437     }
1438 dtc 1.14
1439 rtoy 1.66 /* Check for a failure */
1440     if (first_page >= dynamic_space_pages - reserved_heap_pages) {
1441     #if 0
1442     handle_heap_overflow("*A2 gc_alloc_large failed, nbytes=%d.\n",
1443     nbytes);
1444     #else
1445     break;
1446 dtc 1.14 #endif
1447 rtoy 1.66 }
1448     gc_assert(!PAGE_WRITE_PROTECTED(first_page));
1449 dtc 1.1
1450 rtoy 1.66 #if 0
1451     fprintf(stderr, " first_page=%d bytes_used=%d\n",
1452     first_page, page_table[first_page].bytes_used);
1453     #endif
1454 dtc 1.1
1455 rtoy 1.66 last_page = first_page;
1456     bytes_found = PAGE_SIZE - page_table[first_page].bytes_used;
1457     num_pages = 1;
1458     while (bytes_found < nbytes
1459     && last_page < dynamic_space_pages - 1
1460     && !PAGE_ALLOCATED(last_page + 1)) {
1461     last_page++;
1462     num_pages++;
1463     bytes_found += PAGE_SIZE;
1464     gc_assert(!PAGE_WRITE_PROTECTED(last_page));
1465     }
1466 dtc 1.14
1467 rtoy 1.66 region_size = (PAGE_SIZE - page_table[first_page].bytes_used)
1468     + PAGE_SIZE * (last_page - first_page);
1469 dtc 1.15
1470 rtoy 1.66 gc_assert(bytes_found == region_size);
1471 dtc 1.1
1472 rtoy 1.66 #if 0
1473     fprintf(stderr, " last_page=%d bytes_found=%d num_pages=%d\n",
1474     last_page, bytes_found, num_pages);
1475     #endif
1476 dtc 1.14
1477 rtoy 1.66 restart_page = last_page + 1;
1478     }
1479     while ((restart_page < dynamic_space_pages) && (bytes_found < nbytes));
1480 dtc 1.14
1481 rtoy 1.66 if (first_page >= dynamic_space_pages - reserved_heap_pages) {
1482     handle_heap_overflow("*A2 gc_alloc_large failed, nbytes=%d.\n", nbytes);
1483     }
1484 dtc 1.1
1485 rtoy 1.66 /* Check for a failure */
1486     if (restart_page >= (dynamic_space_pages - reserved_heap_pages)
1487     && bytes_found < nbytes) {
1488     handle_heap_overflow("*A1 gc_alloc_large failed, nbytes=%d.\n", nbytes);
1489     }
1490 dtc 1.14 #if 0
1491 rtoy 1.66 if (large)
1492     fprintf(stderr,
1493     "gc_alloc_large gen %d: %d of %d bytes: from pages %d to %d: addr=%x\n",
1494     gc_alloc_generation, nbytes, bytes_found, first_page, last_page,
1495     page_address(first_page));
1496 dtc 1.14 #endif
1497    
1498 rtoy 1.66 gc_assert(first_page > alloc_region->last_page);
1499     if (unboxed)
1500     generations[gc_alloc_generation].alloc_large_unboxed_start_page =
1501     last_page;
1502     else
1503     generations[gc_alloc_generation].alloc_large_start_page = last_page;
1504    
1505     /* Setup the pages. */
1506     orig_first_page_bytes_used = page_table[first_page].bytes_used;
1507 dtc 1.14
1508 rtoy 1.66 /*
1509     * If the first page was free then setup the gen, and
1510     * first_object_offset.
1511     */
1512 dtc 1.14
1513 rtoy 1.66 if (large)
1514     mflags |= PAGE_LARGE_OBJECT_MASK;
1515     if (page_table[first_page].bytes_used == 0) {
1516     PAGE_FLAGS_UPDATE(first_page, mmask, mflags);
1517     page_table[first_page].first_object_offset = 0;
1518 dtc 1.1 }
1519 dtc 1.14
1520 rtoy 1.66 gc_assert(PAGE_ALLOCATED(first_page));
1521     gc_assert(PAGE_UNBOXED_VAL(first_page) == unboxed);
1522     gc_assert(PAGE_GENERATION(first_page) == gc_alloc_generation);
1523     gc_assert(PAGE_LARGE_OBJECT_VAL(first_page) == large);
1524 dtc 1.14
1525 rtoy 1.66 byte_cnt = 0;
1526 dtc 1.1
1527 rtoy 1.66 /*
1528     * Calc. the number of bytes used in this page. This is not
1529     * always the number of new bytes, unless it was free.
1530     */
1531     more = 0;
1532     bytes_used = nbytes + orig_first_page_bytes_used;
1533     if (bytes_used > PAGE_SIZE) {
1534     bytes_used = PAGE_SIZE;
1535     more = 1;
1536     }
1537     page_table[first_page].bytes_used = bytes_used;
1538     byte_cnt += bytes_used;
1539    
1540     next_page = first_page + 1;
1541    
1542     /*
1543     * All the rest of the pages should be free. Need to set their
1544     * first_object_offset pointer to the start of the region, and set
1545     * the bytes_used.
1546     */
1547     while (more) {
1548     #if 0
1549     fprintf(stderr, "+");
1550     #endif
1551    
1552     gc_assert(!PAGE_ALLOCATED(next_page));
1553     gc_assert(page_table[next_page].bytes_used == 0);
1554     PAGE_FLAGS_UPDATE(next_page, mmask, mflags);
1555    
1556     page_table[next_page].first_object_offset =
1557     orig_first_page_bytes_used - PAGE_SIZE * (next_page - first_page);
1558    
1559     /* Calc. the number of bytes used in this page. */
1560     more = 0;
1561     bytes_used = nbytes + orig_first_page_bytes_used - byte_cnt;
1562     if (bytes_used > PAGE_SIZE) {
1563     bytes_used = PAGE_SIZE;
1564     more = 1;
1565     }
1566     page_table[next_page].bytes_used = bytes_used;
1567     byte_cnt += bytes_used;
1568    
1569     next_page++;
1570     }
1571    
1572     gc_assert(byte_cnt - orig_first_page_bytes_used == nbytes);
1573 dtc 1.1
1574 rtoy 1.66 bytes_allocated += nbytes;
1575     generations[gc_alloc_generation].bytes_allocated += nbytes;
1576 dtc 1.14
1577 rtoy 1.66 /* Add the region to the new_areas if requested. */
1578     if (!unboxed)
1579     add_new_area(first_page, orig_first_page_bytes_used, nbytes);
1580    
1581     /* Bump up the last_free_page */
1582     if (last_page + 1 > last_free_page) {
1583     last_free_page = last_page + 1;
1584     set_alloc_pointer((lispobj) ((char *) heap_base +
1585     PAGE_SIZE * last_free_page));
1586     }
1587 dtc 1.14
1588 rtoy 1.66 return (void *) (page_address(first_page) + orig_first_page_bytes_used);
1589 dtc 1.1 }
1590    
1591 dtc 1.14 /*
1592     * Allocate bytes from the boxed_region. It first checks if there is
1593     * room, if not then it calls gc_alloc_new_region to find a new region
1594     * with enough space. A pointer to the start of the region is returned.
1595     */
1596 rtoy 1.66 static void *
1597     gc_alloc(int nbytes)
1598 dtc 1.1 {
1599 rtoy 1.66 char *new_free_pointer;
1600 dtc 1.1
1601 dtc 1.14 #if 0
1602 rtoy 1.66 fprintf(stderr, "gc_alloc %d\n", nbytes);
1603 dtc 1.14 #endif
1604 dtc 1.1
1605 rtoy 1.66 /* Check if there is room in the current alloc region. */
1606     new_free_pointer = boxed_region.free_pointer + nbytes;
1607    
1608     if (new_free_pointer <= boxed_region.end_addr) {
1609     /* If so then allocate from the current alloc region. */
1610     char *new_obj = boxed_region.free_pointer;
1611 dtc 1.14
1612 rtoy 1.66 boxed_region.free_pointer = new_free_pointer;
1613 dtc 1.14
1614 rtoy 1.66 /* Check if the alloc region is almost empty. */
1615     if (boxed_region.end_addr - boxed_region.free_pointer <= 32) {
1616     /* If so finished with the current region. */
1617     gc_alloc_update_page_tables(0, &boxed_region);
1618     /* Setup a new region. */
1619     gc_alloc_new_region(32, 0, &boxed_region);
1620     }
1621     return (void *) new_obj;
1622 dtc 1.1 }
1623 dtc 1.14
1624 rtoy 1.66 /* Else not enough free space in the current region. */
1625    
1626     /*
1627     * If there is a bit of room left in the current region then
1628     * allocate a large object.
1629     */
1630 rtoy 1.95.2.1.2.2 #if (defined(i386) || defined(__x86_64))
1631     /*
1632     * This has potentially very bad behavior on sparc if the current
1633     * boxed region is too small for the allocation, but the free
1634     * space is greater than 32. The scenario is where we're always
1635     * allocating something that won't fit in the boxed region and we
1636     * keep calling gc_alloc_large. Since gc_alloc_large doesn't
1637     * change boxed_region, the next allocation will again be
1638     * out-of-line and we hit a kernel trap again. And so on, so we
1639     * waste all of our time doing kernel traps to allocate small
1640     * things. So disable this test on sparc. This should also be a
1641     * problem on ppc, but I didn't test it.
1642     *
1643     * X86 seems not affected or affected as badly, perhaps because
1644     * x86 doesn't do a kernel trap to handle allocation. Didn't test
1645     * this either, but we leave this in for x86.
1646     *
1647     * I don't know what the impact of this change will be except that
1648     * regions may have wasted space in them when they could have had
1649     * other thing allocated in the region.
1650     */
1651 rtoy 1.66 if (boxed_region.end_addr - boxed_region.free_pointer > 32)
1652     return gc_alloc_large(nbytes, 0, &boxed_region);
1653 rtoy 1.95.2.1.2.2 #endif
1654 dtc 1.1
1655 rtoy 1.66 /* Else find a new region. */
1656    
1657     /* Finished with the current region. */
1658     gc_alloc_update_page_tables(0, &boxed_region);
1659 dtc 1.1
1660 rtoy 1.66 /* Setup a new region. */
1661     gc_alloc_new_region(nbytes, 0, &boxed_region);
1662 dtc 1.1
1663 rtoy 1.66 /* Should now be enough room. */
1664 dtc 1.14
1665 rtoy 1.66 /* Check if there is room in the current region. */
1666     new_free_pointer = boxed_region.free_pointer + nbytes;
1667 dtc 1.14
1668 rtoy 1.66 if (new_free_pointer <= boxed_region.end_addr) {
1669     /* If so then allocate from the current region. */
1670     void *new_obj = boxed_region.free_pointer;
1671 dtc 1.14
1672 rtoy 1.66 boxed_region.free_pointer = new_free_pointer;
1673 dtc 1.14
1674 rtoy 1.66 /* Check if the current region is almost empty. */
1675     if (boxed_region.end_addr - boxed_region.free_pointer <= 32) {
1676     /* If so find, finished with the current region. */
1677     gc_alloc_update_page_tables(0, &boxed_region);
1678 dtc 1.1
1679 rtoy 1.66 /* Setup a new region. */
1680     gc_alloc_new_region(32, 0, &boxed_region);
1681     }
1682 dtc 1.14
1683 rtoy 1.66 return (void *) new_obj;
1684 dtc 1.1 }
1685 dtc 1.14
1686 rtoy 1.66 /* Shouldn't happen? */
1687     gc_assert(0);
1688     return 0;
1689 dtc 1.1 }
1690    
1691 dtc 1.14 /*
1692     * Allocate space from the boxed_region. If there is not enough free
1693     * space then call gc_alloc to do the job. A pointer to the start of
1694     * the region is returned.
