/[cmucl]/src/lisp/gencgc.c
ViewVC logotype

Contents of /src/lisp/gencgc.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.101 - (hide annotations)
Mon Nov 2 15:05:07 2009 UTC (4 years, 5 months ago) by rtoy
Branch: MAIN
CVS Tags: snapshot-2009-12
Changes since 1.100: +1 -6 lines
File MIME type: text/plain
Revert previous changes.  They were supposed to go on
amd64-dd-branch.
1 dtc 1.1 /*
2     * Generational Conservative Garbage Collector for CMUCL x86.
3     *
4     * This code was written by Douglas T. Crosher, based on Public Domain
5     * codes from Carnegie Mellon University. This code has been placed in
6     * the public domain, and is provided 'as is'.
7     *
8 dtc 1.14 * Douglas Crosher, 1996, 1997, 1998, 1999.
9 dtc 1.1 *
10 rtoy 1.100 * $Header: /tiger/var/lib/cvsroots/cmucl/src/lisp/gencgc.c,v 1.101 2009/11/02 15:05:07 rtoy Exp $
11 dtc 1.14 *
12     */
13 dtc 1.1
14 cshapiro 1.92 #include <limits.h>
15 dtc 1.1 #include <stdio.h>
16 gerd 1.32 #include <stdlib.h>
17 dtc 1.1 #include <signal.h>
18 rtoy 1.57 #include <string.h>
19 dtc 1.1 #include "lisp.h"
20 dtc 1.24 #include "arch.h"
21 dtc 1.1 #include "internals.h"
22     #include "os.h"
23     #include "globals.h"
24     #include "interrupt.h"
25     #include "validate.h"
26     #include "lispregs.h"
27 dtc 1.24 #include "interr.h"
28 dtc 1.1 #include "gencgc.h"
29    
30 rtoy 1.81 /*
31     * This value in a hash table hash-vector means that the key uses
32     * EQ-based hashing. That is, the key might be using EQ or EQL for
33     * the test. This MUST match the value used in hash-new.lisp!
34     */
35     #define EQ_BASED_HASH_VALUE 0x80000000
36 rtoy 1.67
37 dtc 1.1 #define gc_abort() lose("GC invariant lost! File \"%s\", line %d\n", \
38     __FILE__, __LINE__)
39    
40 cwang 1.55 #if (defined(i386) || defined(__x86_64))
41 gerd 1.35
42     #define set_alloc_pointer(value) \
43     SetSymbolValue (ALLOCATION_POINTER, (value))
44     #define get_alloc_pointer() \
45     SymbolValue (ALLOCATION_POINTER)
46     #define get_binding_stack_pointer() \
47     SymbolValue (BINDING_STACK_POINTER)
48     #define get_pseudo_atomic_atomic() \
49     SymbolValue (PSEUDO_ATOMIC_ATOMIC)
50     #define set_pseudo_atomic_atomic() \
51     SetSymbolValue (PSEUDO_ATOMIC_ATOMIC, make_fixnum (1))
52     #define clr_pseudo_atomic_atomic() \
53     SetSymbolValue (PSEUDO_ATOMIC_ATOMIC, make_fixnum (0))
54     #define get_pseudo_atomic_interrupted() \
55     SymbolValue (PSEUDO_ATOMIC_INTERRUPTED)
56     #define clr_pseudo_atomic_interrupted() \
57     SetSymbolValue (PSEUDO_ATOMIC_INTERRUPTED, make_fixnum (0))
58    
59 toy 1.47 #define set_current_region_free(value) \
60     SetSymbolValue(CURRENT_REGION_FREE_POINTER, (value))
61     #define set_current_region_end(value) \
62     SetSymbolValue(CURRENT_REGION_END_ADDR, (value))
63     #define get_current_region_free() \
64     SymbolValue(CURRENT_REGION_FREE_POINTER)
65    
66     #define set_current_region_end(value) \
67     SetSymbolValue(CURRENT_REGION_END_ADDR, (value))
68    
69 toy 1.33 #elif defined(sparc)
70 gerd 1.35
71 toy 1.37 /*
72     * current_dynamic_space_free_pointer contains the pseudo-atomic
73     * stuff, so we need to preserve those bits when we give it a value.
74     * This value better not have any bits set there either!
75     */
76 toy 1.50
77     /*
78     * On sparc, we don't need to set the alloc_pointer in the code here
79     * because the alloc pointer (current_dynamic_space_free_pointer) is
80     * the same as *current-region-free-pointer* and is stored in
81     * alloc-tn.
82     */
83 rtoy 1.66 #define set_alloc_pointer(value)
84 gerd 1.35 #define get_alloc_pointer() \
85 toy 1.45 ((unsigned long) current_dynamic_space_free_pointer & ~lowtag_Mask)
86 gerd 1.35 #define get_binding_stack_pointer() \
87     (current_binding_stack_pointer)
88 toy 1.33 #define get_pseudo_atomic_atomic() \
89 toy 1.41 ((unsigned long)current_dynamic_space_free_pointer & pseudo_atomic_Value)
90 toy 1.33 #define set_pseudo_atomic_atomic() \
91 gerd 1.35 (current_dynamic_space_free_pointer \
92 toy 1.41 = (lispobj*) ((unsigned long)current_dynamic_space_free_pointer | pseudo_atomic_Value))
93 toy 1.33 #define clr_pseudo_atomic_atomic() \
94 gerd 1.35 (current_dynamic_space_free_pointer \
95 toy 1.41 = (lispobj*) ((unsigned long) current_dynamic_space_free_pointer & ~pseudo_atomic_Value))
96 gerd 1.35 #define get_pseudo_atomic_interrupted() \
97 toy 1.41 ((unsigned long) current_dynamic_space_free_pointer & pseudo_atomic_InterruptedValue)
98 toy 1.33 #define clr_pseudo_atomic_interrupted() \
99 gerd 1.35 (current_dynamic_space_free_pointer \
100 toy 1.41 = (lispobj*) ((unsigned long) current_dynamic_space_free_pointer & ~pseudo_atomic_InterruptedValue))
101 gerd 1.35
102 toy 1.47 #define set_current_region_free(value) \
103     current_dynamic_space_free_pointer = (lispobj*)((value) | ((long)current_dynamic_space_free_pointer & lowtag_Mask))
104    
105     #define get_current_region_free() \
106     ((long)current_dynamic_space_free_pointer & (~(lowtag_Mask)))
107    
108     #define set_current_region_end(value) \
109     SetSymbolValue(CURRENT_REGION_END_ADDR, (value))
110    
111 cshapiro 1.87 #elif defined(DARWIN) && defined(__ppc__)
112 rtoy 1.67 #ifndef pseudo_atomic_InterruptedValue
113     #define pseudo_atomic_InterruptedValue 1
114     #endif
115     #ifndef pseudo_atomic_Value
116     #define pseudo_atomic_Value 4
117     #endif
118    
119     #define set_alloc_pointer(value)
120     #define get_alloc_pointer() \
121     ((unsigned long) current_dynamic_space_free_pointer & ~lowtag_Mask)
122     #define get_binding_stack_pointer() \
123     (current_binding_stack_pointer)
124     #define get_pseudo_atomic_atomic() \
125     ((unsigned long)current_dynamic_space_free_pointer & pseudo_atomic_Value)
126     #define set_pseudo_atomic_atomic() \
127     (current_dynamic_space_free_pointer \
128     = (lispobj*) ((unsigned long)current_dynamic_space_free_pointer | pseudo_atomic_Value))
129     #define clr_pseudo_atomic_atomic() \
130     (current_dynamic_space_free_pointer \
131     = (lispobj*) ((unsigned long) current_dynamic_space_free_pointer & ~pseudo_atomic_Value))
132     #define get_pseudo_atomic_interrupted() \
133     ((unsigned long) current_dynamic_space_free_pointer & pseudo_atomic_InterruptedValue)
134     #define clr_pseudo_atomic_interrupted() \
135     (current_dynamic_space_free_pointer \
136     = (lispobj*) ((unsigned long) current_dynamic_space_free_pointer & ~pseudo_atomic_InterruptedValue))
137    
138     #define set_current_region_free(value) \
139     current_dynamic_space_free_pointer = (lispobj*)((value) | ((long)current_dynamic_space_free_pointer & lowtag_Mask))
140    
141     #define get_current_region_free() \
142     ((long)current_dynamic_space_free_pointer & (~(lowtag_Mask)))
143    
144     #define set_current_region_end(value) \
145     SetSymbolValue(CURRENT_REGION_END_ADDR, (value))
146    
147 toy 1.33 #else
148 gerd 1.35 #error gencgc is not supported on this platform
149 toy 1.33 #endif
150    
151 gerd 1.38 /* Define for activating assertions. */
152    
153 rtoy 1.67 #if defined(DARWIN)
154 gerd 1.38 #define GC_ASSERTIONS 1
155     #endif
156    
157     /* Check for references to stack-allocated objects. */
158    
159     #ifdef GC_ASSERTIONS
160    
161     static void *invalid_stack_start, *invalid_stack_end;
162    
163     static inline void
164 rtoy 1.66 check_escaped_stack_object(lispobj * where, lispobj obj)
165 gerd 1.38 {
166 cshapiro 1.87 #if !defined(DARWIN) && !defined(__ppc__)
167 rtoy 1.66 void *p;
168    
169     if (Pointerp(obj)
170     && (p = (void *) PTR(obj),
171     (p >= (void *) CONTROL_STACK_START
172     && p < (void *) CONTROL_STACK_END))) {
173     char *space;
174    
175     if (where >= (lispobj *) DYNAMIC_0_SPACE_START
176     && where < (lispobj *) (DYNAMIC_0_SPACE_START + DYNAMIC_SPACE_SIZE))
177     space = "dynamic space";
178     else if (where >= (lispobj *) STATIC_SPACE_START
179     && where <
180     (lispobj *) (STATIC_SPACE_START + STATIC_SPACE_SIZE)) space =
181     "static space";
182     else if (where >= (lispobj *) READ_ONLY_SPACE_START
183     && where <
184     (lispobj *) (READ_ONLY_SPACE_START +
185     READ_ONLY_SPACE_SIZE)) space = "read-only space";
186     else
187     space = NULL;
188    
189     /* GC itself uses some stack, so we can't tell exactly where the
190     invalid stack area starts. Usually, it should be an error if a
191     reference to a stack-allocated object is found, although it
192     is valid to store a reference to a stack-allocated object
193     temporarily in another reachable object, as long as the
194     reference goes away at the end of a dynamic extent. */
195    
196     if (p >= invalid_stack_start && p < invalid_stack_end)
197     lose("Escaped stack-allocated object 0x%08lx at %p in %s\n",
198     (unsigned long) obj, where, space);
199 toy 1.39 #ifndef i386
200 rtoy 1.66 else if ((where >= (lispobj *) CONTROL_STACK_START
201     && where < (lispobj *) (CONTROL_STACK_END))
202     || (space == NULL)) {
203     /* Do nothing if it the reference is from the control stack,
204     because that will happen, and that's ok. Or if it's from
205     an unknown space (typically from scavenging an interrupt
206     context. */
207     }
208 toy 1.39 #endif
209    
210 rtoy 1.66 else
211     fprintf(stderr,
212     "Reference to stack-allocated object 0x%08lx at %p in %s\n",
213     (unsigned long) obj, where,
214     space ? space : "Unknown space");
215 gerd 1.38 }
216 rtoy 1.67 #endif
217 gerd 1.38 }
218    
219     #endif /* GC_ASSERTIONS */
220    
221    
222     #ifdef GC_ASSERTIONS
223     #define gc_assert(ex) \
224     do { \
225     if (!(ex)) gc_abort (); \
226     } while (0)
227 dtc 1.1 #else
228 gerd 1.32 #define gc_assert(ex) (void) 0
229 dtc 1.1 #endif
230 rtoy 1.66
231 dtc 1.1
232 dtc 1.14 /*
233     * The number of generations, an extra is added to this for use as a temp.
234     */
235 dtc 1.1 #define NUM_GENERATIONS 6
236    
237     /* Debugging variables. */
238    
239 dtc 1.14 /*
240     * The verbose level. All non-error messages are disabled at level 0;
241     * and only a few rare messages are printed at level 1.
242     */
243 dtc 1.6 unsigned gencgc_verbose = 0;
244 cracauer 1.28 unsigned counters_verbose = 0;
245 dtc 1.1
246 dtc 1.14 /*
247     * To enable the use of page protection to help avoid the scavenging
248     * of pages that don't have pointers to younger generations.
249     */
250 rtoy 1.66 boolean enable_page_protection = TRUE;
251 dtc 1.1
252 dtc 1.14 /*
253     * Hunt for pointers to old-space, when GCing generations >= verify_gen.
254     * Set to NUM_GENERATIONS to disable.
255     */
256 dtc 1.3 int verify_gens = NUM_GENERATIONS;
257 dtc 1.1
258 dtc 1.14 /*
259 toy 1.33 * Enable a pre-scan verify of generation 0 before it's GCed. (This
260     * makes GC very, very slow, so don't enable this unless you really
261     * need it!)
262 dtc 1.14 */
263 dtc 1.1 boolean pre_verify_gen_0 = FALSE;
264    
265 dtc 1.3 /*
266 dtc 1.14 * Enable checking for bad pointers after gc_free_heap called from purify.
267 dtc 1.3 */
268 rtoy 1.70 #if 0 && defined(DARWIN)
269 rtoy 1.67 boolean verify_after_free_heap = TRUE;
270     #else
271 dtc 1.3 boolean verify_after_free_heap = FALSE;
272 rtoy 1.67 #endif
273 dtc 1.3
274 dtc 1.14 /*
275     * Enable the printing of a note when code objects are found in the
276     * dynamic space during a heap verify.
277     */
278 dtc 1.1 boolean verify_dynamic_code_check = FALSE;
279    
280 dtc 1.14 /*
281     * Enable the checking of code objects for fixup errors after they are
282 toy 1.33 * transported. (Only used for x86.)
283 dtc 1.14 */
284 dtc 1.3 boolean check_code_fixups = FALSE;
285 dtc 1.1
286 dtc 1.14 /*
287     * To enable unmapping of a page and re-mmaping it to have it zero filled.
288 pmai 1.26 * Note: this can waste a lot of swap on FreeBSD and Open/NetBSD(?) so
289     * don't unmap.
290 dtc 1.14 */
291 pmai 1.26 #if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__)
292 dtc 1.1 boolean gencgc_unmap_zero = FALSE;
293     #else
294     boolean gencgc_unmap_zero = TRUE;
295     #endif
296    
297 dtc 1.14 /*
298     * Enable checking that newly allocated regions are zero filled.
299     */
300 rtoy 1.70 #if 0 && defined(DARWIN)
301 rtoy 1.67 boolean gencgc_zero_check = TRUE;
302     boolean gencgc_enable_verify_zero_fill = TRUE;
303     #else
304 dtc 1.1 boolean gencgc_zero_check = FALSE;
305 dtc 1.10 boolean gencgc_enable_verify_zero_fill = FALSE;
306 rtoy 1.67 #endif
307 dtc 1.10
308 dtc 1.3 /*
309     * Enable checking that free pages are zero filled during gc_free_heap
310     * called after purify.
311     */
312 rtoy 1.70 #if 0 && defined(DARWIN)
313 rtoy 1.67 boolean gencgc_zero_check_during_free_heap = TRUE;
314     #else
315 dtc 1.3 boolean gencgc_zero_check_during_free_heap = FALSE;
316 rtoy 1.67 #endif
317 dtc 1.3
318 dtc 1.14 /*
319     * The minimum size for a large object.
320     */
321 dtc 1.17 unsigned large_object_size = 4 * PAGE_SIZE;
322 dtc 1.1
323 dtc 1.14 /*
324     * Enable the filtering of stack/register pointers. This could reduce
325     * the number of invalid pointers accepted. It will probably degrades
326     * interrupt safety during object initialisation.
327     */
328 dtc 1.1 boolean enable_pointer_filter = TRUE;
329 rtoy 1.66
330 dtc 1.1
331 dtc 1.14 /*
332     * The total bytes allocated. Seen by (dynamic-usage)
333     */
334 dtc 1.1 unsigned long bytes_allocated = 0;
335 dtc 1.22
336     /*
337 cracauer 1.28 * The total amount of bytes ever allocated. Not decreased by GC.
338     */
339    
340     volatile unsigned long long bytes_allocated_sum = 0;
341    
342     /*
343 dtc 1.22 * GC trigger; a value of 0xffffffff represents disabled.
344     */
345     unsigned long auto_gc_trigger = 0xffffffff;
346 dtc 1.1
347 dtc 1.14 /*
348 toy 1.46 * Number of pages to reserve for heap overflow. We want some space
349     * available on the heap when we are close to a heap overflow, so we
350     * can handle the overflow. But how much do we really need? I (rtoy)
351     * think 256 pages is probably a decent amount. (That's 1 MB for x86,
352     * 2 MB for sparc, which has 8K pages.)
353     */
354    
355     unsigned long reserved_heap_pages = 256;
356    
357     /*
358 dtc 1.14 * The src. and dest. generations. Set before a GC starts scavenging.
359     */
360 dtc 1.1 static int from_space;
361     static int new_space;
362 rtoy 1.66
363 dtc 1.1
364 dtc 1.14 /*
365     * GC structures and variables.
366     */
367 dtc 1.1
368 dtc 1.14 /*
369 dtc 1.23 * Number of pages within the dynamic heap, setup from the size of the
370     * dynamic space.
371     */
372     unsigned dynamic_space_pages;
373    
374     /*
375 dtc 1.14 * An array of page structures is statically allocated.
376 cwang 1.54 * This helps quickly map between an address and its page structure.
377 dtc 1.14 */
378 dtc 1.23 struct page *page_table;
379 dtc 1.1
380 dtc 1.14 /*
381     * Heap base, needed for mapping addresses to page structures.
382     */
383 toy 1.42 static char *heap_base = NULL;
384 dtc 1.1
385 dtc 1.14 /*
386     * Calculate the start address for the given page number.
387     */
388 cshapiro 1.97 static char *
389 rtoy 1.66 page_address(int page_num)
390 dtc 1.1 {
391 rtoy 1.66 return heap_base + PAGE_SIZE * page_num;
392 dtc 1.1 }
393    
394 dtc 1.14 /*
395     * Find the page index within the page_table for the given address.
396     * Returns -1 on failure.
397     */
398 cshapiro 1.97 int
399 rtoy 1.66 find_page_index(void *addr)
400 dtc 1.1 {
401 rtoy 1.66 int index = (char *) addr - heap_base;
402 dtc 1.1
403 rtoy 1.66 if (index >= 0) {
404     index = (unsigned int) index / PAGE_SIZE;
405     if (index < dynamic_space_pages)
406     return index;
407     }
408 dtc 1.1
409 rtoy 1.66 return -1;
410 dtc 1.1 }
411    
412 cshapiro 1.97 /*
413     * This routine implements a write barrier used to record stores into
414     * to boxed regions outside of generation 0. When such a store occurs
415     * this routine will be automatically invoked by the page fault
416     * handler. If passed an address outside of the dynamic space, this
417     * routine will return immediately with a value of 0. Otherwise, the
418     * page belonging to the address is made writable, the protection
419     * change is recorded in the garbage collector page table, and a value
420     * of 1 is returned.
421     */
422     int
423     gc_write_barrier(void *addr)
424     {
425     int page_index = find_page_index(addr);
426    
427     /* Check if the fault is within the dynamic space. */
428     if (page_index == -1) {
429     return 0;
430     }
431    
432     /* The page should have been marked write protected */
433     if (!PAGE_WRITE_PROTECTED(page_index))
434     fprintf(stderr,
435     "*** Page fault in page not marked as write protected\n");
436    
437     /* Un-protect the page */
438 rtoy 1.99 os_protect((os_vm_address_t) page_address(page_index), PAGE_SIZE, OS_VM_PROT_ALL);
439 cshapiro 1.97 page_table[page_index].flags &= ~PAGE_WRITE_PROTECTED_MASK;
440     page_table[page_index].flags |= PAGE_WRITE_PROTECT_CLEARED_MASK;
441    
442     return 1;
443     }
444 dtc 1.1
445 dtc 1.14 /*
446     * A structure to hold the state of a generation.
447     */
448 dtc 1.1 struct generation {
449    
450 rtoy 1.66 /* The first page that gc_alloc checks on its next call. */
451     int alloc_start_page;
452    
453     /* The first page that gc_alloc_unboxed checks on its next call. */
454     int alloc_unboxed_start_page;
455    
456     /*
457     * The first page that gc_alloc_large (boxed) considers on its next call.
458     * Although it always allocates after the boxed_region.
459     */
460     int alloc_large_start_page;
461    
462     /*
463     * The first page that gc_alloc_large (unboxed) considers on its next call.
464     * Although it always allocates after the current_unboxed_region.
465     */
466     int alloc_large_unboxed_start_page;
467    
468     /* The bytes allocate to this generation. */
469     int bytes_allocated;
470    
471     /* The number of bytes at which to trigger a GC */
472     int gc_trigger;
473    
474     /* To calculate a new level for gc_trigger */
475     int bytes_consed_between_gc;
476    
477     /* The number of GCs since the last raise. */
478     int num_gc;
479 dtc 1.1
480 rtoy 1.66 /*
481     * The average age at after which a GC will raise objects to the
482     * next generation.