1695     */
1696 rtoy 1.66 static inline void *
1697     gc_quick_alloc(int nbytes)
1698 dtc 1.1 {
1699 rtoy 1.66 char *new_free_pointer;
1700    
1701     /* Check if there is room in the current region. */
1702     new_free_pointer = boxed_region.free_pointer + nbytes;
1703 dtc 1.1
1704 rtoy 1.66 if (new_free_pointer <= boxed_region.end_addr) {
1705     /* If so then allocate from the current region. */
1706     void *new_obj = boxed_region.free_pointer;
1707 dtc 1.14
1708 rtoy 1.66 boxed_region.free_pointer = new_free_pointer;
1709     return (void *) new_obj;
1710     }
1711 dtc 1.14
1712 rtoy 1.66 /* Else call gc_alloc */
1713     return gc_alloc(nbytes);
1714 dtc 1.1 }
1715    
1716 dtc 1.14 /*
1717     * Allocate space for the boxed object. If it is a large object then
1718     * do a large alloc else allocate from the current region. If there is
1719     * not enough free space then call gc_alloc to do the job. A pointer
1720     * to the start of the region is returned.
1721     */
1722 rtoy 1.66 static inline void *
1723     gc_quick_alloc_large(int nbytes)
1724 dtc 1.1 {
1725 rtoy 1.66 char *new_free_pointer;
1726    
1727     if (nbytes >= large_object_size)
1728     return gc_alloc_large(nbytes, 0, &boxed_region);
1729 dtc 1.1
1730 rtoy 1.66 /* Check if there is room in the current region. */
1731     new_free_pointer = boxed_region.free_pointer + nbytes;
1732 dtc 1.1
1733 rtoy 1.66 if (new_free_pointer <= boxed_region.end_addr) {
1734     /* If so then allocate from the current region. */
1735     void *new_obj = boxed_region.free_pointer;
1736 dtc 1.14
1737 rtoy 1.66 boxed_region.free_pointer = new_free_pointer;
1738     return (void *) new_obj;
1739     }
1740 dtc 1.14
1741 rtoy 1.66 /* Else call gc_alloc */
1742     return gc_alloc(nbytes);
1743 dtc 1.1 }
1744    
1745    
1746    
1747    
1748 rtoy 1.66 static void *
1749     gc_alloc_unboxed(int nbytes)
1750 dtc 1.1 {
1751 rtoy 1.66 char *new_free_pointer;
1752 dtc 1.1
1753 dtc 1.14 #if 0
1754 rtoy 1.66 fprintf(stderr, "gc_alloc_unboxed %d\n", nbytes);
1755 dtc 1.14 #endif
1756 dtc 1.1
1757 rtoy 1.66 /* Check if there is room in the current region. */
1758     new_free_pointer = unboxed_region.free_pointer + nbytes;
1759    
1760     if (new_free_pointer <= unboxed_region.end_addr) {
1761     /* If so then allocate from the current region. */
1762     void *new_obj = unboxed_region.free_pointer;
1763 dtc 1.14
1764 rtoy 1.66 unboxed_region.free_pointer = new_free_pointer;
1765 dtc 1.14
1766 rtoy 1.66 /* Check if the current region is almost empty. */
1767     if ((unboxed_region.end_addr - unboxed_region.free_pointer) <= 32) {
1768     /* If so finished with the current region. */
1769     gc_alloc_update_page_tables(1, &unboxed_region);
1770 dtc 1.14
1771 rtoy 1.66 /* Setup a new region. */
1772     gc_alloc_new_region(32, 1, &unboxed_region);
1773     }
1774    
1775     return (void *) new_obj;
1776 dtc 1.1 }
1777 dtc 1.14
1778 rtoy 1.66 /* Else not enough free space in the current region. */
1779    
1780     /*
1781     * If there is a bit of room left in the current region then
1782     * allocate a large object.
1783     */
1784 rtoy 1.95.2.1.2.3
1785     #if (defined(i386) || defined(__x86_64))
1786     /* See gc_alloc for the reason for this */
1787 rtoy 1.66 if (unboxed_region.end_addr - unboxed_region.free_pointer > 32)
1788     return gc_alloc_large(nbytes, 1, &unboxed_region);
1789 rtoy 1.95.2.1.2.3 #endif
1790 dtc 1.14
1791 rtoy 1.66 /* Else find a new region. */
1792 dtc 1.14
1793 rtoy 1.66 /* Finished with the current region. */
1794     gc_alloc_update_page_tables(1, &unboxed_region);
1795 dtc 1.1
1796 rtoy 1.66 /* Setup a new region. */
1797     gc_alloc_new_region(nbytes, 1, &unboxed_region);
1798 dtc 1.1
1799 rtoy 1.66 /* Should now be enough room. */
1800 dtc 1.14
1801 rtoy 1.66 /* Check if there is room in the current region. */
1802     new_free_pointer = unboxed_region.free_pointer + nbytes;
1803 dtc 1.14
1804 rtoy 1.66 if (new_free_pointer <= unboxed_region.end_addr) {
1805     /* If so then allocate from the current region. */
1806     void *new_obj = unboxed_region.free_pointer;
1807 dtc 1.14
1808 rtoy 1.66 unboxed_region.free_pointer = new_free_pointer;
1809 dtc 1.14
1810 rtoy 1.66 /* Check if the current region is almost empty. */
1811     if ((unboxed_region.end_addr - unboxed_region.free_pointer) <= 32) {
1812     /* If so find, finished with the current region. */
1813     gc_alloc_update_page_tables(1, &unboxed_region);
1814 dtc 1.14
1815 rtoy 1.66 /* Setup a new region. */
1816     gc_alloc_new_region(32, 1, &unboxed_region);
1817     }
1818 dtc 1.14
1819 rtoy 1.66 return (void *) new_obj;
1820 dtc 1.1 }
1821 dtc 1.14
1822 rtoy 1.66 /* Shouldn't happen? */
1823     gc_assert(0);
1824     return 0;
1825 dtc 1.1 }
1826    
1827 rtoy 1.66 static inline void *
1828     gc_quick_alloc_unboxed(int nbytes)
1829 dtc 1.1 {
1830 rtoy 1.66 char *new_free_pointer;
1831    
1832     /* Check if there is room in the current region. */
1833     new_free_pointer = unboxed_region.free_pointer + nbytes;
1834 dtc 1.1
1835 rtoy 1.66 if (new_free_pointer <= unboxed_region.end_addr) {
1836     /* If so then allocate from the current region. */
1837     void *new_obj = unboxed_region.free_pointer;
1838 dtc 1.14
1839 rtoy 1.66 unboxed_region.free_pointer = new_free_pointer;
1840 dtc 1.14
1841 rtoy 1.66 return (void *) new_obj;
1842 dtc 1.1 }
1843 dtc 1.14
1844 rtoy 1.66 /* Else call gc_alloc */
1845     return gc_alloc_unboxed(nbytes);
1846 dtc 1.1 }
1847    
1848 dtc 1.14 /*
1849     * Allocate space for the object. If it is a large object then do a
1850     * large alloc else allocate from the current region. If there is not
1851     * enough free space then call gc_alloc to do the job.
1852     *
1853     * A pointer to the start of the region is returned.
1854     */
1855 rtoy 1.66 static inline void *
1856     gc_quick_alloc_large_unboxed(int nbytes)
1857 dtc 1.1 {
1858 rtoy 1.66 char *new_free_pointer;
1859 dtc 1.1
1860 rtoy 1.66 if (nbytes >= large_object_size)
1861     return gc_alloc_large(nbytes, 1, &unboxed_region);
1862 dtc 1.1
1863 rtoy 1.66 /* Check if there is room in the current region. */
1864     new_free_pointer = unboxed_region.free_pointer + nbytes;
1865 dtc 1.14
1866 rtoy 1.66 if (new_free_pointer <= unboxed_region.end_addr) {
1867     /* If so then allocate from the current region. */
1868     void *new_obj = unboxed_region.free_pointer;
1869 dtc 1.14
1870 rtoy 1.66 unboxed_region.free_pointer = new_free_pointer;
1871    
1872     return (void *) new_obj;
1873     }
1874 dtc 1.14
1875 rtoy 1.66 /* Else call gc_alloc */
1876     return gc_alloc_unboxed(nbytes);
1877 dtc 1.1 }
1878    
1879     /***************************************************************************/
1880 rtoy 1.66
1881 dtc 1.1
1882     /* Scavenging/transporting routines derived from gc.c */
1883    
1884 rtoy 1.66 static int (*scavtab[256]) (lispobj * where, lispobj object);
1885     static lispobj(*transother[256]) (lispobj object);
1886     static int (*sizetab[256]) (lispobj * where);
1887 dtc 1.1
1888     static struct weak_pointer *weak_pointers;
1889 dtc 1.14 static struct scavenger_hook *scavenger_hooks = (struct scavenger_hook *) NIL;
1890 dtc 1.1
1891 rtoy 1.95.2.1 /* Like (ceiling x y), but y is constrained to be a power of two */
1892 dtc 1.1 #define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
1893 rtoy 1.66
1894 dtc 1.1
1895     /* Predicates */
1896    
1897 rtoy 1.66 static inline boolean
1898     from_space_p(lispobj obj)
1899 dtc 1.1 {
1900 rtoy 1.66 int page_index = (char *) obj - heap_base;
1901    
1902     return page_index >= 0
1903     && (page_index =
1904     (unsigned int) page_index / PAGE_SIZE) < dynamic_space_pages
1905     && PAGE_GENERATION(page_index) == from_space;
1906 dtc 1.14 }
1907    
1908 rtoy 1.66 static inline boolean
1909     new_space_p(lispobj obj)
1910 dtc 1.14 {
1911 rtoy 1.66 int page_index = (char *) obj - heap_base;
1912    
1913     return page_index >= 0
1914     && (page_index =
1915     (unsigned int) page_index / PAGE_SIZE) < dynamic_space_pages
1916     && PAGE_GENERATION(page_index) == new_space;
1917 dtc 1.1 }
1918 rtoy 1.66
1919 dtc 1.1
1920     /* Copying Objects */
1921    
1922    
1923     /* Copying Boxed Objects */
1924 rtoy 1.66 static inline lispobj
1925     copy_object(lispobj object, int nwords)
1926 dtc 1.1 {
1927 rtoy 1.66 int tag;
1928     lispobj *new;
1929     lispobj *source, *dest;
1930    
1931     gc_assert(Pointerp(object));
1932     gc_assert(from_space_p(object));
1933     gc_assert((nwords & 0x01) == 0);
1934 dtc 1.14
1935 rtoy 1.66 /* get tag of object */
1936     tag = LowtagOf(object);
1937    
1938     /* allocate space */
1939     new = gc_quick_alloc(nwords * sizeof(lispobj));
1940    
1941     dest = new;
1942     source = (lispobj *) PTR(object);
1943    
1944     /* copy the object */
1945     while (nwords > 0) {
1946     dest[0] = source[0];
1947     dest[1] = source[1];
1948     dest += 2;
1949     source += 2;
1950     nwords -= 2;
1951     }
1952    
1953     /* return lisp pointer of new object */
1954     return (lispobj) new | tag;
1955 dtc 1.1 }
1956    
1957 dtc 1.14 /*
1958     * Copying Large Boxed Objects. If the object is in a large object
1959     * region then it is simply promoted, else it is copied. If it's large
1960     * enough then it's copied to a large object region.
1961     *
1962     * Vectors may have shrunk. If the object is not copied the space
1963     * needs to be reclaimed, and the page_tables corrected.