483     */
484     int trigger_age;
485    
486     /*
487     * The cumulative sum of the bytes allocated to this generation. It
488     * is cleared after a GC on this generation, and update before new
489     * objects are added from a GC of a younger generation. Dividing by
490     * the bytes_allocated will give the average age of the memory in
491     * this generation since its last GC.
492     */
493     int cum_sum_bytes_allocated;
494 dtc 1.1
495 rtoy 1.66 /*
496     * A minimum average memory age before a GC will occur helps prevent
497     * a GC when a large number of new live objects have been added, in
498     * which case a GC could be a waste of time.
499     */
500     double min_av_mem_age;
501 dtc 1.1 };
502    
503 dtc 1.14 /*
504     * An array of generation structures. There needs to be one more
505     * generation structure than actual generations as the oldest
506     * generations is temporarily raised then lowered.
507     */
508 dtc 1.17 static struct generation generations[NUM_GENERATIONS + 1];
509 dtc 1.1
510 moore 1.27 /* Statistics about a generation, extracted from the generations
511     array. This gets returned to Lisp.
512     */
513    
514     struct generation_stats {
515 rtoy 1.66 int bytes_allocated;
516     int gc_trigger;
517     int bytes_consed_between_gc;
518     int num_gc;
519     int trigger_age;
520     int cum_sum_bytes_allocated;
521     double min_av_mem_age;
522 moore 1.27 };
523 rtoy 1.66
524 moore 1.27
525 dtc 1.14 /*
526     * The oldest generation that will currently be GCed by default.
527     * Valid values are: 0, 1, ... (NUM_GENERATIONS - 1)
528     *
529     * The default of (NUM_GENERATIONS - 1) enables GC on all generations.
530     *
531     * Setting this to 0 effectively disables the generational nature of
532     * the GC. In some applications generational GC may not be useful
533     * because there are no long-lived objects.
534     *
535     * An intermediate value could be handy after moving long-lived data
536     * into an older generation so an unnecessary GC of this long-lived
537     * data can be avoided.
538     */
539 rtoy 1.66 unsigned int gencgc_oldest_gen_to_gc = NUM_GENERATIONS - 1;
540 dtc 1.1
541    
542 dtc 1.14 /*
543     * The maximum free page in the heap is maintained and used to update
544     * ALLOCATION_POINTER which is used by the room function to limit its
545     * search of the heap. XX Gencgc obviously needs to be better
546     * integrated with the lisp code.
547 rtoy 1.73 *
548     * Except on sparc and ppc, there's no ALLOCATION_POINTER, so it's
549     * never updated. So make this available (non-static).
550 dtc 1.14 */
551 rtoy 1.73 int last_free_page;
552 rtoy 1.66
553 dtc 1.1
554 cshapiro 1.87 static void scan_weak_tables(void);
555     static void scan_weak_objects(void);
556 dtc 1.1
557 dtc 1.14 /*
558     * Misc. heap functions.
559     */
560 dtc 1.1
561 dtc 1.14 /*
562     * Count the number of write protected pages within the given generation.
563     */
564 rtoy 1.66 static int
565     count_write_protect_generation_pages(int generation)
566 dtc 1.1 {
567 rtoy 1.66 int i;
568     int cnt = 0;
569     int mmask, mflags;
570    
571     mmask = PAGE_ALLOCATED_MASK | PAGE_WRITE_PROTECTED_MASK
572     | PAGE_GENERATION_MASK;
573     mflags = PAGE_ALLOCATED_MASK | PAGE_WRITE_PROTECTED_MASK | generation;
574    
575     for (i = 0; i < last_free_page; i++)
576     if (PAGE_FLAGS(i, mmask) == mflags)
577     cnt++;
578     return cnt;
579 dtc 1.1 }
580    
581 dtc 1.14 /*
582     * Count the number of pages within the given generation.
583     */
584 rtoy 1.66 static int
585     count_generation_pages(int generation)
586 dtc 1.1 {
587 rtoy 1.66 int i;
588     int cnt = 0;
589     int mmask, mflags;
590    
591     mmask = PAGE_ALLOCATED_MASK | PAGE_GENERATION_MASK;
592     mflags = PAGE_ALLOCATED_MASK | generation;
593    
594     for (i = 0; i < last_free_page; i++)
595     if (PAGE_FLAGS(i, mmask) == mflags)
596     cnt++;
597     return cnt;
598 dtc 1.1 }
599    
600 dtc 1.14 /*
601     * Count the number of dont_move pages.
602     */
603 rtoy 1.66 static int
604     count_dont_move_pages(void)
605 dtc 1.1 {
606 rtoy 1.66 int i;
607     int cnt = 0;
608     int mmask;
609    
610     mmask = PAGE_ALLOCATED_MASK | PAGE_DONT_MOVE_MASK;
611    
612     for (i = 0; i < last_free_page; i++)
613     if (PAGE_FLAGS(i, mmask) == mmask)
614     cnt++;
615     return cnt;
616 dtc 1.1 }
617    
618 dtc 1.14 /*
619     * Work through the pages and add up the number of bytes used for the
620     * given generation.
621     */
622 rtoy 1.58 #ifdef GC_ASSERTIONS
623 rtoy 1.66 static int
624     generation_bytes_allocated(int generation)
625 dtc 1.1 {
626 rtoy 1.66 int i;
627     int bytes_allocated = 0;
628     int mmask, mflags;
629    
630     mmask = PAGE_ALLOCATED_MASK | PAGE_GENERATION_MASK;
631     mflags = PAGE_ALLOCATED_MASK | generation;
632    
633     for (i = 0; i < last_free_page; i++) {
634     if (PAGE_FLAGS(i, mmask) == mflags)
635     bytes_allocated += page_table[i].bytes_used;
636     }
637     return bytes_allocated;
638 dtc 1.1 }
639 rtoy 1.58 #endif
640 dtc 1.1
641 dtc 1.14 /*
642     * Return the average age of the memory in a generation.
643     */
644 rtoy 1.66 static double
645     gen_av_mem_age(int gen)
646 dtc 1.1 {
647 rtoy 1.66 if (generations[gen].bytes_allocated == 0)
648     return 0.0;
649 dtc 1.14
650 rtoy 1.66 return (double) generations[gen].cum_sum_bytes_allocated /
651     (double) generations[gen].bytes_allocated;
652 dtc 1.1 }
653    
654 dtc 1.14 /*
655     * The verbose argument controls how much to print out:
656     * 0 for normal level of detail; 1 for debugging.
657     */
658 rtoy 1.66 void
659     print_generation_stats(int verbose)
660 dtc 1.1 {
661 rtoy 1.66 int i, gens;
662    
663 cwang 1.55 #if defined(i386) || defined(__x86_64)
664 toy 1.33 #define FPU_STATE_SIZE 27
665 rtoy 1.66 int fpu_state[FPU_STATE_SIZE];
666 toy 1.33 #elif defined(sparc)
667 rtoy 1.66 /*
668     * 32 (single-precision) FP registers, and the FP state register.
669     * But Sparc V9 has 32 double-precision registers (equivalent to 64
670     * single-precision, but can't be accessed), so we leave enough room
671     * for that.
672     */
673 toy 1.33 #define FPU_STATE_SIZE (((32 + 32 + 1) + 1)/2)
674 rtoy 1.66 long long fpu_state[FPU_STATE_SIZE];
675 cshapiro 1.87 #elif defined(DARWIN) && defined(__ppc__)
676 rtoy 1.67 #define FPU_STATE_SIZE 32
677     long long fpu_state[FPU_STATE_SIZE];
678 toy 1.33 #endif
679 dtc 1.11
680 rtoy 1.66 /*
681     * This code uses the FP instructions which may be setup for Lisp so
682     * they need to the saved and reset for C.
683     */
684 rtoy 1.67
685 rtoy 1.66 fpu_save(fpu_state);
686    
687 rtoy 1.67
688 rtoy 1.66 /* Number of generations to print out. */
689     if (verbose)
690     gens = NUM_GENERATIONS + 1;
691     else
692     gens = NUM_GENERATIONS;
693    
694     /* Print the heap stats */
695     fprintf(stderr, " Page count (%d KB)\n", PAGE_SIZE / 1024);
696     fprintf(stderr,
697     " Gen Boxed Unboxed LB LUB Alloc Waste Trigger WP GCs Mem-age\n");
698    
699     for (i = 0; i < gens; i++) {
700     int j;
701     int boxed_cnt = 0;
702     int unboxed_cnt = 0;
703     int large_boxed_cnt = 0;
704     int large_unboxed_cnt = 0;
705    
706     for (j = 0; j < last_free_page; j++) {
707     int flags = page_table[j].flags;
708    
709     if ((flags & PAGE_GENERATION_MASK) == i) {
710     if (flags & PAGE_ALLOCATED_MASK) {
711     /*
712     * Count the number of boxed and unboxed pages within the
713     * given generation.
714     */
715     if (flags & PAGE_UNBOXED_MASK)
716     if (flags & PAGE_LARGE_OBJECT_MASK)
717     large_unboxed_cnt++;
718     else
719     unboxed_cnt++;
720     else if (flags & PAGE_LARGE_OBJECT_MASK)
721     large_boxed_cnt++;
722     else
723     boxed_cnt++;
724     }
725     }
726 dtc 1.15 }
727 rtoy 1.66
728     gc_assert(generations[i].bytes_allocated ==
729     generation_bytes_allocated(i));
730     fprintf(stderr, " %5d: %5d %5d %5d %5d %10d %6d %10d %4d %3d %7.4f\n",
731     i, boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
732     generations[i].bytes_allocated,
733     PAGE_SIZE * count_generation_pages(i) -
734     generations[i].bytes_allocated, generations[i].gc_trigger,
735     count_write_protect_generation_pages(i), generations[i].num_gc,
736     gen_av_mem_age(i));
737 dtc 1.15 }
738 rtoy 1.66 fprintf(stderr, " Total bytes alloc=%ld\n", bytes_allocated);
739 dtc 1.14
740 rtoy 1.66 fpu_restore(fpu_state);
741 dtc 1.1 }
742    
743 moore 1.27 /* Get statistics that are kept "on the fly" out of the generation
744     array.
745     */
746 rtoy 1.66 void
747     get_generation_stats(int gen, struct generation_stats *stats)
748 moore 1.27 {
749 rtoy 1.66 if (gen <= NUM_GENERATIONS) {
750     stats->bytes_allocated = generations[gen].bytes_allocated;
751     stats->gc_trigger = generations[gen].gc_trigger;
752     stats->bytes_consed_between_gc =
753     generations[gen].bytes_consed_between_gc;
754     stats->num_gc = generations[gen].num_gc;
755     stats->trigger_age = generations[gen].trigger_age;
756     stats->cum_sum_bytes_allocated =
757     generations[gen].cum_sum_bytes_allocated;
758     stats->min_av_mem_age = generations[gen].min_av_mem_age;
759     }
760 moore 1.27 }
761    
762 rtoy 1.66 void
763     set_gc_trigger(int gen, int trigger)
764 moore 1.27 {
765 rtoy 1.66 if (gen <= NUM_GENERATIONS) {
766     generations[gen].gc_trigger = trigger;
767     }
768 moore 1.27 }
769 dtc 1.1
770 rtoy 1.66 void
771     set_trigger_age(int gen, int trigger_age)
772 moore 1.27 {
773 rtoy 1.66 if (gen <= NUM_GENERATIONS) {
774     generations[gen].trigger_age = trigger_age;
775     }
776 moore 1.27 }
777    
778 rtoy 1.66 void
779     set_min_mem_age(int gen, double min_mem_age)
780 moore 1.27 {
781 rtoy 1.66 if (gen <= NUM_GENERATIONS) {
782     generations[gen].min_av_mem_age = min_mem_age;
783     }
784 moore 1.27 }
785 dtc 1.1
786 dtc 1.14 /*
787     * Allocation routines.
788     *
789     *
790     * To support quick and inline allocation, regions of memory can be
791     * allocated and then allocated from with just a free pointer and a
792     * check against an end address.
793     *
794     * Since objects can be allocated to spaces with different properties
795     * e.g. boxed/unboxed, generation, ages; there may need to be many
796     * allocation regions.
797     *
798     * Each allocation region may be start within a partly used page.
799     * Many features of memory use are noted on a page wise basis,
800     * E.g. the generation; so if a region starts within an existing
801     * allocated page it must be consistent with this page.
802     *
803     * During the scavenging of the newspace, objects will be transported
804     * into an allocation region, and pointers updated to point to this
805     * allocation region. It is possible that these pointers will be
806     * scavenged again before the allocation region is closed, E.g. due to
807     * trans_list which jumps all over the place to cleanup the list. It
808     * is important to be able to determine properties of all objects
809     * pointed to when scavenging, E.g to detect pointers to the
810     * oldspace. Thus it's important that the allocation regions have the
811     * correct properties set when allocated, and not just set when
812     * closed. The region allocation routines return regions with the
813     * specified properties, and grab all the pages, setting there
814     * properties appropriately, except that the amount used is not known.
815     *
816     * These regions are used to support quicker allocation using just a
817     * free pointer. The actual space used by the region is not reflected
818     * in the pages tables until it is closed. It can't be scavenged until
819     * closed.
820     *
821     * When finished with the region it should be closed, which will
822     * update the page tables for the actual space used returning unused
823     * space. Further it may be noted in the new regions which is
824     * necessary when scavenging the newspace.
825     *
826     * Large objects may be allocated directly without an allocation
827     * region, the page tables are updated immediately.
828     *
829     * Unboxed objects don't contain points to other objects so don't need
830     * scavenging. Further they can't contain pointers to younger
831     * generations so WP is not needed. By allocating pages to unboxed
832     * objects the whole page never needs scavenging or write protecting.
833     */
834 dtc 1.1
835 dtc 1.14 /*
836     * Only using two regions at present, both are for the current
837     * newspace generation.
838     */
839 rtoy 1.66 struct alloc_region boxed_region;
840     struct alloc_region unboxed_region;
841 dtc 1.1
842 moore 1.27 #if 0
843 dtc 1.14 /*
844     * X hack. current lisp code uses the following. Need coping in/out.
845     */
846 dtc 1.1 void *current_region_free_pointer;
847     void *current_region_end_addr;
848 moore 1.27 #endif
849 dtc 1.1
850     /* The generation currently being allocated to. X */
851 rtoy 1.89 static int gc_alloc_generation = 0;
852 dtc 1.1
853 rtoy 1.57 extern void do_dynamic_space_overflow_warning(void);
854     extern void do_dynamic_space_overflow_error(void);
855    
856 toy 1.46 /* Handle heap overflow here, maybe. */
857     static void
858 rtoy 1.66 handle_heap_overflow(const char *msg, int size)
859 toy 1.46 {
860 rtoy 1.66 unsigned long heap_size_mb;
861    
862     if (msg) {
863     fprintf(stderr, msg, size);
864 toy 1.46 }
865     #ifndef SPARSE_BLOCK_SIZE
866     #define SPARSE_BLOCK_SIZE (0)
867 rtoy 1.66 #endif
868 toy 1.46
869 rtoy 1.66 /* Figure out how many MB of heap we have */
870     heap_size_mb = (dynamic_space_size + SPARSE_BLOCK_SIZE) >> 20;
871    
872     fprintf(stderr, " CMUCL has run out of dynamic heap space (%lu MB).\n",
873     heap_size_mb);
874     /* Try to handle heap overflow somewhat gracefully if we can. */
875 toy 1.46 #if defined(trap_DynamicSpaceOverflow) || defined(FEATURE_HEAP_OVERFLOW_CHECK)
876 rtoy 1.66 if (reserved_heap_pages == 0) {
877     fprintf(stderr, "\n Returning to top-level.\n");
878     do_dynamic_space_overflow_error();
879     } else {
880     fprintf(stderr,
881     " You can control heap size with the -dynamic-space-size commandline option.\n");
882     do_dynamic_space_overflow_warning();
883 toy 1.46 }
884     #else
885 rtoy 1.66 print_generation_stats(1);
886 toy 1.46
887 rtoy 1.66 exit(1);
888 toy 1.46 #endif
889     }
890    
891 dtc 1.14 /*
892     * Find a new region with room for at least the given number of bytes.
893     *
894     * It starts looking at the current generations alloc_start_page. So
895     * may pick up from the previous region if there is enough space. This
896     * keeps the allocation contiguous when scavenging the newspace.
897     *
898     * The alloc_region should have been closed by a call to
899     * gc_alloc_update_page_tables, and will thus be in an empty state.
900     *
901     * To assist the scavenging functions, write protected pages are not
902     * used. Free pages should not be write protected.
903     *
904     * It is critical to the conservative GC that the start of regions be
905     * known. To help achieve this only small regions are allocated at a
906     * time.
907     *
908     * During scavenging, pointers may be found that point within the
909     * current region and the page generation must be set so pointers to
910     * the from space can be recognised. So the generation of pages in
911     * the region are set to gc_alloc_generation. To prevent another
912     * allocation call using the same pages, all the pages in the region
913     * are allocated, although they will initially be empty.
914     */
915 rtoy 1.66 static void
916     gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
917 dtc 1.1 {
918 rtoy 1.66 int first_page;
919     int last_page;
920     int region_size;
921     int restart_page;
922     int bytes_found;
923     int num_pages;
924     int i;
925     int mmask, mflags;
926    
927     /* Shut up some compiler warnings */
928     last_page = bytes_found = 0;
929 dtc 1.15
930 toy 1.47 #if 0
931 rtoy 1.66 fprintf(stderr, "alloc_new_region for %d bytes from gen %d\n",
932     nbytes, gc_alloc_generation);
933 toy 1.47 #endif
934 dtc 1.14
935 rtoy 1.66 /* Check that the region is in a reset state. */
936     gc_assert(alloc_region->first_page == 0
937     && alloc_region->last_page == -1
938     && alloc_region->free_pointer == alloc_region->end_addr);
939 dtc 1.14
940 rtoy 1.66 if (unboxed)
941     restart_page =
942     generations[gc_alloc_generation].alloc_unboxed_start_page;
943     else
944     restart_page = generations[gc_alloc_generation].alloc_start_page;
945 dtc 1.14
946     /*
947 rtoy 1.66 * Search for a contiguous free region of at least nbytes with the
948     * given properties: boxed/unboxed, generation. First setting up the
949     * mask and matching flags.
950 dtc 1.14 */
951    
952 rtoy 1.66 mmask = PAGE_ALLOCATED_MASK | PAGE_WRITE_PROTECTED_MASK
953     | PAGE_LARGE_OBJECT_MASK | PAGE_DONT_MOVE_MASK
954     | PAGE_UNBOXED_MASK | PAGE_GENERATION_MASK;
955     mflags = PAGE_ALLOCATED_MASK | (unboxed << PAGE_UNBOXED_SHIFT)
956     | gc_alloc_generation;
957    
958     do {
959     first_page = restart_page;
960    
961     /*
962     * First search for a page with at least 32 bytes free, that is
963     * not write protected, or marked dont_move.
964     */
965    
966     while (first_page < dynamic_space_pages) {
967     int flags = page_table[first_page].flags;
968    
969     if (!(flags & PAGE_ALLOCATED_MASK)
970     || ((flags & mmask) == mflags &&
971     page_table[first_page].bytes_used < PAGE_SIZE - 32))
972     break;
973     first_page++;
974     }
975    
976     /* Check for a failure */
977     if (first_page >= dynamic_space_pages - reserved_heap_pages) {
978     #if 0
979     handle_heap_overflow("*A2 gc_alloc_new_region failed, nbytes=%d.\n",
980     nbytes);
981     #else
982     break;
983     #endif
984     }
985 dtc 1.14
986 rtoy 1.66 gc_assert(!PAGE_WRITE_PROTECTED(first_page));
987 dtc 1.14
988     #if 0
989 rtoy 1.66 fprintf(stderr, " first_page=%d bytes_used=%d\n",
990     first_page, page_table[first_page].bytes_used);
991 dtc 1.14 #endif
992    
993 rtoy 1.66 /*
994     * Now search forward to calculate the available region size. It
995     * tries to keeps going until nbytes are found and the number of
996     * pages is greater than some level. This helps keep down the
997     * number of pages in a region.