1964     */
1965 rtoy 1.66 static lispobj
1966     copy_large_object(lispobj object, int nwords)
1967 dtc 1.1 {
1968 rtoy 1.66 int tag;
1969     lispobj *new;
1970     lispobj *source, *dest;
1971     int first_page;
1972    
1973     gc_assert(Pointerp(object));
1974     gc_assert(from_space_p(object));
1975     gc_assert((nwords & 0x01) == 0);
1976    
1977     if (gencgc_verbose && nwords > 1024 * 1024)
1978 agoncharov 1.90 fprintf(stderr, "** copy_large_object: %lu\n",
1979     (unsigned long) (nwords * sizeof(lispobj)));
1980 rtoy 1.66
1981     /* Check if it's a large object. */
1982     first_page = find_page_index((void *) object);
1983     gc_assert(first_page >= 0);
1984    
1985     if (PAGE_LARGE_OBJECT(first_page)) {
1986     /* Promote the object. */
1987     int remaining_bytes;
1988     int next_page;
1989     int bytes_freed;
1990     int old_bytes_used;
1991     int mmask, mflags;
1992    
1993     /*
1994     * Note: Any page write protection must be removed, else a later
1995     * scavenge_newspace may incorrectly not scavenge these pages.
1996     * This would not be necessary if they are added to the new areas,
1997     * but lets do it for them all (they'll probably be written
1998     * anyway?).
1999     */
2000    
2001     gc_assert(page_table[first_page].first_object_offset == 0);
2002    
2003     next_page = first_page;
2004     remaining_bytes = nwords * sizeof(lispobj);
2005     while (remaining_bytes > PAGE_SIZE) {
2006     gc_assert(PAGE_GENERATION(next_page) == from_space);
2007     gc_assert(PAGE_ALLOCATED(next_page));
2008     gc_assert(!PAGE_UNBOXED(next_page));
2009     gc_assert(PAGE_LARGE_OBJECT(next_page));
2010     gc_assert(page_table[next_page].first_object_offset ==
2011     PAGE_SIZE * (first_page - next_page));
2012     gc_assert(page_table[next_page].bytes_used == PAGE_SIZE);
2013 dtc 1.1
2014 rtoy 1.66 PAGE_FLAGS_UPDATE(next_page, PAGE_GENERATION_MASK, new_space);
2015    
2016     /*
2017     * Remove any write protection. Should be able to religh on the
2018     * WP flag to avoid redundant calls.
2019     */
2020     if (PAGE_WRITE_PROTECTED(next_page)) {
2021     os_protect((os_vm_address_t) page_address(next_page), PAGE_SIZE,
2022     OS_VM_PROT_ALL);
2023     page_table[next_page].flags &= ~PAGE_WRITE_PROTECTED_MASK;
2024     }
2025     remaining_bytes -= PAGE_SIZE;
2026     next_page++;
2027     }
2028 dtc 1.14
2029 rtoy 1.66 /*
2030     * Now only one page remains, but the object may have shrunk so
2031     * there may be more unused pages which will be freed.
2032     */
2033 dtc 1.1
2034 rtoy 1.66 /* Object may have shrunk but shouldn't have grown - check. */
2035     gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2036 dtc 1.1
2037 rtoy 1.66 PAGE_FLAGS_UPDATE(next_page, PAGE_GENERATION_MASK, new_space);
2038     gc_assert(PAGE_ALLOCATED(next_page));
2039     gc_assert(!PAGE_UNBOXED(next_page));
2040    
2041     /* Adjust the bytes_used. */
2042     old_bytes_used = page_table[next_page].bytes_used;
2043     page_table[next_page].bytes_used = remaining_bytes;
2044    
2045     bytes_freed = old_bytes_used - remaining_bytes;
2046    
2047     mmask = PAGE_ALLOCATED_MASK | PAGE_UNBOXED_MASK | PAGE_LARGE_OBJECT_MASK
2048     | PAGE_GENERATION_MASK;
2049     mflags = PAGE_ALLOCATED_MASK | PAGE_LARGE_OBJECT_MASK | from_space;
2050    
2051     /* Free any remaining pages; needs care. */
2052     next_page++;
2053     while (old_bytes_used == PAGE_SIZE &&
2054     PAGE_FLAGS(next_page, mmask) == mflags &&
2055     page_table[next_page].first_object_offset ==
2056     PAGE_SIZE * (first_page - next_page)) {
2057     /*
2058     * Checks out OK, free the page. Don't need to both zeroing
2059     * pages as this should have been done before shrinking the
2060     * object. These pages shouldn't be write protected as they
2061     * should be zero filled.
2062     */
2063     gc_assert(!PAGE_WRITE_PROTECTED(next_page));
2064 dtc 1.1
2065 rtoy 1.66 old_bytes_used = page_table[next_page].bytes_used;
2066     page_table[next_page].flags &= ~PAGE_ALLOCATED_MASK;
2067     page_table[next_page].bytes_used = 0;
2068     bytes_freed += old_bytes_used;
2069     next_page++;
2070     }
2071 dtc 1.14
2072 rtoy 1.66 if (gencgc_verbose && bytes_freed > 0)
2073     fprintf(stderr, "* copy_large_boxed bytes_freed %d\n", bytes_freed);
2074 dtc 1.14
2075 rtoy 1.66 generations[from_space].bytes_allocated -=
2076     sizeof(lispobj) * nwords + bytes_freed;
2077     generations[new_space].bytes_allocated += sizeof(lispobj) * nwords;
2078     bytes_allocated -= bytes_freed;
2079 dtc 1.14
2080 rtoy 1.66 /* Add the region to the new_areas if requested. */
2081     add_new_area(first_page, 0, nwords * sizeof(lispobj));
2082 dtc 1.14
2083 rtoy 1.66 return object;
2084     } else {
2085     /* get tag of object */
2086     tag = LowtagOf(object);
2087 dtc 1.14
2088 rtoy 1.66 /* allocate space */
2089     new = gc_quick_alloc_large(nwords * sizeof(lispobj));
2090 dtc 1.15
2091 rtoy 1.66 dest = new;
2092     source = (lispobj *) PTR(object);
2093 dtc 1.14
2094 rtoy 1.66 /* copy the object */
2095     while (nwords > 0) {
2096     dest[0] = source[0];
2097     dest[1] = source[1];
2098     dest += 2;
2099     source += 2;
2100     nwords -= 2;
2101     }
2102 dtc 1.14
2103 rtoy 1.66 /* return lisp pointer of new object */
2104     return (lispobj) new | tag;
2105     }
2106     }
2107 dtc 1.14
2108 rtoy 1.66 /* Copying UnBoxed Objects. */
2109     static inline lispobj
2110     copy_unboxed_object(lispobj object, int nwords)
2111     {
2112     int tag;
2113     lispobj *new;
2114     lispobj *source, *dest;
2115    
2116     gc_assert(Pointerp(object));
2117     gc_assert(from_space_p(object));
2118     gc_assert((nwords & 0x01) == 0);
2119 dtc 1.1
2120     /* get tag of object */
2121     tag = LowtagOf(object);
2122 dtc 1.14
2123 dtc 1.1 /* allocate space */
2124 rtoy 1.66 new = gc_quick_alloc_unboxed(nwords * sizeof(lispobj));
2125 dtc 1.14
2126 dtc 1.1 dest = new;
2127     source = (lispobj *) PTR(object);
2128 dtc 1.14
2129 rtoy 1.66 /* Copy the object */
2130 dtc 1.1 while (nwords > 0) {
2131 rtoy 1.66 dest[0] = source[0];
2132     dest[1] = source[1];
2133     dest += 2;
2134     source += 2;
2135     nwords -= 2;
2136 dtc 1.1 }
2137 dtc 1.14
2138 rtoy 1.66 /* Return lisp pointer of new object. */
2139 dtc 1.14 return (lispobj) new | tag;
2140 dtc 1.1 }
2141    
2142    
2143 dtc 1.14 /*
2144     * Copying Large Unboxed Objects. If the object is in a large object
2145     * region then it is simply promoted, else it is copied. If it's large
2146     * enough then it's copied to a large object region.
2147     *
2148     * Bignums and vectors may have shrunk. If the object is not copied
2149     * the space needs to be reclaimed, and the page_tables corrected.
2150     */
2151 rtoy 1.66 static lispobj
2152     copy_large_unboxed_object(lispobj object, int nwords)
2153 dtc 1.1 {
2154 rtoy 1.66 int tag;
2155     lispobj *new;
2156     lispobj *source, *dest;
2157     int first_page;
2158    
2159     gc_assert(Pointerp(object));
2160     gc_assert(from_space_p(object));
2161     gc_assert((nwords & 0x01) == 0);
2162    
2163     if (gencgc_verbose && nwords > 1024 * 1024)
2164 cshapiro 1.87 fprintf(stderr, "** copy_large_unboxed_object: %lu\n",
2165 agoncharov 1.90 (unsigned long) (nwords * sizeof(lispobj)));
2166 rtoy 1.66
2167     /* Check if it's a large object. */
2168     first_page = find_page_index((void *) object);
2169     gc_assert(first_page >= 0);
2170 dtc 1.14
2171 rtoy 1.66 if (PAGE_LARGE_OBJECT(first_page)) {
2172     /*
2173     * Promote the object. Note: Unboxed objects may have been
2174     * allocated to a BOXED region so it may be necessary to change
2175     * the region to UNBOXED.
2176     */
2177     int remaining_bytes;
2178     int next_page;
2179     int bytes_freed;
2180     int old_bytes_used;
2181     int mmask, mflags;
2182    
2183     gc_assert(page_table[first_page].first_object_offset == 0);
2184    
2185     next_page = first_page;
2186     remaining_bytes = nwords * sizeof(lispobj);
2187     while (remaining_bytes > PAGE_SIZE) {
2188     gc_assert(PAGE_GENERATION(next_page) == from_space);
2189     gc_assert(PAGE_ALLOCATED(next_page));
2190     gc_assert(PAGE_LARGE_OBJECT(next_page));
2191     gc_assert(page_table[next_page].first_object_offset ==
2192     PAGE_SIZE * (first_page - next_page));
2193     gc_assert(page_table[next_page].bytes_used == PAGE_SIZE);
2194    
2195     PAGE_FLAGS_UPDATE(next_page,
2196     PAGE_UNBOXED_MASK | PAGE_GENERATION_MASK,
2197     PAGE_UNBOXED_MASK | new_space);
2198     remaining_bytes -= PAGE_SIZE;
2199     next_page++;
2200     }
2201 dtc 1.1
2202 rtoy 1.66 /*
2203     * Now only one page remains, but the object may have shrunk so
2204     * there may be more unused pages which will be freed.
2205     */
2206 dtc 1.1
2207 rtoy 1.66 /* Object may have shrunk but shouldn't have grown - check. */
2208     gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2209 dtc 1.1
2210 rtoy 1.66 PAGE_FLAGS_UPDATE(next_page, PAGE_ALLOCATED_MASK | PAGE_UNBOXED_MASK
2211     | PAGE_GENERATION_MASK,
2212     PAGE_ALLOCATED_MASK | PAGE_UNBOXED_MASK | new_space);
2213    
2214     /* Adjust the bytes_used. */
2215     old_bytes_used = page_table[next_page].bytes_used;
2216     page_table[next_page].bytes_used = remaining_bytes;
2217    
2218     bytes_freed = old_bytes_used - remaining_bytes;
2219    
2220     mmask = PAGE_ALLOCATED_MASK | PAGE_LARGE_OBJECT_MASK
2221     | PAGE_GENERATION_MASK;
2222     mflags = PAGE_ALLOCATED_MASK | PAGE_LARGE_OBJECT_MASK | from_space;
2223    
2224     /* Free any remaining pages; needs care. */
2225     next_page++;
2226     while (old_bytes_used == PAGE_SIZE &&
2227     PAGE_FLAGS(next_page, mmask) == mflags &&
2228     page_table[next_page].first_object_offset ==
2229     PAGE_SIZE * (first_page - next_page)) {
2230     /*
2231     * Checks out OK, free the page. Don't need to both zeroing
2232     * pages as this should have been done before shrinking the
2233     * object. These pages shouldn't be write protected, even if
2234     * boxed they should be zero filled.