998     */
999     last_page = first_page;
1000     bytes_found = PAGE_SIZE - page_table[first_page].bytes_used;
1001     num_pages = 1;
1002     while ((bytes_found < nbytes || num_pages < 2)
1003     && last_page < dynamic_space_pages - 1
1004     && !PAGE_ALLOCATED(last_page + 1)) {
1005     last_page++;
1006     num_pages++;
1007     bytes_found += PAGE_SIZE;
1008     gc_assert(!PAGE_WRITE_PROTECTED(last_page));
1009     }
1010    
1011     region_size = (PAGE_SIZE - page_table[first_page].bytes_used)
1012     + PAGE_SIZE * (last_page - first_page);
1013 dtc 1.14
1014 rtoy 1.66 gc_assert(bytes_found == region_size);
1015 dtc 1.14
1016     #if 0
1017 rtoy 1.66 fprintf(stderr, " last_page=%d bytes_found=%d num_pages=%d\n",
1018     last_page, bytes_found, num_pages);
1019 dtc 1.14 #endif
1020    
1021 rtoy 1.66 restart_page = last_page + 1;
1022     }
1023     while (restart_page < dynamic_space_pages && bytes_found < nbytes);
1024 dtc 1.1
1025 rtoy 1.66 if (first_page >= dynamic_space_pages - reserved_heap_pages) {
1026     handle_heap_overflow("*A2 gc_alloc_new_region failed, nbytes=%d.\n",
1027     nbytes);
1028     }
1029 dtc 1.1
1030 rtoy 1.66 /* Check for a failure */
1031     if (restart_page >= (dynamic_space_pages - reserved_heap_pages)
1032     && bytes_found < nbytes) {
1033     handle_heap_overflow("*A1 gc_alloc_new_region failed, nbytes=%d.\n",
1034     nbytes);
1035     }
1036     #if 0
1037     fprintf(stderr,
1038     "gc_alloc_new_region gen %d: %d bytes: from pages %d to %d: addr=%x\n",
1039     gc_alloc_generation, bytes_found, first_page, last_page,
1040     page_address(first_page));
1041     #endif
1042    
1043     /* Setup the alloc_region. */
1044     alloc_region->first_page = first_page;
1045     alloc_region->last_page = last_page;
1046     alloc_region->start_addr = page_table[first_page].bytes_used
1047     + page_address(first_page);
1048     alloc_region->free_pointer = alloc_region->start_addr;
1049     alloc_region->end_addr = alloc_region->start_addr + bytes_found;
1050    
1051     if (gencgc_zero_check) {
1052     int *p;
1053    
1054     for (p = (int *) alloc_region->start_addr;
1055     p < (int *) alloc_region->end_addr; p++)
1056     if (*p != 0)
1057     fprintf(stderr, "** new region not zero @ %lx\n",
1058     (unsigned long) p);
1059     }
1060    
1061     /* Setup the pages. */
1062    
1063     /* The first page may have already been in use. */
1064     if (page_table[first_page].bytes_used == 0) {
1065     PAGE_FLAGS_UPDATE(first_page, mmask, mflags);
1066     page_table[first_page].first_object_offset = 0;
1067     }
1068 dtc 1.1
1069 rtoy 1.66 gc_assert(PAGE_ALLOCATED(first_page));
1070     gc_assert(PAGE_UNBOXED_VAL(first_page) == unboxed);
1071     gc_assert(PAGE_GENERATION(first_page) == gc_alloc_generation);
1072     gc_assert(!PAGE_LARGE_OBJECT(first_page));
1073 dtc 1.14
1074 rtoy 1.66 for (i = first_page + 1; i <= last_page; i++) {
1075     PAGE_FLAGS_UPDATE(i, PAGE_ALLOCATED_MASK | PAGE_LARGE_OBJECT_MASK
1076     | PAGE_UNBOXED_MASK | PAGE_GENERATION_MASK,
1077     PAGE_ALLOCATED_MASK | (unboxed << PAGE_UNBOXED_SHIFT)
1078     | gc_alloc_generation);
1079     /*
1080     * This may not be necessary for unboxed regions (think it was
1081     * broken before!)
1082     */
1083     page_table[i].first_object_offset =
1084     alloc_region->start_addr - page_address(i);
1085     }
1086 dtc 1.15
1087 rtoy 1.66 /* Bump up the last_free_page */
1088     if (last_page + 1 > last_free_page) {
1089     last_free_page = last_page + 1;
1090     set_alloc_pointer((lispobj) ((char *) heap_base +
1091     PAGE_SIZE * last_free_page));
1092 dtc 1.1
1093 rtoy 1.66 }
1094 dtc 1.1 }
1095    
1096    
1097    
1098 dtc 1.14 /*
1099     * If the record_new_objects flag is 2 then all new regions created
1100     * are recorded.
1101     *
1102 cwang 1.54 * If it's 1 then it is only recorded if the first page of the
1103 dtc 1.14 * current region is <= new_areas_ignore_page. This helps avoid
1104     * unnecessary recording when doing full scavenge pass.
1105     *
1106     * The new_object structure holds the page, byte offset, and size of
1107     * new regions of objects. Each new area is placed in the array of
1108     * these structures pointed to by new_areas; new_areas_index holds the
1109     * offset into new_areas.
1110     *
1111     * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
1112     * later code must detect this an handle it, probably by doing a full
1113     * scavenge of a generation.
1114     */
1115 dtc 1.1
1116     #define NUM_NEW_AREAS 512
1117     static int record_new_objects = 0;
1118     static int new_areas_ignore_page;
1119     struct new_area {
1120 rtoy 1.66 int page;
1121     int offset;
1122     int size;
1123 dtc 1.1 };
1124     static struct new_area (*new_areas)[];
1125 rtoy 1.89 static int new_areas_index = 0;
1126 dtc 1.1 int max_new_areas;
1127    
1128     /* Add a new area to new_areas. */
1129 rtoy 1.66 static void
1130     add_new_area(int first_page, int offset, int size)
1131 dtc 1.1 {
1132 rtoy 1.66 unsigned new_area_start, c;
1133     int i;
1134    
1135     /* Ignore if full */
1136     if (new_areas_index >= NUM_NEW_AREAS)
1137     return;
1138 dtc 1.1
1139 rtoy 1.66 switch (record_new_objects) {
1140     case 0:
1141     return;
1142     case 1:
1143     if (first_page > new_areas_ignore_page)
1144     return;
1145     break;
1146     case 2:
1147     break;
1148     default:
1149     gc_abort();
1150     }
1151 dtc 1.1
1152 rtoy 1.66 new_area_start = PAGE_SIZE * first_page + offset;
1153 dtc 1.1
1154 rtoy 1.66 /*
1155     * Search backwards for a prior area that this follows from. If
1156     * found this will save adding a new area.
1157     */
1158     for (i = new_areas_index - 1, c = 0; i >= 0 && c < 8; i--, c++) {
1159     unsigned area_end = PAGE_SIZE * (*new_areas)[i].page
1160     + (*new_areas)[i].offset + (*new_areas)[i].size;
1161 dtc 1.14
1162     #if 0
1163 rtoy 1.66 fprintf(stderr, "*S1 %d %d %d %d\n", i, c, new_area_start, area_end);
1164 dtc 1.14 #endif
1165 rtoy 1.66 if (new_area_start == area_end) {
1166 dtc 1.14 #if 0
1167 rtoy 1.66 fprintf(stderr, "-> Adding to [%d] %d %d %d with %d %d %d:\n",
1168     i, (*new_areas)[i].page, (*new_areas)[i].offset,
1169     (*new_areas)[i].size, first_page, offset, size);
1170 dtc 1.14 #endif
1171 rtoy 1.66 (*new_areas)[i].size += size;
1172     return;
1173     }
1174 dtc 1.1 }
1175 dtc 1.14 #if 0
1176 rtoy 1.66 fprintf(stderr, "*S1 %d %d %d\n", i, c, new_area_start);
1177 dtc 1.14 #endif
1178 dtc 1.1
1179 rtoy 1.66 (*new_areas)[new_areas_index].page = first_page;
1180     (*new_areas)[new_areas_index].offset = offset;
1181     (*new_areas)[new_areas_index].size = size;
1182 dtc 1.14 #if 0
1183 rtoy 1.66 fprintf(stderr, " new_area %d page %d offset %d size %d\n",
1184     new_areas_index, first_page, offset, size);
1185 dtc 1.14 #endif
1186 rtoy 1.66 new_areas_index++;
1187 dtc 1.14
1188 rtoy 1.66 /* Note the max new_areas used. */
1189     if (new_areas_index > max_new_areas)
1190     max_new_areas = new_areas_index;
1191 dtc 1.1 }
1192    
1193    
1194 dtc 1.14 /*
1195     * Update the tables for the alloc_region. The region may be added to
1196     * the new_areas.
1197     *
1198     * When done the alloc_region its setup so that the next quick alloc
1199     * will fail safely and thus a new region will be allocated. Further
1200     * it is safe to try and re-update the page table of this reset
1201     * alloc_region.
1202     */
1203 rtoy 1.66 void
1204     gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
1205 dtc 1.1 {
1206 rtoy 1.66 int more;
1207     int first_page;
1208     int next_page;
1209     int bytes_used;
1210     int orig_first_page_bytes_used;
1211     int region_size;
1212     int byte_cnt;
1213 dtc 1.1
1214 dtc 1.14 #if 0
1215 rtoy 1.66 fprintf(stderr, "gc_alloc_update_page_tables to gen %d: ",
1216     gc_alloc_generation);
1217 dtc 1.14 #endif
1218 dtc 1.1
1219 rtoy 1.66 first_page = alloc_region->first_page;
1220 dtc 1.1
1221 rtoy 1.66 /* Catch an unused alloc_region. */
1222     if (first_page == 0 && alloc_region->last_page == -1)
1223     return;
1224 dtc 1.1
1225 rtoy 1.66 next_page = first_page + 1;
1226 dtc 1.1
1227 rtoy 1.66 /* Skip if no bytes were allocated */
1228     if (alloc_region->free_pointer != alloc_region->start_addr) {
1229     orig_first_page_bytes_used = page_table[first_page].bytes_used;
1230 dtc 1.14
1231 rtoy 1.66 gc_assert(alloc_region->start_addr == page_address(first_page) +
1232     page_table[first_page].bytes_used);
1233 dtc 1.14
1234 rtoy 1.66 /* All the pages used need to be updated */
1235 dtc 1.14
1236 rtoy 1.66 /* Update the first page. */
1237 dtc 1.14
1238 rtoy 1.66 #if 0
1239     fprintf(stderr, "0");
1240 dtc 1.14 #endif
1241    
1242 rtoy 1.66 /* If the page was free then setup the gen, and first_object_offset. */
1243     if (page_table[first_page].bytes_used == 0)
1244     gc_assert(page_table[first_page].first_object_offset == 0);
1245 dtc 1.14
1246 rtoy 1.66 gc_assert(PAGE_ALLOCATED(first_page));
1247     gc_assert(PAGE_UNBOXED_VAL(first_page) == unboxed);
1248     gc_assert(PAGE_GENERATION(first_page) == gc_alloc_generation);
1249     gc_assert(!PAGE_LARGE_OBJECT(first_page));
1250 dtc 1.14
1251 rtoy 1.66 byte_cnt = 0;
1252 dtc 1.14
1253 rtoy 1.66 /*
1254     * Calc. the number of bytes used in this page. This is not always
1255     * the number of new bytes, unless it was free.
1256     */
1257     more = 0;
1258     bytes_used = alloc_region->free_pointer - page_address(first_page);
1259     if (bytes_used > PAGE_SIZE) {
1260     bytes_used = PAGE_SIZE;
1261     more = 1;
1262     }
1263     page_table[first_page].bytes_used = bytes_used;
1264     byte_cnt += bytes_used;
1265 dtc 1.14
1266 rtoy 1.66 /*
1267     * All the rest of the pages should be free. Need to set their
1268     * first_object_offset pointer to the start of the region, and set
1269     * the bytes_used.
1270     */
1271     while (more) {
1272 dtc 1.14 #if 0
1273 rtoy 1.66 fprintf(stderr, "+");
1274 dtc 1.14 #endif
1275 rtoy 1.66 gc_assert(PAGE_ALLOCATED(next_page));
1276     gc_assert(PAGE_UNBOXED_VAL(next_page) == unboxed);
1277     gc_assert(page_table[next_page].bytes_used == 0);
1278     gc_assert(PAGE_GENERATION(next_page) == gc_alloc_generation);
1279     gc_assert(!PAGE_LARGE_OBJECT(next_page));
1280    
1281     gc_assert(page_table[next_page].first_object_offset ==
1282     alloc_region->start_addr - page_address(next_page));
1283    
1284     /* Calc. the number of bytes used in this page. */
1285     more = 0;
1286     bytes_used = alloc_region->free_pointer - page_address(next_page);
1287     if (bytes_used > PAGE_SIZE) {
1288     bytes_used = PAGE_SIZE;
1289     more = 1;
1290     }
1291     page_table[next_page].bytes_used = bytes_used;
1292     byte_cnt += bytes_used;
1293 dtc 1.14
1294 rtoy 1.66 next_page++;
1295     }
1296 dtc 1.14
1297 rtoy 1.66 region_size = alloc_region->free_pointer - alloc_region->start_addr;
1298     bytes_allocated += region_size;
1299     generations[gc_alloc_generation].bytes_allocated += region_size;
1300 dtc 1.14
1301 rtoy 1.66 gc_assert(byte_cnt - orig_first_page_bytes_used == region_size);
1302 dtc 1.14
1303 rtoy 1.66 /*
1304     * Set the generations alloc restart page to the last page of
1305     * the region.
1306     */
1307     if (unboxed)
1308     generations[gc_alloc_generation].alloc_unboxed_start_page =
1309     next_page - 1;
1310     else
1311     generations[gc_alloc_generation].alloc_start_page = next_page - 1;
1312 dtc 1.14
1313 rtoy 1.66 /* Add the region to the new_areas if requested. */
1314     if (!unboxed)
1315     add_new_area(first_page, orig_first_page_bytes_used, region_size);
1316 dtc 1.14
1317     #if 0
1318 rtoy 1.66 fprintf(stderr,
1319     " gc_alloc_update_page_tables update %d bytes to gen %d\n",
1320     region_size, gc_alloc_generation);
1321 dtc 1.14 #endif
1322 rtoy 1.66 } else
1323     /*
1324     * No bytes allocated. Unallocate the first_page if there are 0 bytes_used.
1325     */
1326 dtc 1.1 if (page_table[first_page].bytes_used == 0)
1327 rtoy 1.66 page_table[first_page].flags &= ~PAGE_ALLOCATED_MASK;
1328 dtc 1.14
1329 rtoy 1.66 /* Unallocate any unused pages. */
1330     while (next_page <= alloc_region->last_page) {
1331     gc_assert(page_table[next_page].bytes_used == 0);
1332     page_table[next_page].flags &= ~PAGE_ALLOCATED_MASK;
1333     next_page++;
1334     }
1335 dtc 1.1
1336 rtoy 1.66 /* Reset the alloc_region. */
1337     alloc_region->first_page = 0;
1338     alloc_region->last_page = -1;
1339     alloc_region->start_addr = page_address(0);
1340     alloc_region->free_pointer = page_address(0);
1341     alloc_region->end_addr = page_address(0);
1342 dtc 1.1
1343 dtc 1.14 #if 0
1344 rtoy 1.66 fprintf(stderr, "\n");
1345 dtc 1.14 #endif
1346 dtc 1.1 }
1347    
1348    
1349    
1350     static inline void *gc_quick_alloc(int nbytes);
1351    
1352 dtc 1.14 /*
1353     * Allocate a possibly large object.
1354     */
1355 rtoy 1.66 static void *
1356     gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
1357 dtc 1.1 {
1358 rtoy 1.66 int first_page;
1359     int last_page;
1360     int region_size;
1361     int restart_page;
1362     int bytes_found;
1363     int num_pages;
1364     int orig_first_page_bytes_used;
1365     int byte_cnt;
1366     int more;
1367     int bytes_used;
1368     int next_page;
1369     int large = (nbytes >= large_object_size);
1370     int mmask, mflags;
1371 dtc 1.15
1372 dtc 1.14
1373 rtoy 1.66 /* Shut up some compiler warnings */
1374     last_page = bytes_found = 0;
1375 dtc 1.14
1376 toy 1.47 #if 0
1377 rtoy 1.66 if (nbytes > 200000)
1378     fprintf(stderr, "*** alloc_large %d\n", nbytes);
1379 toy 1.47 #endif
1380 dtc 1.14
1381     #if 0
1382 rtoy 1.66 fprintf(stderr, "gc_alloc_large for %d bytes from gen %d\n",
1383     nbytes, gc_alloc_generation);
1384 dtc 1.14 #endif
1385    
1386 rtoy 1.66 /*
1387     * If the object is small, and there is room in the current region
1388     * then allocation it in the current region.
1389     */
1390     if (!large && alloc_region->end_addr - alloc_region->free_pointer >= nbytes)
1391     return gc_quick_alloc(nbytes);
1392 dtc 1.14
1393 rtoy 1.66 /*
1394     * Search for a contiguous free region of at least nbytes. If it's a
1395     * large object then align it on a page boundary by searching for a
1396     * free page.
1397     */
1398 dtc 1.14
1399 rtoy 1.66 /*
1400     * To allow the allocation of small objects without the danger of
1401     * using a page in the current boxed region, the search starts after
1402     * the current boxed free region. XX could probably keep a page
1403     * index ahead of the current region and bumped up here to save a
1404     * lot of re-scanning.
1405     */
1406     if (unboxed)
1407     restart_page =
1408     generations[gc_alloc_generation].alloc_large_unboxed_start_page;
1409     else
1410     restart_page = generations[gc_alloc_generation].alloc_large_start_page;
1411     if (restart_page <= alloc_region->last_page)
1412     restart_page = alloc_region->last_page + 1;
1413    
1414     /* Setup the mask and matching flags. */
1415    
1416     mmask = PAGE_ALLOCATED_MASK | PAGE_WRITE_PROTECTED_MASK
1417     | PAGE_LARGE_OBJECT_MASK | PAGE_DONT_MOVE_MASK
1418     | PAGE_UNBOXED_MASK | PAGE_GENERATION_MASK;
1419     mflags = PAGE_ALLOCATED_MASK | (unboxed << PAGE_UNBOXED_SHIFT)
1420     | gc_alloc_generation;
1421 dtc 1.14
1422 rtoy 1.66 do {
1423     first_page = restart_page;
1424 dtc 1.14
1425 rtoy 1.66 if (large)
1426     while (first_page < dynamic_space_pages
1427     && PAGE_ALLOCATED(first_page)) first_page++;
1428     else
1429     while (first_page < dynamic_space_pages) {
1430     int flags = page_table[first_page].flags;
1431 dtc 1.14
1432 rtoy 1.66 if (!(flags & PAGE_ALLOCATED_MASK)
1433     || ((flags & mmask) == mflags &&
1434     page_table[first_page].bytes_used < PAGE_SIZE - 32))
1435     break;
1436     first_page++;
1437     }
1438 dtc 1.14
1439 rtoy 1.66 /* Check for a failure */
1440     if (first_page >= dynamic_space_pages - reserved_heap_pages) {
1441     #if 0
1442     handle_heap_overflow("*A2 gc_alloc_large failed, nbytes=%d.\n",
1443     nbytes);
1444     #else
1445     break;
1446 dtc 1.14 #endif
1447 rtoy 1.66 }
1448     gc_assert(!PAGE_WRITE_PROTECTED(first_page));
1449 dtc 1.1
1450 rtoy 1.66 #if 0
1451     fprintf(stderr, " first_page=%d bytes_used=%d\n",
1452     first_page, page_table[first_page].bytes_used);
1453     #endif
1454 dtc 1.1
1455 rtoy 1.66 last_page = first_page;
1456     bytes_found = PAGE_SIZE - page_table[first_page].bytes_used;
1457     num_pages = 1;
1458     while (bytes_found < nbytes
1459     && last_page < dynamic_space_pages - 1
1460     && !PAGE_ALLOCATED(last_page + 1)) {
1461     last_page++;
1462     num_pages++;
1463     bytes_found += PAGE_SIZE;
1464     gc_assert(!PAGE_WRITE_PROTECTED(last_page));
1465     }
1466 dtc 1.14
1467 rtoy 1.66 region_size = (PAGE_SIZE - page_table[first_page].bytes_used)
1468     + PAGE_SIZE * (last_page - first_page);
1469 dtc 1.15
1470 rtoy 1.66 gc_assert(bytes_found == region_size);
1471 dtc 1.1
1472 rtoy 1.66 #if 0
1473     fprintf(stderr, " last_page=%d bytes_found=%d num_pages=%d\n",
1474     last_page, bytes_found, num_pages);
1475     #endif
1476 dtc 1.14
1477 rtoy 1.66 restart_page = last_page + 1;
1478     }
1479     while ((restart_page < dynamic_space_pages) && (bytes_found < nbytes));
1480 dtc 1.14
1481 rtoy 1.66 if (first_page >= dynamic_space_pages - reserved_heap_pages) {
1482     handle_heap_overflow("*A2 gc_alloc_large failed, nbytes=%d.\n", nbytes);
1483     }
1484 dtc 1.1
1485 rtoy 1.66 /* Check for a failure */
1486     if (restart_page >= (dynamic_space_pages - reserved_heap_pages)
1487     && bytes_found < nbytes) {
1488     handle_heap_overflow("*A1 gc_alloc_large failed, nbytes=%d.\n", nbytes);
1489     }
1490 dtc 1.14 #if 0
1491 rtoy 1.66 if (large)
1492     fprintf(stderr,
1493     "gc_alloc_large gen %d: %d of %d bytes: from pages %d to %d: addr=%x\n",
1494     gc_alloc_generation, nbytes, bytes_found, first_page, last_page,
1495     page_address(first_page));
1496 dtc 1.14 #endif
1497    
1498 rtoy 1.66 gc_assert(first_page > alloc_region->last_page);
1499     if (unboxed)
1500     generations[gc_alloc_generation].alloc_large_unboxed_start_page =
1501     last_page;
1502     else
1503     generations[gc_alloc_generation].alloc_large_start_page = last_page;
1504    
1505     /* Setup the pages. */
1506     orig_first_page_bytes_used = page_table[first_page].bytes_used;
1507 dtc 1.14
1508 rtoy 1.66 /*
1509     * If the first page was free then setup the gen, and
1510     * first_object_offset.