2235     */
2236     gc_assert(!PAGE_WRITE_PROTECTED(next_page));
2237 dtc 1.14
2238 rtoy 1.66 old_bytes_used = page_table[next_page].bytes_used;
2239     page_table[next_page].flags &= ~PAGE_ALLOCATED_MASK;
2240     page_table[next_page].bytes_used = 0;
2241     bytes_freed += old_bytes_used;
2242     next_page++;
2243     }
2244 dtc 1.14
2245 rtoy 1.66 if (gencgc_verbose && bytes_freed > 0)
2246     fprintf(stderr, "* copy_large_unboxed bytes_freed %d\n",
2247     bytes_freed);
2248    
2249     generations[from_space].bytes_allocated -=
2250     sizeof(lispobj) * nwords + bytes_freed;
2251     generations[new_space].bytes_allocated += sizeof(lispobj) * nwords;
2252     bytes_allocated -= bytes_freed;
2253 dtc 1.14
2254 rtoy 1.66 return object;
2255     } else {
2256     /* get tag of object */
2257     tag = LowtagOf(object);
2258 dtc 1.14
2259 rtoy 1.66 /* allocate space */
2260     new = gc_quick_alloc_large_unboxed(nwords * sizeof(lispobj));
2261 dtc 1.14
2262 rtoy 1.66 dest = new;
2263     source = (lispobj *) PTR(object);
2264 dtc 1.14
2265 rtoy 1.66 /* copy the object */
2266     while (nwords > 0) {
2267     dest[0] = source[0];
2268     dest[1] = source[1];
2269     dest += 2;
2270     source += 2;
2271     nwords -= 2;
2272     }
2273 dtc 1.14
2274 rtoy 1.66 /* return lisp pointer of new object */
2275     return (lispobj) new | tag;
2276 dtc 1.1 }
2277     }
2278 rtoy 1.66
2279 dtc 1.1
2280     /* Scavenging */
2281 toy 1.49
2282     /*
2283     * Douglas Crosher says:
2284     *
2285     * There were two different ways in which the scavenger dispatched,
2286     * and DIRECT_SCAV was one option. This code did work at one stage
2287     * but testing showed it to be slower. When DIRECT_SCAV is enabled
2288     * the scavenger dispatches via the scavtab for all objects, and when
2289     * disabled the scavenger firstly detects and handles some common
2290     * cases itself before dispatching.
2291     */
2292 dtc 1.1
2293     #define DIRECT_SCAV 0
2294    
2295 gerd 1.38 static void
2296 rtoy 1.66 scavenge(void *start_obj, long nwords)
2297 dtc 1.1 {
2298 rtoy 1.66 lispobj *start;
2299 toy 1.42
2300 rtoy 1.66 start = (lispobj *) start_obj;
2301    
2302     while (nwords > 0) {
2303     lispobj object;
2304     int words_scavenged;
2305 dtc 1.14
2306 rtoy 1.66 object = *start;
2307     /* Not a forwarding pointer. */
2308     gc_assert(object != 0x01);
2309 dtc 1.14
2310 dtc 1.1 #if DIRECT_SCAV
2311 rtoy 1.66 words_scavenged = scavtab[TypeOf(object)] (start, object);
2312     #else /* not DIRECT_SCAV */
2313     if (Pointerp(object)) {
2314 gerd 1.38 #ifdef GC_ASSERTIONS
2315 rtoy 1.66 check_escaped_stack_object(start, object);
2316 gerd 1.38 #endif
2317 dtc 1.14
2318 rtoy 1.66 if (from_space_p(object)) {
2319     lispobj *ptr = (lispobj *) PTR(object);
2320     lispobj first_word = *ptr;
2321    
2322     if (first_word == 0x01) {
2323     *start = ptr[1];
2324     words_scavenged = 1;
2325     } else
2326     words_scavenged = scavtab[TypeOf(object)] (start, object);
2327     } else
2328     words_scavenged = 1;
2329     } else if ((object & 3) == 0)
2330 gerd 1.38 words_scavenged = 1;
2331 rtoy 1.66 else
2332     words_scavenged = scavtab[TypeOf(object)] (start, object);
2333 gerd 1.38 #endif /* not DIRECT_SCAV */
2334 dtc 1.14
2335 rtoy 1.66 start += words_scavenged;
2336     nwords -= words_scavenged;
2337 gerd 1.38 }
2338 rtoy 1.66
2339     gc_assert(nwords == 0);
2340 dtc 1.1 }
2341 rtoy 1.66
2342 dtc 1.1
2343 cwang 1.55 #if !(defined(i386) || defined(__x86_64))
2344 toy 1.33 /* Scavenging Interrupt Contexts */
2345    
2346     static int boxed_registers[] = BOXED_REGISTERS;
2347    
2348 rtoy 1.66 static void
2349     scavenge_interrupt_context(os_context_t * context)
2350 toy 1.33 {
2351 rtoy 1.66 int i;
2352 rtoy 1.69 unsigned long pc_code_offset;
2353 rtoy 1.66
2354 toy 1.33 #ifdef reg_LIP
2355 rtoy 1.66 unsigned long lip;
2356     unsigned long lip_offset;
2357     int lip_register_pair;
2358 toy 1.33 #endif
2359 rtoy 1.68 #ifdef reg_LR
2360     unsigned long lr_code_offset;
2361     #endif
2362     #ifdef reg_CTR
2363     unsigned long ctr_code_offset;
2364     #endif
2365 toy 1.33 #ifdef SC_NPC
2366 rtoy 1.66 unsigned long npc_code_offset;
2367 toy 1.33 #endif
2368    
2369     #ifdef reg_LIP
2370 rtoy 1.66 /* Find the LIP's register pair and calculate it's offset */
2371     /* before we scavenge the context. */
2372 toy 1.33
2373 rtoy 1.66 /*
2374     * I (RLT) think this is trying to find the boxed register that is
2375     * closest to the LIP address, without going past it. Usually, it's
2376     * reg_CODE or reg_LRA. But sometimes, nothing can be found.
2377     */
2378     lip = SC_REG(context, reg_LIP);
2379     lip_offset = 0x7FFFFFFF;
2380     lip_register_pair = -1;
2381     for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
2382     unsigned long reg;
2383     long offset;
2384     int index;
2385    
2386     index = boxed_registers[i];
2387     reg = SC_REG(context, index);
2388     if (Pointerp(reg) && PTR(reg) <= lip) {
2389     offset = lip - reg;
2390     if (offset < lip_offset) {
2391     lip_offset = offset;
2392     lip_register_pair = index;
2393     }
2394     }
2395 toy 1.33 }
2396     #endif /* reg_LIP */
2397    
2398 rtoy 1.69 /*
2399     * Compute the PC's offset from the start of the CODE
2400     * register.
2401     */
2402 rtoy 1.66 pc_code_offset = SC_PC(context) - SC_REG(context, reg_CODE);
2403 toy 1.33 #ifdef SC_NPC
2404 rtoy 1.66 npc_code_offset = SC_NPC(context) - SC_REG(context, reg_CODE);
2405 toy 1.33 #endif /* SC_NPC */
2406    
2407 rtoy 1.68 #ifdef reg_LR
2408     lr_code_offset = SC_REG(context, reg_LR) - SC_REG(context, reg_CODE);
2409     #endif
2410     #ifdef reg_CTR
2411     ctr_code_offset = SC_REG(context, reg_CTR) - SC_REG(context, reg_CODE);
2412     #endif
2413 rtoy 1.75
2414 rtoy 1.66 /* Scanvenge all boxed registers in the context. */
2415     for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
2416     int index;
2417     lispobj foo;
2418    
2419     index = boxed_registers[i];
2420     foo = SC_REG(context, index);
2421     scavenge(&foo, 1);
2422     SC_REG(context, index) = foo;
2423    
2424     scavenge(&(SC_REG(context, index)), 1);
2425 toy 1.33 }
2426    
2427     #ifdef reg_LIP
2428 rtoy 1.66 /* Fix the LIP */
2429 toy 1.33
2430 rtoy 1.66 /*
2431     * But what happens if lip_register_pair is -1? SC_REG on Solaris
2432     * (see solaris_register_address in solaris-os.c) will return
2433     * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
2434     * that what we really want? My guess is that that is not what we
2435     * want, so if lip_register_pair is -1, we don't touch reg_LIP at
2436     * all. But maybe it doesn't really matter if LIP is trashed?
2437     */
2438     if (lip_register_pair >= 0) {
2439     SC_REG(context, reg_LIP) =
2440     SC_REG(context, lip_register_pair) + lip_offset;
2441 toy 1.33 }
2442     #endif /* reg_LIP */
2443 rtoy 1.66
2444     /* Fix the PC if it was in from space */
2445 rtoy 1.69 if (from_space_p(SC_PC(context))) {
2446     SC_PC(context) = SC_REG(context, reg_CODE) + pc_code_offset;
2447     }
2448 toy 1.33 #ifdef SC_NPC
2449 rtoy 1.69 if (from_space_p(SC_NPC(context))) {
2450 rtoy 1.66 SC_NPC(context) = SC_REG(context, reg_CODE) + npc_code_offset;
2451 rtoy 1.69 }
2452 toy 1.33 #endif /* SC_NPC */
2453 rtoy 1.68
2454     #ifdef reg_LR
2455 rtoy 1.69 if (from_space_p(SC_REG(context, reg_LR))) {
2456     SC_REG(context, reg_LR) = SC_REG(context, reg_CODE) + lr_code_offset;
2457 rtoy 1.68 }
2458     #endif
2459     #ifdef reg_CTR
2460 rtoy 1.69 if (from_space_p(SC_REG(context, reg_CTR))) {
2461     SC_REG(context, reg_CTR) = SC_REG(context, reg_CODE) + ctr_code_offset;
2462 rtoy 1.68 }
2463     #endif
2464 toy 1.33 }
2465    
2466 rtoy 1.66 void
2467     scavenge_interrupt_contexts(void)
2468 toy 1.33 {
2469 rtoy 1.66 int i, index;
2470     os_context_t *context;
2471 toy 1.33
2472 toy 1.40 #ifdef PRINTNOISE
2473 rtoy 1.66 printf("Scavenging interrupt contexts ...\n");
2474 toy 1.40 #endif
2475    
2476 rtoy 1.66 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX));
2477 toy 1.33
2478     #if defined(DEBUG_PRINT_CONTEXT_INDEX)
2479 rtoy 1.66 printf("Number of active contexts: %d\n", index);
2480 toy 1.33 #endif
2481    
2482 rtoy 1.66 for (i = 0; i < index; i++) {
2483     context = lisp_interrupt_contexts[i];
2484     scavenge_interrupt_context(context);
2485 toy 1.33 }
2486     }
2487     #endif
2488    
2489 dtc 1.1 /* Code and Code-Related Objects */
2490    
2491 toy 1.33 /*
2492     * Aargh! Why is SPARC so different here? What is the advantage of
2493     * making it different from all the other ports?
2494     */
2495 cshapiro 1.87 #if defined(sparc) || (defined(DARWIN) && defined(__ppc__))
2496 toy 1.33 #define RAW_ADDR_OFFSET 0
2497     #else
2498 dtc 1.14 #define RAW_ADDR_OFFSET (6 * sizeof(lispobj) - type_FunctionPointer)
2499 toy 1.33 #endif
2500 dtc 1.1
2501     static lispobj trans_function_header(lispobj object);
2502     static lispobj trans_boxed(lispobj object);
2503    
2504     #if DIRECT_SCAV
2505 rtoy 1.66 static int
2506     scav_function_pointer(lispobj * where, lispobj object)
2507 dtc 1.1 {
2508 rtoy 1.66 gc_assert(Pointerp(object));
2509 dtc 1.1
2510 rtoy 1.66 if (from_space_p(object)) {
2511     lispobj first, *first_pointer;
2512 dtc 1.14
2513 rtoy 1.66 /*
2514     * Object is a pointer into from space - check to see if it has
2515     * been forwarded.
2516     */
2517     first_pointer = (lispobj *) PTR(object);
2518     first = *first_pointer;
2519 dtc 1.14
2520 rtoy 1.66 if (first == 0x01) {
2521     /* Forwarded */
2522     *where = first_pointer[1];
2523     return 1;
2524     } else {
2525     int type;
2526     lispobj copy;
2527 dtc 1.14
2528 rtoy 1.66 /*
2529     * Must transport object -- object may point to either a
2530     * function header, a closure function header, or to a closure
2531     * header.
2532     */
2533 dtc 1.14
2534 rtoy 1.66 type = TypeOf(first);
2535     switch (type) {
2536     case type_FunctionHeader:
2537     case type_ClosureFunctionHeader:
2538     copy = trans_function_header(object);
2539     break;
2540     default:
2541     copy = trans_boxed(object);
2542     break;
2543     }
2544 dtc 1.14
2545 rtoy 1.66 if (copy != object) {
2546     /* Set forwarding pointer. */
2547     first_pointer[0] = 0x01;
2548     first_pointer[1] = copy;
2549     }
2550 dtc 1.14
2551 rtoy 1.66 first = copy;
2552     }
2553 dtc 1.14
2554 rtoy 1.66 gc_assert(Pointerp(first));
2555     gc_assert(!from_space_p(first));
2556 dtc 1.14
2557 rtoy 1.66 *where = first;
2558     }
2559     return 1;
2560 dtc 1.1 }
2561     #else
2562 rtoy 1.66 static int
2563     scav_function_pointer(lispobj * where, lispobj object)
2564 dtc 1.1 {
2565 rtoy 1.66 lispobj *first_pointer;
2566     lispobj copy;
2567    
2568     gc_assert(Pointerp(object));
2569    
2570     /* Object is a pointer into from space - no a FP. */
2571     first_pointer = (lispobj *) PTR(object);
2572 dtc 1.1
2573 rtoy 1.66 /*
2574     * Must transport object -- object may point to either a function
2575     * header, a closure function header, or to a closure header.
2576     */
2577 dtc 1.14
2578 rtoy 1.66 switch (TypeOf(*first_pointer)) {
2579     case type_FunctionHeader:
2580     case type_ClosureFunctionHeader:
2581     copy = trans_function_header(object);
2582     break;
2583     default:
2584     copy = trans_boxed(object);
2585     break;
2586     }
2587 dtc 1.14
2588 rtoy 1.66 if (copy != object) {
2589     /* Set forwarding pointer */
2590     first_pointer[0] = 0x01;
2591     first_pointer[1] = copy;
2592     }
2593 dtc 1.14
2594 rtoy 1.66 gc_assert(Pointerp(copy));
2595     gc_assert(!from_space_p(copy));
2596 dtc 1.1
2597 rtoy 1.66 *where = copy;
2598 dtc 1.14
2599 rtoy 1.66 return 1;
2600 dtc 1.1 }
2601     #endif
2602    
2603 cwang 1.55 #if defined(i386) || defined(__x86_64)
2604 dtc 1.14 /*
2605 cwang 1.54 * Scan an x86 compiled code object, looking for possible fixups that
2606 dtc 1.14 * have been missed after a move.
2607     *
2608     * Two types of fixups are needed:
2609     * 1. Absolution fixups to within the code object.
2610     * 2. Relative fixups to outside the code object.
2611     *
2612     * Currently only absolution fixups to the constant vector, or to the
2613     * code area are checked.
2614     */
2615 rtoy 1.66 void
2616     sniff_code_object(struct code *code, unsigned displacement)
2617 dtc 1.1 {
2618 rtoy 1.66 int nheader_words, ncode_words, nwords;
2619     void *p;
2620     void *constants_start_addr, *constants_end_addr;
2621     void *code_start_addr, *code_end_addr;
2622     int fixup_found = 0;
2623 dtc 1.14
2624 rtoy 1.66 if (!check_code_fixups)
2625     return;
2626 dtc 1.3
2627 rtoy 1.66 /*
2628     * It's ok if it's byte compiled code. The trace table offset will
2629     * be a fixnum if it's x86 compiled code - check.
2630     */
2631     if (code->trace_table_offset & 0x3) {
2632 dtc 1.14 #if 0
2633 rtoy 1.66 fprintf(stderr, "*** Sniffing byte compiled code object at %x.\n",
2634     code);
2635 dtc 1.14 #endif
2636 rtoy 1.66 return;
2637     }
2638    
2639     /* Else it's x86 machine code. */
2640    
2641     ncode_words = fixnum_value(code->code_size);
2642     nheader_words = HeaderValue(*(lispobj *) code);
2643     nwords = ncode_words + nheader_words;
2644    
2645     constants_start_addr = (void *) code + 5 * sizeof(lispobj);
2646     constants_end_addr = (void *) code + nheader_words * sizeof(lispobj);
2647     code_start_addr = (void *) code + nheader_words * sizeof(lispobj);
2648     code_end_addr = (void *) code + nwords * sizeof(lispobj);
2649    
2650     /* Work through the unboxed code. */
2651     for (p = code_start_addr; p < code_end_addr; p++) {
2652     void *data = *(void **) p;
2653     unsigned d1 = *((unsigned char *) p - 1);
2654     unsigned d2 = *((unsigned char *) p - 2);
2655     unsigned d3 = *((unsigned char *) p - 3);
2656     unsigned d4 = *((unsigned char *) p - 4);
2657     unsigned d5 = *((unsigned char *) p - 5);
2658     unsigned d6 = *((unsigned char *) p - 6);
2659    
2660     /*
2661     * Check for code references.
2662     *
2663     * Check for a 32 bit word that looks like an absolute reference
2664     * to within the code adea of the code object.
2665     */
2666     if (data >= code_start_addr - displacement
2667     && data < code_end_addr - displacement) {
2668     /* Function header */
2669     if (d4 == 0x5e
2670     && ((unsigned long) p - 4 -
2671     4 * HeaderValue(*((unsigned long *) p - 1))) ==
2672     (unsigned long) code) {
2673     /* Skip the function header */
2674     p += 6 * 4 - 4 - 1;
2675     continue;
2676     }
2677     /* Push imm32 */
2678     if (d1 == 0x68) {
2679     fixup_found = 1;
2680     fprintf(stderr,
2681     "Code ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2682     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2683     (unsigned long) data);
2684     fprintf(stderr, "*** Push $0x%.8lx\n", (unsigned long) data);
2685     }
2686     /* Mov [reg-8],imm32 */
2687     if (d3 == 0xc7
2688     && (d2 == 0x40 || d2 == 0x41 || d2 == 0x42 || d2 == 0x43
2689     || d2 == 0x45 || d2 == 0x46 || d2 == 0x47)
2690     && d1 == 0xf8) {
2691     fixup_found = 1;
2692     fprintf(stderr,
2693     "Code ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2694     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2695     (unsigned long) data);
2696     fprintf(stderr, "*** Mov [reg-8],$0x%.8lx\n",
2697     (unsigned long) data);
2698     }
2699     /* Lea reg, [disp32] */
2700     if (d2 == 0x8d && (d1 & 0xc7) == 5) {
2701     fixup_found = 1;
2702     fprintf(stderr,
2703     "Code ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2704     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2705     (unsigned long) data);
2706     fprintf(stderr, "*** Lea reg,[$0x%.8lx]\n",
2707     (unsigned long) data);
2708     }
2709     }
2710    
2711     /*
2712     * Check for constant references.
2713     *
2714     * Check for a 32 bit word that looks like an absolution reference
2715     * to within the constant vector. Constant references will be
2716     * aligned.
2717     */
2718     if (data >= constants_start_addr - displacement
2719     && data < constants_end_addr - displacement
2720     && ((unsigned long) data & 0x3) == 0) {
2721     /* Mov eax,m32 */
2722     if (d1 == 0xa1) {
2723     fixup_found = 1;
2724     fprintf(stderr,
2725     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2726     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2727     (unsigned long) data);
2728     fprintf(stderr, "*** Mov eax,0x%.8lx\n", (unsigned long) data);
2729     }
2730    
2731     /* Mov m32,eax */
2732     if (d1 == 0xa3) {
2733     fixup_found = 1;
2734     fprintf(stderr,
2735     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2736     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2737     (unsigned long) data);
2738     fprintf(stderr, "*** Mov 0x%.8lx,eax\n", (unsigned long) data);
2739     }
2740    
2741     /* Cmp m32,imm32 */
2742     if (d1 == 0x3d && d2 == 0x81) {
2743     fixup_found = 1;
2744     fprintf(stderr,
2745     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2746     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2747     (unsigned long) data);
2748     /* XX Check this */
2749     fprintf(stderr, "*** Cmp 0x%.8lx,immed32\n",
2750     (unsigned long) data);
2751     }
2752    
2753     /* Check for a mod=00, r/m=101 byte. */
2754     if ((d1 & 0xc7) == 5) {
2755     /* Cmp m32,reg */
2756     if (d2 == 0x39) {
2757     fixup_found = 1;
2758     fprintf(stderr,
2759     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2760     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2761     (unsigned long) data);
2762     fprintf(stderr, "*** Cmp 0x%.8lx,reg\n",
2763     (unsigned long) data);
2764     }
2765     /* Cmp reg32,m32 */
2766     if (d2 == 0x3b) {
2767     fixup_found = 1;
2768     fprintf(stderr,
2769     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2770     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2771     (unsigned long) data);
2772     fprintf(stderr, "*** Cmp reg32,0x%.8lx\n",
2773     (unsigned long) data);
2774     }
2775     /* Mov m32,reg32 */
2776     if (d2 == 0x89) {
2777     fixup_found = 1;
2778     fprintf(stderr,
2779     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2780     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2781     (unsigned long) data);
2782     fprintf(stderr, "*** Mov 0x%.8lx,reg32\n",
2783     (unsigned long) data);
2784     }
2785     /* Mov reg32,m32 */
2786     if (d2 == 0x8b) {
2787     fixup_found = 1;
2788     fprintf(stderr,
2789     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2790     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2791     (unsigned long) data);
2792     fprintf(stderr, "*** Mov reg32,0x%.8lx\n",
2793     (unsigned long) data);
2794     }
2795     /* Lea reg32,m32 */
2796     if (d2 == 0x8d) {
2797     fixup_found = 1;
2798     fprintf(stderr,
2799     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2800     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2801     (unsigned long) data);
2802     fprintf(stderr, "*** Lea reg32,0x%.8lx\n",
2803     (unsigned long) data);
2804     }
2805     }
2806     }
2807     }
2808    
2809     /* If anything was found print out some info. on the code object. */
2810     if (fixup_found) {
2811     fprintf(stderr,
2812     "*** Compiled code object at %lx: header_words=%d code_words=%d .\n",
2813     (unsigned long) code, nheader_words, ncode_words);
2814     fprintf(stderr,
2815     "*** Const. start = %lx; end= %lx; Code start = %lx; end = %lx\n",
2816     (unsigned long) constants_start_addr,
2817     (unsigned long) constants_end_addr,
2818     (unsigned long) code_start_addr, (unsigned long) code_end_addr);
2819     }
2820     }
2821 dtc 1.1
2822 rtoy 1.66 static void
2823     apply_code_fixups(struct code *old_code, struct code *new_code)
2824     {
2825     int nheader_words, ncode_words, nwords;
2826     void *constants_start_addr, *constants_end_addr;
2827     void *code_start_addr, *code_end_addr;
2828     lispobj fixups = NIL;
2829     unsigned long displacement =
2830 dtc 1.1
2831 rtoy 1.66 (unsigned long) new_code - (unsigned long) old_code;
2832     struct vector *fixups_vector;
2833 dtc 1.14
2834     /*
2835 rtoy 1.66 * It's ok if it's byte compiled code. The trace table offset will
2836     * be a fixnum if it's x86 compiled code - check.