1511     */
1512 dtc 1.14
1513 rtoy 1.66 if (large)
1514     mflags |= PAGE_LARGE_OBJECT_MASK;
1515     if (page_table[first_page].bytes_used == 0) {
1516     PAGE_FLAGS_UPDATE(first_page, mmask, mflags);
1517     page_table[first_page].first_object_offset = 0;
1518 dtc 1.1 }
1519 dtc 1.14
1520 rtoy 1.66 gc_assert(PAGE_ALLOCATED(first_page));
1521     gc_assert(PAGE_UNBOXED_VAL(first_page) == unboxed);
1522     gc_assert(PAGE_GENERATION(first_page) == gc_alloc_generation);
1523     gc_assert(PAGE_LARGE_OBJECT_VAL(first_page) == large);
1524 dtc 1.14
1525 rtoy 1.66 byte_cnt = 0;
1526 dtc 1.1
1527 rtoy 1.66 /*
1528     * Calc. the number of bytes used in this page. This is not
1529     * always the number of new bytes, unless it was free.
1530     */
1531     more = 0;
1532     bytes_used = nbytes + orig_first_page_bytes_used;
1533     if (bytes_used > PAGE_SIZE) {
1534     bytes_used = PAGE_SIZE;
1535     more = 1;
1536     }
1537     page_table[first_page].bytes_used = bytes_used;
1538     byte_cnt += bytes_used;
1539    
1540     next_page = first_page + 1;
1541    
1542     /*
1543     * All the rest of the pages should be free. Need to set their
1544     * first_object_offset pointer to the start of the region, and set
1545     * the bytes_used.
1546     */
1547     while (more) {
1548     #if 0
1549     fprintf(stderr, "+");
1550     #endif
1551    
1552     gc_assert(!PAGE_ALLOCATED(next_page));
1553     gc_assert(page_table[next_page].bytes_used == 0);
1554     PAGE_FLAGS_UPDATE(next_page, mmask, mflags);
1555    
1556     page_table[next_page].first_object_offset =
1557     orig_first_page_bytes_used - PAGE_SIZE * (next_page - first_page);
1558    
1559     /* Calc. the number of bytes used in this page. */
1560     more = 0;
1561     bytes_used = nbytes + orig_first_page_bytes_used - byte_cnt;
1562     if (bytes_used > PAGE_SIZE) {
1563     bytes_used = PAGE_SIZE;
1564     more = 1;
1565     }
1566     page_table[next_page].bytes_used = bytes_used;
1567     byte_cnt += bytes_used;
1568    
1569     next_page++;
1570     }
1571    
1572     gc_assert(byte_cnt - orig_first_page_bytes_used == nbytes);
1573 dtc 1.1
1574 rtoy 1.66 bytes_allocated += nbytes;
1575     generations[gc_alloc_generation].bytes_allocated += nbytes;
1576 dtc 1.14
1577 rtoy 1.66 /* Add the region to the new_areas if requested. */
1578     if (!unboxed)
1579     add_new_area(first_page, orig_first_page_bytes_used, nbytes);
1580    
1581     /* Bump up the last_free_page */
1582     if (last_page + 1 > last_free_page) {
1583     last_free_page = last_page + 1;
1584     set_alloc_pointer((lispobj) ((char *) heap_base +
1585     PAGE_SIZE * last_free_page));
1586     }
1587 dtc 1.14
1588 rtoy 1.66 return (void *) (page_address(first_page) + orig_first_page_bytes_used);
1589 dtc 1.1 }
1590    
1591 dtc 1.14 /*
1592 rtoy 1.98 * If the current region has more than this much space left, we don't
1593     * want to abandon the region (wasting space), but do a "large" alloc
1594     * to a new region.
1595     */
1596    
1597     int region_empty_threshold = 32;
1598    
1599    
1600     /*
1601     * How many consecutive large alloc we can do before we abandon the
1602 rtoy 1.99 * current region.
1603 rtoy 1.98 */
1604     int consecutive_large_alloc_limit = 10;
1605    
1606    
1607     /*
1608 rtoy 1.99 * Statistics for the current region
1609 rtoy 1.98 */
1610     struct alloc_stats
1611     {
1612 rtoy 1.99 /*
1613     * How many consecutive allocations we have tried with the current
1614     * region (in saved_region)
1615     */
1616 rtoy 1.98 int consecutive_alloc;
1617 rtoy 1.99 /*
1618     * How many times we tried to allocate to this region but didn't
1619     * because we didn't have enough room and did a large alloc in a
1620     * different region.
1621     */
1622 rtoy 1.98 int abandon_region_count;
1623 rtoy 1.99
1624     /*
1625     * A copy of the current allocation region which we use to compare
1626     * against.
1627     */
1628 rtoy 1.98 struct alloc_region saved_region;
1629     };
1630    
1631 rtoy 1.99 /* Statistics for boxed and unboxed regions */
1632 rtoy 1.98 struct alloc_stats boxed_stats =
1633 rtoy 1.99 {0, 0,
1634 rtoy 1.98 {NULL, NULL, -1, -1, NULL}};
1635    
1636     struct alloc_stats unboxed_stats =
1637 rtoy 1.99 {0, 0,
1638 rtoy 1.98 {NULL, NULL, -1, -1, NULL}};
1639    
1640     /*
1641     * Try to allocate from the current region. If it's possible, do the
1642     * allocation and return the object. If it's not possible, return
1643     * (void*) -1.
1644 dtc 1.14 */
1645 rtoy 1.98 static inline void *
1646     gc_alloc_try_current_region(int nbytes, struct alloc_region *region, int unboxed,
1647     struct alloc_stats *stats)
1648 dtc 1.1 {
1649 rtoy 1.66 char *new_free_pointer;
1650 dtc 1.1
1651 rtoy 1.66 /* Check if there is room in the current alloc region. */
1652 rtoy 1.98 new_free_pointer = region->free_pointer + nbytes;
1653 rtoy 1.66
1654 rtoy 1.98 if (new_free_pointer <= region->end_addr) {
1655 rtoy 1.66 /* If so then allocate from the current alloc region. */
1656 rtoy 1.98 char *new_obj = region->free_pointer;
1657 dtc 1.14
1658 rtoy 1.98 region->free_pointer = new_free_pointer;
1659 dtc 1.14
1660 rtoy 1.66 /* Check if the alloc region is almost empty. */
1661 rtoy 1.99 if (region->end_addr - region->free_pointer <= region_empty_threshold) {
1662 rtoy 1.66 /* If so finished with the current region. */
1663 rtoy 1.98 gc_alloc_update_page_tables(unboxed, region);
1664 rtoy 1.66 /* Setup a new region. */
1665 rtoy 1.99 gc_alloc_new_region(region_empty_threshold, unboxed, region);
1666 rtoy 1.66 }
1667 rtoy 1.98
1668     stats->consecutive_alloc = 0;
1669 rtoy 1.99 stats->abandon_region_count = 0;
1670 rtoy 1.98 memcpy(&stats->saved_region, region, sizeof(stats->saved_region));
1671    
1672 rtoy 1.66 return (void *) new_obj;
1673 rtoy 1.98 } else {
1674     return (void *) -1;
1675     }
1676     }
1677    
1678     /*
1679     * Allocate bytes from a boxed or unboxed region. It first checks if
1680     * there is room, if not then it calls gc_alloc_new_region to find a
1681     * new region with enough space. A pointer to the start of the region
1682     * is returned. The parameter "unboxed" should be 0 (boxed) or 1
1683     * (unboxed).
1684     */
1685     static void *
1686     gc_alloc_region(int nbytes, struct alloc_region *region, int unboxed, struct alloc_stats *stats)
1687     {
1688     void *new_obj;
1689    
1690     #if 0
1691     fprintf(stderr, "gc_alloc %d\n", nbytes);
1692     #endif
1693    
1694     /* Check if there is room in the current alloc region. */
1695    
1696     new_obj = gc_alloc_try_current_region(nbytes, region, unboxed, stats);
1697     if (new_obj != (void *) -1) {
1698     return new_obj;
1699 dtc 1.1 }
1700 dtc 1.14
1701 rtoy 1.66 /* Else not enough free space in the current region. */
1702    
1703     /*
1704 rtoy 1.98 * If the allocation is large enough, always do a large alloc This
1705     * helps GC so we don't have to copy this object again.
1706     */
1707    
1708     if (nbytes >= large_object_size) {
1709     return gc_alloc_large(nbytes, unboxed, region);
1710     }
1711    
1712     /*
1713 rtoy 1.66 * If there is a bit of room left in the current region then
1714     * allocate a large object.
1715     */
1716 rtoy 1.98
1717     /*
1718     * This has potentially very bad behavior on sparc if the current
1719     * boxed region is too small for the allocation, but the free
1720     * space is greater than 32 (region_empty_threshold). The
1721     * scenario is where we're always allocating something that won't
1722     * fit in the boxed region, and we keep calling gc_alloc_large.
1723     * Since gc_alloc_large doesn't change the region, the next
1724     * allocation will again be out-of-line and we hit a kernel trap
1725     * again. And so on, so we waste all of our time doing kernel
1726     * traps to allocate small things. This also affects ppc.
1727     *
1728     * X86 has the same issue, but the affect is less because the
1729     * out-of-line allocation is a just a function call, not a kernel
1730     * trap.
1731     *
1732     * Heuristic: If we do too many consecutive large allocations
1733     * because the current region has some space left, we give up and
1734     * abandon the region. This will prevent the bad scenario above
1735     * from killing allocation performance.
1736     *
1737     */
1738    
1739     if ((region->end_addr - region->free_pointer > region_empty_threshold)
1740     && (stats->consecutive_alloc < consecutive_large_alloc_limit)) {
1741     /*
1742     * Is the saved region the same as the current region? If so,
1743     * update the counter. If not, that means we did some other
1744 rtoy 1.99 * (inline) allocation, so reset the counters and region to
1745     * the current region.
1746 rtoy 1.98 */
1747     if (memcmp(&stats->saved_region, region, sizeof(stats->saved_region)) == 0) {
1748     ++stats->consecutive_alloc;
1749     } else {
1750     stats->consecutive_alloc = 0;
1751 rtoy 1.99 stats->abandon_region_count = 0;
1752 rtoy 1.98 memcpy(&stats->saved_region, region, sizeof(stats->saved_region));
1753     }
1754    
1755     return gc_alloc_large(nbytes, unboxed, region);
1756     }
1757    
1758 rtoy 1.99 /*
1759     * We given up on the current region because the
1760     * consecutive_large_alloc_limit has been reached.