2837 dtc 1.14 */
2838 rtoy 1.66 if (new_code->trace_table_offset & 0x3) {
2839     #if 0
2840     fprintf(stderr, "*** Byte compiled code object at %x.\n", new_code);
2841     #endif
2842     return;
2843 dtc 1.1 }
2844    
2845 rtoy 1.66 /* Else it's x86 machine code. */
2846     ncode_words = fixnum_value(new_code->code_size);
2847     nheader_words = HeaderValue(*(lispobj *) new_code);
2848     nwords = ncode_words + nheader_words;
2849 dtc 1.14 #if 0
2850 rtoy 1.66 fprintf(stderr,
2851     "*** Compiled code object at %x: header_words=%d code_words=%d .\n",
2852     new_code, nheader_words, ncode_words);
2853     #endif
2854     constants_start_addr = (void *) new_code + 5 * sizeof(lispobj);
2855     constants_end_addr = (void *) new_code + nheader_words * sizeof(lispobj);
2856     code_start_addr = (void *) new_code + nheader_words * sizeof(lispobj);
2857     code_end_addr = (void *) new_code + nwords * sizeof(lispobj);
2858     #if 0
2859     fprintf(stderr,
2860     "*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
2861     constants_start_addr, constants_end_addr, code_start_addr,
2862     code_end_addr);
2863 dtc 1.14 #endif
2864 dtc 1.1
2865 rtoy 1.66 /*
2866     * The first constant should be a pointer to the fixups for this
2867     * code objects - Check.
2868     */
2869     fixups = new_code->constants[0];
2870    
2871     /*
2872     * It will be 0 or the unbound-marker if there are no fixups, and
2873     * will be an other pointer if it is valid.
2874     */
2875     if (fixups == 0 || fixups == type_UnboundMarker || !Pointerp(fixups)) {
2876     /* Check for possible errors. */
2877     if (check_code_fixups)
2878     sniff_code_object(new_code, displacement);
2879 dtc 1.14
2880     #if 0
2881 rtoy 1.66 fprintf(stderr, "Fixups for code object not found!?\n");
2882     fprintf(stderr,
2883     "*** Compiled code object at %x: header_words=%d code_words=%d .\n",
2884     new_code, nheader_words, ncode_words);
2885     fprintf(stderr,
2886     "*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
2887     constants_start_addr, constants_end_addr, code_start_addr,
2888     code_end_addr);
2889 dtc 1.14 #endif
2890 rtoy 1.66 return;
2891     }
2892 dtc 1.1
2893 rtoy 1.66 fixups_vector = (struct vector *) PTR(fixups);
2894 dtc 1.1
2895 rtoy 1.66 /* Could be pointing to a forwarding pointer. */
2896     if (Pointerp(fixups) && find_page_index((void *) fixups_vector) != -1
2897     && fixups_vector->header == 0x01) {
2898 dtc 1.19 #if 0
2899 rtoy 1.66 fprintf(stderr, "* FF\n");
2900 dtc 1.19 #endif
2901 rtoy 1.66 /* If so then follow it. */
2902     fixups_vector = (struct vector *) PTR((lispobj) fixups_vector->length);
2903     }
2904 dtc 1.14 #if 0
2905 rtoy 1.66 fprintf(stderr, "Got the fixups\n");
2906 dtc 1.14 #endif
2907 dtc 1.1
2908 rtoy 1.66 if (TypeOf(fixups_vector->header) == type_SimpleArrayUnsignedByte32) {
2909 dtc 1.14 /*
2910 rtoy 1.66 * Got the fixups for the code block. Now work through the
2911     * vector, and apply a fixup at each address.
2912 dtc 1.14 */
2913 rtoy 1.66 int length = fixnum_value(fixups_vector->length);
2914     int i;
2915    
2916     for (i = 0; i < length; i++) {
2917     unsigned offset = fixups_vector->data[i];
2918    
2919     /* Now check the current value of offset. */
2920     unsigned long old_value =
2921     *(unsigned long *) ((unsigned long) code_start_addr + offset);
2922    
2923     /*
2924     * If it's within the old_code object then it must be an
2925     * absolute fixup (relative ones are not saved).
2926     */
2927     if (old_value >= (unsigned long) old_code
2928     && old_value <
2929     (unsigned long) old_code + nwords * sizeof(lispobj))
2930     /* So add the dispacement. */
2931     *(unsigned long *) ((unsigned long) code_start_addr + offset) =
2932     old_value + displacement;
2933     else
2934     /*
2935     * It is outside the old code object so it must be a relative
2936     * fixup (absolute fixups are not saved). So subtract the
2937     * displacement.
2938     */
2939     *(unsigned long *) ((unsigned long) code_start_addr + offset) =
2940     old_value - displacement;
2941     }
2942 dtc 1.1 }
2943 dtc 1.14
2944 rtoy 1.66 /* Check for possible errors. */
2945     if (check_code_fixups)
2946     sniff_code_object(new_code, displacement);
2947 dtc 1.1 }
2948 toy 1.33 #endif
2949 dtc 1.1
2950 rtoy 1.66 static struct code *
2951     trans_code(struct code *code)
2952 dtc 1.1 {
2953 rtoy 1.66 struct code *new_code;
2954     lispobj l_code, l_new_code;
2955     int nheader_words, ncode_words, nwords;
2956     unsigned long displacement;
2957     lispobj fheaderl, *prev_pointer;
2958 dtc 1.14
2959     #if 0
2960 rtoy 1.66 fprintf(stderr, "\nTransporting code object located at 0x%08x.\n",
2961     (unsigned long) code);
2962 dtc 1.14 #endif
2963    
2964 rtoy 1.66 /* If object has already been transported, just return pointer */
2965     if (*(lispobj *) code == 0x01) {
2966     return (struct code *) (((lispobj *) code)[1]);
2967 toy 1.33 }
2968 dtc 1.14
2969    
2970 rtoy 1.66 gc_assert(TypeOf(code->header) == type_CodeHeader);
2971 dtc 1.14
2972 rtoy 1.66 /* prepare to transport the code vector */
2973     l_code = (lispobj) code | type_OtherPointer;
2974 dtc 1.14
2975 rtoy 1.66 ncode_words = fixnum_value(code->code_size);
2976     nheader_words = HeaderValue(code->header);
2977     nwords = ncode_words + nheader_words;
2978     nwords = CEILING(nwords, 2);
2979 dtc 1.1
2980 rtoy 1.66 l_new_code = copy_large_object(l_code, nwords);
2981     new_code = (struct code *) PTR(l_new_code);
2982    
2983     /* May not have been moved. */
2984     if (new_code == code)
2985     return new_code;
2986 dtc 1.14
2987 rtoy 1.66 displacement = l_new_code - l_code;
2988 dtc 1.14
2989     #if 0
2990 rtoy 1.66 fprintf(stderr, "Old code object at 0x%08x, new code object at 0x%08x.\n",
2991     (unsigned long) code, (unsigned long) new_code);
2992     fprintf(stderr, "Code object is %d words long.\n", nwords);
2993 dtc 1.14 #endif
2994    
2995 rtoy 1.66 /* set forwarding pointer */
2996     ((lispobj *) code)[0] = 0x01;
2997     ((lispobj *) code)[1] = l_new_code;
2998 dtc 1.14
2999 rtoy 1.66 /*
3000     * Set forwarding pointers for all the function headers in the code
3001     * object; also fix all self pointers.
3002     */
3003 dtc 1.14
3004 rtoy 1.66 fheaderl = code->entry_points;
3005     prev_pointer = &new_code->entry_points;
3006 dtc 1.14
3007 rtoy 1.66 while (fheaderl != NIL) {
3008     struct function *fheaderp, *nfheaderp;
3009     lispobj nfheaderl;
3010 dtc 1.14
3011 rtoy 1.66 fheaderp = (struct function *) PTR(fheaderl);
3012     gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
3013 dtc 1.14
3014 rtoy 1.66 /*
3015     * Calcuate the new function pointer and the new function header.
3016     */
3017     nfheaderl = fheaderl + displacement;
3018     nfheaderp = (struct function *) PTR(nfheaderl);
3019 dtc 1.14
3020 rtoy 1.66 /* set forwarding pointer */
3021     ((lispobj *) fheaderp)[0] = 0x01;
3022     ((lispobj *) fheaderp)[1] = nfheaderl;
3023 dtc 1.14
3024 rtoy 1.66 /* Fix self pointer */
3025     nfheaderp->self = nfheaderl + RAW_ADDR_OFFSET;
3026 dtc 1.14
3027 rtoy 1.66 *prev_pointer = nfheaderl;
3028 dtc 1.14
3029 rtoy 1.66 fheaderl = fheaderp->next;
3030     prev_pointer = &nfheaderp->next;
3031     }
3032 dtc 1.1
3033 dtc 1.14 #if 0
3034 rtoy 1.66 sniff_code_object(new_code, displacement);
3035 dtc 1.14 #endif
3036 cwang 1.55 #if defined(i386) || defined(__x86_64)
3037 rtoy 1.66 apply_code_fixups(code, new_code);
3038 toy 1.33 #else
3039 rtoy 1.66 /* From gc.c */
3040 toy 1.33 #ifndef MACH
3041 rtoy 1.66 os_flush_icache((os_vm_address_t) (((int *) new_code) + nheader_words),
3042     ncode_words * sizeof(int));
3043 toy 1.33 #endif
3044     #endif
3045 dtc 1.14
3046 rtoy 1.66 return new_code;
3047 dtc 1.1 }
3048    
3049 rtoy 1.66 static int
3050     scav_code_header(lispobj * where, lispobj object)
3051 dtc 1.1 {
3052 rtoy 1.66 struct code *code;
3053     int nheader_words, ncode_words, nwords;
3054     lispobj fheaderl;
3055     struct function *fheaderp;
3056    
3057     code = (struct code *) where;
3058     ncode_words = fixnum_value(code->code_size);
3059     nheader_words = HeaderValue(object);
3060     nwords = ncode_words + nheader_words;
3061     nwords = CEILING(nwords, 2);
3062 dtc 1.14
3063 rtoy 1.66 /* Scavenge the boxed section of the code data block */
3064     scavenge(where + 1, nheader_words - 1);
3065 dtc 1.1
3066 rtoy 1.66 /*
3067     * Scavenge the boxed section of each function object in the code
3068     * data block
3069     */
3070     fheaderl = code->entry_points;
3071     while (fheaderl != NIL) {
3072     fheaderp = (struct function *) PTR(fheaderl);
3073     gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
3074 dtc 1.1
3075 rtoy 1.66 scavenge(&fheaderp->name, 1);
3076     scavenge(&fheaderp->arglist, 1);
3077     scavenge(&fheaderp->type, 1);
3078 dtc 1.14
3079 rtoy 1.66 fheaderl = fheaderp->next;
3080     }
3081 dtc 1.14
3082 rtoy 1.66 return nwords;
3083 dtc 1.1 }
3084    
3085 rtoy 1.66 static lispobj
3086     trans_code_header(lispobj object)
3087 dtc 1.1 {
3088 rtoy 1.66 struct code *ncode;
3089 dtc 1.1
3090 rtoy 1.66 ncode = trans_code((struct code *) PTR(object));
3091     return (lispobj) ncode | type_OtherPointer;
3092 dtc 1.1 }
3093    
3094 rtoy 1.66 static int
3095     size_code_header(lispobj * where)
3096 dtc 1.1 {
3097 rtoy 1.66 struct code *code;
3098     int nheader_words, ncode_words, nwords;
3099 dtc 1.1
3100 rtoy 1.66 code = (struct code *) where;
3101 dtc 1.14
3102 rtoy 1.66 ncode_words = fixnum_value(code->code_size);
3103     nheader_words = HeaderValue(code->header);
3104     nwords = ncode_words + nheader_words;
3105     nwords = CEILING(nwords, 2);
3106 dtc 1.1
3107 rtoy 1.66 return nwords;
3108 dtc 1.1 }
3109    
3110 cwang 1.55 #if !(defined(i386) || defined(__x86_64))
3111 dtc 1.1
3112 rtoy 1.66 static int
3113     scav_return_pc_header(lispobj * where, lispobj object)
3114 dtc 1.1 {
3115     fprintf(stderr, "GC lossage. Should not be scavenging a ");
3116     fprintf(stderr, "Return PC Header.\n");
3117 gerd 1.32 fprintf(stderr, "where = 0x%08lx, object = 0x%08lx",
3118 dtc 1.1 (unsigned long) where, (unsigned long) object);
3119     lose(NULL);
3120     return 0;
3121     }
3122    
3123 gerd 1.38 #endif /* not i386 */
3124    
3125 rtoy 1.66 static lispobj
3126     trans_return_pc_header(lispobj object)
3127 dtc 1.1 {
3128 rtoy 1.66 struct function *return_pc;
3129     unsigned long offset;
3130     struct code *code, *ncode;
3131 dtc 1.1
3132 rtoy 1.66 return_pc = (struct function *) PTR(object);
3133     offset = HeaderValue(return_pc->header) * sizeof(lispobj);
3134 dtc 1.1
3135 rtoy 1.66 /* Transport the whole code object */
3136     code = (struct code *) ((unsigned long) return_pc - offset);
3137 dtc 1.14
3138 rtoy 1.66 ncode = trans_code(code);
3139    
3140     return ((lispobj) ncode + offset) | type_OtherPointer;
3141 dtc 1.1 }
3142    
3143 dtc 1.14 /*
3144     * On the 386, closures hold a pointer to the raw address instead of
3145     * the function object.
3146     */
3147 cwang 1.55 #if defined(i386) || defined(__x86_64)
3148 gerd 1.38
3149 rtoy 1.66 static int
3150     scav_closure_header(lispobj * where, lispobj object)
3151 dtc 1.1 {
3152 rtoy 1.66 struct closure *closure;
3153     lispobj fun;
3154 dtc 1.1
3155 rtoy 1.66 closure = (struct closure *) where;
3156     fun = closure->function - RAW_ADDR_OFFSET;
3157     scavenge(&fun, 1);
3158     /* The function may have moved so update the raw address. But don't
3159     write unnecessarily. */
3160     if (closure->function != fun + RAW_ADDR_OFFSET)
3161     closure->function = fun + RAW_ADDR_OFFSET;
3162 dtc 1.14
3163 rtoy 1.66 return 2;
3164 dtc 1.1 }
3165 gerd 1.38
3166     #endif /* i386 */
3167    
3168 cwang 1.55 #if !(defined(i386) || defined(__x86_64))
3169 dtc 1.1
3170 rtoy 1.66 static int
3171     scav_function_header(lispobj * where, lispobj object)
3172 dtc 1.1 {
3173     fprintf(stderr, "GC lossage. Should not be scavenging a ");
3174     fprintf(stderr, "Function Header.\n");
3175 gerd 1.32 fprintf(stderr, "where = 0x%08lx, object = 0x%08lx",
3176 dtc 1.1 (unsigned long) where, (unsigned long) object);
3177     lose(NULL);
3178     return 0;
3179     }
3180    
3181 gerd 1.38 #endif /* not i386 */
3182    
3183 rtoy 1.66 static lispobj
3184     trans_function_header(lispobj object)
3185 dtc 1.1 {
3186 rtoy 1.66 struct function *fheader;
3187     unsigned long offset;
3188     struct code *code, *ncode;
3189 dtc 1.14
3190 rtoy 1.66 fheader = (struct function *) PTR(object);
3191     offset = HeaderValue(fheader->header) * sizeof(lispobj);
3192 dtc 1.14
3193 rtoy 1.66 /* Transport the whole code object */
3194     code = (struct code *) ((unsigned long) fheader - offset);
3195     ncode = trans_code(code);
3196 dtc 1.14
3197 rtoy 1.66 return ((lispobj) ncode + offset) | type_FunctionPointer;
3198 dtc 1.1 }
3199 rtoy 1.66
3200 dtc 1.1
3201     /* Instances */
3202    
3203     #if DIRECT_SCAV
3204 rtoy 1.66 static int
3205     scav_instance_pointer(lispobj * where, lispobj object)
3206 dtc 1.1 {
3207 rtoy 1.66 if (from_space_p(object)) {
3208     lispobj first, *first_pointer;
3209 dtc 1.14
3210 rtoy 1.66 /*
3211     * object is a pointer into from space. check to see if it has
3212     * been forwarded
3213     */
3214     first_pointer = (lispobj *) PTR(object);
3215     first = *first_pointer;
3216 dtc 1.14
3217 rtoy 1.66 if (first == 0x01)
3218     /* Forwarded. */
3219     first = first_pointer[1];
3220     else {
3221     first = trans_boxed(object);
3222     gc_assert(first != object);
3223     /* Set forwarding pointer */
3224     first_pointer[0] = 0x01;
3225     first_pointer[1] = first;
3226     }
3227     *where = first;
3228 dtc 1.1 }
3229 rtoy 1.66 return 1;
3230 dtc 1.1 }
3231     #else
3232 rtoy 1.66 static int
3233     scav_instance_pointer(lispobj * where, lispobj object)
3234 dtc 1.1 {
3235 rtoy 1.66 lispobj copy, *first_pointer;
3236 dtc 1.14
3237 rtoy 1.66 /* Object is a pointer into from space - not a FP */
3238     copy = trans_boxed(object);
3239 dtc 1.1
3240 rtoy 1.66 gc_assert(copy != object);
3241 dtc 1.1
3242 rtoy 1.66 first_pointer = (lispobj *) PTR(object);
3243 dtc 1.14
3244 rtoy 1.66 /* Set forwarding pointer. */
3245     first_pointer[0] = 0x01;
3246     first_pointer[1] = copy;
3247     *where = copy;
3248 dtc 1.1
3249 rtoy 1.66 return 1;
3250 dtc 1.1 }
3251     #endif
3252 rtoy 1.66
3253 dtc 1.1
3254     /* Lists and Conses */
3255    
3256     static lispobj trans_list(lispobj object);
3257    
3258     #if DIRECT_SCAV
3259 rtoy 1.66 static int
3260     scav_list_pointer(lispobj * where, lispobj object)
3261 dtc 1.1 {
3262 rtoy 1.66 gc_assert(Pointerp(object));
3263 dtc 1.1
3264 rtoy 1.66 if (from_space_p(object)) {
3265     lispobj first, *first_pointer;
3266 dtc 1.14
3267 rtoy 1.66 /*
3268     * Object is a pointer into from space - check to see if it has
3269     * been forwarded.
3270     */
3271     first_pointer = (lispobj *) PTR(object);
3272     first = *first_pointer;
3273 dtc 1.14
3274 rtoy 1.66 if (first == 0x01)
3275     /* Forwarded. */
3276     first = first_pointer[1];
3277     else {
3278     first = trans_list(object);
3279    
3280     /* Set forwarding pointer */
3281     first_pointer[0] = 0x01;
3282     first_pointer[1] = first;
3283     }
3284 dtc 1.14
3285 rtoy 1.66 gc_assert(Pointerp(first));
3286     gc_assert(!from_space_p(first));
3287     *where = first;
3288 dtc 1.1 }
3289 rtoy 1.66 return 1;
3290 dtc 1.1 }
3291     #else
3292 rtoy 1.66 static int
3293     scav_list_pointer(lispobj * where, lispobj object)
3294 dtc 1.1 {
3295 rtoy 1.66 lispobj first, *first_pointer;
3296 dtc 1.1
3297 rtoy 1.66 gc_assert(Pointerp(object));
3298 dtc 1.1
3299 rtoy 1.66 /* Object is a pointer into from space - not FP */
3300 dtc 1.14
3301 rtoy 1.66 first = trans_list(object);
3302     gc_assert(first != object);
3303 dtc 1.1
3304 rtoy 1.66 first_pointer = (lispobj *) PTR(object);
3305 dtc 1.1
3306 rtoy 1.66 /* Set forwarding pointer */
3307     first_pointer[0] = 0x01;
3308     first_pointer[1] = first;
3309 dtc 1.1
3310 rtoy 1.66 gc_assert(Pointerp(first));
3311     gc_assert(!from_space_p(first));
3312     *where = first;
3313     return 1;
3314 dtc 1.1 }
3315     #endif
3316    
3317 rtoy 1.66 static lispobj
3318     trans_list(lispobj object)
3319 dtc 1.1 {
3320 rtoy 1.66 lispobj new_list_pointer;
3321     struct cons *cons, *new_cons;
3322     lispobj cdr;
3323 dtc 1.1
3324 rtoy 1.66 gc_assert(from_space_p(object));
3325 dtc 1.1
3326 rtoy 1.66 cons = (struct cons *) PTR(object);
3327 dtc 1.14
3328 rtoy 1.66 /* copy 'object' */
3329     new_cons = (struct cons *) gc_quick_alloc(sizeof(struct cons));
3330 dtc 1.1
3331 rtoy 1.66 new_cons->car = cons->car;
3332     new_cons->cdr = cons->cdr; /* updated later */
3333     new_list_pointer = (lispobj) new_cons | LowtagOf(object);
3334    
3335     /* Grab the cdr before it is clobbered */
3336     cdr = cons->cdr;
3337 dtc 1.1
3338 rtoy 1.66 /* Set forwarding pointer (clobbers start of list). */
3339     cons->car = 0x01;
3340     cons->cdr = new_list_pointer;
3341    
3342     /* Try to linearize the list in the cdr direction to help reduce paging. */
3343     while (1) {
3344     lispobj new_cdr;
3345     struct cons *cdr_cons, *new_cdr_cons;
3346 dtc 1.1
3347 rtoy 1.66 if (LowtagOf(cdr) != type_ListPointer || !from_space_p(cdr)
3348     || *((lispobj *) PTR(cdr)) == 0x01)
3349     break;
3350 dtc 1.14
3351 rtoy 1.66 cdr_cons = (struct cons *) PTR(cdr);
3352 dtc 1.14
3353 rtoy 1.66 /* copy 'cdr' */
3354     new_cdr_cons = (struct cons *) gc_quick_alloc(sizeof(struct cons));
3355 dtc 1.14
3356 rtoy 1.66 new_cdr_cons->car = cdr_cons->car;
3357     new_cdr_cons->cdr = cdr_cons->cdr;
3358     new_cdr = (lispobj) new_cdr_cons | LowtagOf(cdr);
3359 dtc 1.14
3360 rtoy 1.66 /* Grab the cdr before it is clobbered */
3361     cdr = cdr_cons->cdr;
3362 dtc 1.14
3363 rtoy 1.66 /* Set forwarding pointer */
3364     cdr_cons->car = 0x01;
3365     cdr_cons->cdr = new_cdr;
3366 dtc 1.14
3367 rtoy 1.66 /*
3368     * Update the cdr of the last cons copied into new space to keep
3369     * the newspace scavenge from having to do it.
3370     */
3371     new_cons->cdr = new_cdr;
3372 dtc 1.14
3373 rtoy 1.66 new_cons = new_cdr_cons;
3374     }
3375 dtc 1.14
3376 rtoy 1.66 return new_list_pointer;
3377 dtc 1.1 }
3378 rtoy 1.66
3379 dtc 1.1
3380     /* Scavenging and Transporting Other Pointers */
3381    
3382     #if DIRECT_SCAV
3383 rtoy 1.66 static int
3384     scav_other_pointer(lispobj * where, lispobj object)
3385 dtc 1.1 {
3386 rtoy 1.66 gc_assert(Pointerp(object));
3387 dtc 1.1
3388 rtoy 1.66 if (from_space_p(object)) {
3389     lispobj first, *first_pointer;
3390    
3391     /*
3392     * Object is a pointer into from space. check to see if it has
3393     * been forwarded.
3394     */
3395     first_pointer = (lispobj *) PTR(object);
3396     first = *first_pointer;
3397    
3398     if (first == 0x01) {
3399     /* Forwarded. */
3400     first = first_pointer[1];
3401     *where = first;
3402     } else {
3403     first = (transother[TypeOf(first)]) (object);
3404    
3405     if (first != object) {
3406     /* Set forwarding pointer */
3407     first_pointer[0] = 0x01;
3408     first_pointer[1] = first;
3409     *where = first;
3410     }
3411     }
3412    
3413     gc_assert(Pointerp(first));
3414     gc_assert(!from_space_p(first));
3415     }
3416     return 1;
3417     }
3418     #else
3419     static int
3420     scav_other_pointer(lispobj * where, lispobj object)
3421     {
3422 dtc 1.1 lispobj first, *first_pointer;
3423 dtc 1.14
3424 rtoy 1.66 gc_assert(Pointerp(object));
3425    
3426     /* Object is a pointer into from space - not FP */
3427 dtc 1.1 first_pointer = (lispobj *) PTR(object);
3428 dtc 1.14
3429 rtoy 1.66 first = (transother[TypeOf(*first_pointer)]) (object);
3430 dtc 1.14
3431 rtoy 1.66 if (first != object) {
3432 dtc 1.1 /* Set forwarding pointer */
3433     first_pointer[0] = 0x01;
3434     first_pointer[1] = first;
3435     *where = first;
3436     }
3437 dtc 1.14
3438 dtc 1.1 gc_assert(Pointerp(first));
3439     gc_assert(!from_space_p(first));
3440    
3441 rtoy 1.66 return 1;
3442 dtc 1.1 }
3443     #endif
3444 rtoy 1.66
3445 dtc 1.1
3446     /* Immediate, Boxed, and Unboxed Objects */
3447    
3448 rtoy 1.66 static int
3449     size_pointer(lispobj * where)
3450 dtc 1.1 {
3451     return 1;
3452     }
3453    
3454 rtoy 1.66 static int
3455     scav_immediate(lispobj * where, lispobj object)
3456 dtc 1.1 {
3457     return 1;
3458     }
3459    
3460 rtoy 1.66 static lispobj
3461     trans_immediate(lispobj object)
3462 dtc 1.1 {
3463     fprintf(stderr, "GC lossage. Trying to transport an immediate!?\n");
3464     lose(NULL);
3465     return NIL;
3466     }
3467    
3468 rtoy 1.66 static int
3469     size_immediate(lispobj * where)
3470 dtc 1.1 {
3471     return 1;
3472     }
3473    
3474    
3475 rtoy 1.66 static int
3476     scav_boxed(lispobj * where, lispobj object)
3477 dtc 1.1 {
3478     return 1;
3479     }
3480    
3481 rtoy 1.66 static lispobj
3482     trans_boxed(lispobj object)
3483 dtc 1.1 {
3484 rtoy 1.66 lispobj header;
3485     unsigned long length;
3486 dtc 1.1
3487 rtoy 1.66 gc_assert(Pointerp(object));
3488 dtc 1.1
3489 rtoy 1.66 header = *((lispobj *) PTR(object));
3490     length = HeaderValue(header) + 1;
3491     length = CEILING(length, 2);
3492 dtc 1.1
3493 rtoy 1.66 return copy_object(object, length);
3494 dtc 1.1 }
3495    
3496 rtoy 1.66 static lispobj
3497     trans_boxed_large(lispobj object)
3498 dtc 1.1 {
3499 rtoy 1.66 lispobj header;
3500     unsigned long length;
3501 dtc 1.1
3502 rtoy 1.66 gc_assert(Pointerp(object));
3503 dtc 1.1
3504 rtoy 1.66 header = *((lispobj *) PTR(object));
3505     length = HeaderValue(header) + 1;
3506     length = CEILING(length, 2);
3507 dtc 1.1
3508 rtoy 1.66 return copy_large_object(object, length);
3509 dtc 1.1 }
3510    
3511 rtoy 1.66 static int
3512     size_boxed(lispobj * where)
3513 dtc 1.1 {
3514 rtoy 1.66 lispobj header;
3515     unsigned long length;
3516 dtc 1.1
3517 rtoy 1.66 header = *where;
3518     length = HeaderValue(header) + 1;
3519     length = CEILING(length, 2);
3520 dtc 1.1
3521 rtoy 1.66 return length;
3522 dtc 1.1 }
3523    
3524 rtoy 1.67 /* Not needed on sparc and ppc because the raw_addr has a function lowtag */
3525 cshapiro 1.87 #if !(defined(sparc) || (defined(DARWIN) && defined(__ppc__)))
3526 rtoy 1.66 static int
3527     scav_fdefn(lispobj * where, lispobj object)
3528 dtc 1.1 {
3529 rtoy 1.66 struct fdefn *fdefn;
3530 dtc 1.14
3531 rtoy 1.66 fdefn = (struct fdefn *) where;
3532 dtc 1.14
3533 rtoy 1.66 if ((char *) (fdefn->function + RAW_ADDR_OFFSET) == fdefn->raw_addr) {
3534     scavenge(where + 1, sizeof(struct fdefn) / sizeof(lispobj) - 1);
3535 dtc 1.14
3536 rtoy 1.66 /* Don't write unnecessarily */
3537     if (fdefn->raw_addr != (char *) (fdefn->function + RAW_ADDR_OFFSET))
3538     fdefn->raw_addr = (char *) (fdefn->function + RAW_ADDR_OFFSET);
3539 dtc 1.14
3540 rtoy 1.66 return sizeof(struct fdefn) / sizeof(lispobj);
3541     } else
3542     return 1;
3543 dtc 1.1 }
3544 rtoy 1.57 #endif
3545 dtc 1.1
3546 rtoy 1.66 static int
3547     scav_unboxed(lispobj * where, lispobj object)
3548 dtc 1.1 {
3549 rtoy 1.66 unsigned long length;
3550 dtc 1.1
3551 rtoy 1.66 length = HeaderValue(object) + 1;
3552     length = CEILING(length, 2);
3553 dtc 1.1
3554 rtoy 1.66 return length;
3555 dtc 1.1 }
3556    
3557 rtoy 1.66 static lispobj
3558     trans_unboxed(lispobj object)
3559 dtc 1.1 {
3560 rtoy 1.66 lispobj header;
3561     unsigned long length;
3562 dtc 1.1
3563    
3564 rtoy 1.66 gc_assert(Pointerp(object));
3565 dtc 1.1
3566 rtoy 1.66 header = *((lispobj *) PTR(object));
3567     length = HeaderValue(header) + 1;
3568     length = CEILING(length, 2);
3569 dtc 1.1
3570 rtoy 1.66 return copy_unboxed_object(object, length);
3571 dtc 1.1 }
3572    
3573 rtoy 1.66 static lispobj
3574     trans_unboxed_large(lispobj object)
3575 dtc 1.1 {
3576 rtoy 1.66 lispobj header;
3577     unsigned long length;
3578 dtc 1.1
3579    
3580 rtoy 1.66 gc_assert(Pointerp(object));
3581 dtc 1.1
3582 rtoy 1.66 header = *((lispobj *) PTR(object));
3583     length = HeaderValue(header) + 1;
3584     length = CEILING(length, 2);
3585 dtc 1.1
3586 rtoy 1.66 return copy_large_unboxed_object(object, length);
3587 dtc 1.1 }
3588    
3589 rtoy 1.66 static int
3590     size_unboxed(lispobj * where)
3591 dtc 1.1 {
3592 rtoy 1.66 lispobj header;
3593     unsigned long length;
3594 dtc 1.1
3595 rtoy 1.66 header = *where;
3596     length = HeaderValue(header) + 1;
3597     length = CEILING(length, 2);
3598 dtc 1.1
3599 rtoy 1.66 return length;
3600 dtc 1.1 }
3601 rtoy 1.66
3602 dtc 1.1
3603     /* Vector-Like Objects */
3604    
3605     #define NWORDS(x,y) (CEILING((x),(y)) / (y))
3606    
3607 rtoy 1.66 static int
3608     size_string(lispobj * where)
3609 dtc 1.1 {
3610 rtoy 1.66 struct vector *vector;
3611     int length, nwords;
3612 dtc 1.1
3613 rtoy 1.66 /*
3614     * NOTE: Strings contain one more byte of data than the length
3615     * slot indicates.
3616     */
3617 dtc 1.1
3618 rtoy 1.66 vector = (struct vector *) where;
3619     length = fixnum_value(vector->length) + 1;
3620 rtoy 1.95.2.1 #ifndef UNICODE
3621 cwang 1.55 #ifdef __x86_64
3622 rtoy 1.66 nwords = CEILING(NWORDS(length, 8) + 2, 2);
3623 cwang 1.55 #else
3624 rtoy 1.66 nwords = CEILING(NWORDS(length, 4) + 2, 2);
3625 cwang 1.55 #endif
3626 rtoy 1.95.2.1 #else
3627     /*
3628     * Strings are just like arrays with 16-bit elements, and contain
3629     * one more element than the slot length indicates.
3630     */
3631     nwords = CEILING(NWORDS(length, 2) + 2, 2);
3632     #endif
3633 rtoy 1.66 return nwords;
3634 dtc 1.1 }
3635    
3636 rtoy 1.66 static int
3637     scav_string(lispobj * where, lispobj object)
3638 dtc 1.1 {
3639 rtoy 1.66 return size_string(where);
3640 dtc 1.1 }
3641    
3642 rtoy 1.66 static lispobj
3643     trans_string(lispobj object)
3644 dtc 1.1 {
3645 rtoy 1.66 gc_assert(Pointerp(object));
3646     return copy_large_unboxed_object(object,
3647     size_string((lispobj *) PTR(object)));
3648 dtc 1.1 }
3649 rtoy 1.66
3650 dtc 1.1
3651 gerd 1.32 /************************************************************************
3652     Hash Tables
3653     ************************************************************************/
3654    
3655     /* This struct corresponds to the Lisp HASH-TABLE structure defined in
3656     hash-new.lisp. */
3657    
3658 rtoy 1.66 struct hash_table {
3659     lispobj instance_header; /* 0 */
3660     lispobj dummy2;
3661     lispobj test;
3662