1761     */
1762 rtoy 1.98 stats->consecutive_alloc = 0;
1763     ++stats->abandon_region_count;
1764 dtc 1.1
1765 rtoy 1.66 /* Finished with the current region. */
1766 rtoy 1.98 gc_alloc_update_page_tables(unboxed, region);
1767 dtc 1.1
1768 rtoy 1.66 /* Setup a new region. */
1769 rtoy 1.98 gc_alloc_new_region(nbytes, unboxed, region);
1770 dtc 1.1
1771 rtoy 1.66 /* Should now be enough room. */
1772 dtc 1.14
1773 rtoy 1.98 new_obj = gc_alloc_try_current_region(nbytes, region, unboxed, stats);
1774     if (new_obj != (void *) -1) {
1775     return new_obj;
1776 dtc 1.1 }
1777 dtc 1.14
1778 rtoy 1.66 /* Shouldn't happen? */
1779     gc_assert(0);
1780     return 0;
1781 dtc 1.1 }
1782    
1783 dtc 1.14 /*
1784 rtoy 1.98 * Allocate bytes from the boxed_region. It first checks if there is
1785     * room, if not then it calls gc_alloc_new_region to find a new region
1786     * with enough space. A pointer to the start of the region is returned.
1787     */
1788     static inline void *
1789     gc_alloc(int nbytes)
1790     {
1791     void* obj;
1792    
1793     obj = gc_alloc_region(nbytes, &boxed_region, 0, &boxed_stats);
1794    
1795     return obj;
1796     }
1797    
1798     /*
1799 dtc 1.14 * Allocate space from the boxed_region. If there is not enough free
1800     * space then call gc_alloc to do the job. A pointer to the start of
1801     * the region is returned.
1802     */
1803 rtoy 1.66 static inline void *
1804     gc_quick_alloc(int nbytes)
1805 dtc 1.1 {
1806 rtoy 1.66 char *new_free_pointer;
1807    
1808     /* Check if there is room in the current region. */
1809     new_free_pointer = boxed_region.free_pointer + nbytes;
1810 dtc 1.1
1811 rtoy 1.66 if (new_free_pointer <= boxed_region.end_addr) {
1812     /* If so then allocate from the current region. */
1813     void *new_obj = boxed_region.free_pointer;
1814 dtc 1.14
1815 rtoy 1.66 boxed_region.free_pointer = new_free_pointer;
1816     return (void *) new_obj;
1817     }
1818 dtc 1.14
1819 rtoy 1.66 /* Else call gc_alloc */
1820     return gc_alloc(nbytes);
1821 dtc 1.1 }
1822    
1823 dtc 1.14 /*
1824     * Allocate space for the boxed object. If it is a large object then
1825     * do a large alloc else allocate from the current region. If there is
1826     * not enough free space then call gc_alloc to do the job. A pointer
1827     * to the start of the region is returned.
1828     */
1829 rtoy 1.66 static inline void *
1830     gc_quick_alloc_large(int nbytes)
1831 dtc 1.1 {
1832 rtoy 1.66 char *new_free_pointer;
1833    
1834     if (nbytes >= large_object_size)
1835     return gc_alloc_large(nbytes, 0, &boxed_region);
1836 dtc 1.1
1837 rtoy 1.66 /* Check if there is room in the current region. */
1838     new_free_pointer = boxed_region.free_pointer + nbytes;
1839 dtc 1.1
1840 rtoy 1.66 if (new_free_pointer <= boxed_region.end_addr) {
1841     /* If so then allocate from the current region. */
1842     void *new_obj = boxed_region.free_pointer;
1843 dtc 1.14
1844 rtoy 1.66 boxed_region.free_pointer = new_free_pointer;
1845     return (void *) new_obj;
1846     }
1847 dtc 1.14
1848 rtoy 1.66 /* Else call gc_alloc */
1849     return gc_alloc(nbytes);
1850 dtc 1.1 }
1851    
1852 rtoy 1.98 static inline void *
1853 rtoy 1.66 gc_alloc_unboxed(int nbytes)
1854 dtc 1.1 {
1855 rtoy 1.98 void *obj;
1856 dtc 1.1
1857 rtoy 1.98 obj = gc_alloc_region(nbytes, &unboxed_region, 1, &unboxed_stats);
1858 rtoy 1.66
1859 rtoy 1.98 return obj;
1860 dtc 1.1 }
1861    
1862 rtoy 1.66 static inline void *
1863     gc_quick_alloc_unboxed(int nbytes)
1864 dtc 1.1 {
1865 rtoy 1.66 char *new_free_pointer;
1866    
1867     /* Check if there is room in the current region. */
1868     new_free_pointer = unboxed_region.free_pointer + nbytes;
1869 dtc 1.1
1870 rtoy 1.66 if (new_free_pointer <= unboxed_region.end_addr) {
1871     /* If so then allocate from the current region. */
1872     void *new_obj = unboxed_region.free_pointer;
1873 dtc 1.14
1874 rtoy 1.66 unboxed_region.free_pointer = new_free_pointer;
1875 dtc 1.14
1876 rtoy 1.66 return (void *) new_obj;
1877 dtc 1.1 }
1878 dtc 1.14
1879 rtoy 1.66 /* Else call gc_alloc */
1880     return gc_alloc_unboxed(nbytes);
1881 dtc 1.1 }
1882    
1883 dtc 1.14 /*
1884     * Allocate space for the object. If it is a large object then do a
1885     * large alloc else allocate from the current region. If there is not
1886     * enough free space then call gc_alloc to do the job.
1887     *
1888     * A pointer to the start of the region is returned.
1889     */
1890 rtoy 1.66 static inline void *
1891     gc_quick_alloc_large_unboxed(int nbytes)
1892 dtc 1.1 {
1893 rtoy 1.66 char *new_free_pointer;
1894 dtc 1.1
1895 rtoy 1.66 if (nbytes >= large_object_size)
1896     return gc_alloc_large(nbytes, 1, &unboxed_region);
1897 dtc 1.1
1898 rtoy 1.66 /* Check if there is room in the current region. */
1899     new_free_pointer = unboxed_region.free_pointer + nbytes;
1900 dtc 1.14
1901 rtoy 1.66 if (new_free_pointer <= unboxed_region.end_addr) {
1902     /* If so then allocate from the current region. */
1903     void *new_obj = unboxed_region.free_pointer;
1904 dtc 1.14
1905 rtoy 1.66 unboxed_region.free_pointer = new_free_pointer;
1906    
1907     return (void *) new_obj;
1908     }
1909 dtc 1.14
1910 rtoy 1.66 /* Else call gc_alloc */
1911     return gc_alloc_unboxed(nbytes);
1912 dtc 1.1 }
1913    
1914     /***************************************************************************/
1915 rtoy 1.66
1916 dtc 1.1
1917     /* Scavenging/transporting routines derived from gc.c */
1918    
1919 rtoy 1.66 static int (*scavtab[256]) (lispobj * where, lispobj object);
1920     static lispobj(*transother[256]) (lispobj object);
1921     static int (*sizetab[256]) (lispobj * where);
1922 dtc 1.1
1923     static struct weak_pointer *weak_pointers;
1924 dtc 1.14 static struct scavenger_hook *scavenger_hooks = (struct scavenger_hook *) NIL;
1925 dtc 1.1
1926 rtoy 1.98 /* Like (ceiling x y), but y is constrained to be a power of two */
1927 dtc 1.1 #define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
1928 rtoy 1.66
1929 dtc 1.1
1930     /* Predicates */
1931    
1932 rtoy 1.66 static inline boolean
1933     from_space_p(lispobj obj)
1934 dtc 1.1 {
1935 rtoy 1.66 int page_index = (char *) obj - heap_base;
1936    
1937     return page_index >= 0
1938     && (page_index =
1939     (unsigned int) page_index / PAGE_SIZE) < dynamic_space_pages
1940     && PAGE_GENERATION(page_index) == from_space;
1941 dtc 1.14 }
1942    
1943 rtoy 1.66 static inline boolean
1944     new_space_p(lispobj obj)
1945 dtc 1.14 {
1946 rtoy 1.66 int page_index = (char *) obj - heap_base;
1947    
1948     return page_index >= 0
1949     && (page_index =
1950     (unsigned int) page_index / PAGE_SIZE) < dynamic_space_pages
1951     && PAGE_GENERATION(page_index) == new_space;
1952 dtc 1.1 }
1953 rtoy 1.66
1954 dtc 1.1
1955     /* Copying Objects */
1956    
1957    
1958     /* Copying Boxed Objects */
1959 rtoy 1.66 static inline lispobj
1960     copy_object(lispobj object, int nwords)
1961 dtc 1.1 {
1962 rtoy 1.66 int tag;
1963     lispobj *new;
1964     lispobj *source, *dest;
1965    
1966     gc_assert(Pointerp(object));
1967     gc_assert(from_space_p(object));
1968     gc_assert((nwords & 0x01) == 0);
1969 dtc 1.14
1970 rtoy 1.66 /* get tag of object */
1971     tag = LowtagOf(object);
1972    
1973     /* allocate space */
1974     new = gc_quick_alloc(nwords * sizeof(lispobj));
1975    
1976     dest = new;
1977     source = (lispobj *) PTR(object);
1978    
1979     /* copy the object */
1980     while (nwords > 0) {
1981     dest[0] = source[0];
1982     dest[1] = source[1];
1983     dest += 2;
1984     source += 2;
1985     nwords -= 2;
1986     }
1987    
1988     /* return lisp pointer of new object */
1989     return (lispobj) new | tag;
1990 dtc 1.1 }
1991    
1992 dtc 1.14 /*
1993     * Copying Large Boxed Objects. If the object is in a large object
1994     * region then it is simply promoted, else it is copied. If it's large
1995     * enough then it's copied to a large object region.
1996     *
1997     * Vectors may have shrunk. If the object is not copied the space
1998     * needs to be reclaimed, and the page_tables corrected.
1999     */
2000 rtoy 1.66 static lispobj
2001     copy_large_object(lispobj object, int nwords)
2002 dtc 1.1 {
2003 rtoy 1.66 int tag;
2004     lispobj *new;
2005     lispobj *source, *dest;
2006     int first_page;
2007    
2008     gc_assert(Pointerp(object));
2009     gc_assert(from_space_p(object));
2010     gc_assert((nwords & 0x01) == 0);
2011    
2012     if (gencgc_verbose && nwords > 1024 * 1024)
2013 agoncharov 1.90 fprintf(stderr, "** copy_large_object: %lu\n",
2014     (unsigned long) (nwords * sizeof(lispobj)));
2015 rtoy 1.66
2016     /* Check if it's a large object. */
2017     first_page = find_page_index((void *) object);
2018     gc_assert(first_page >= 0);
2019    
2020     if (PAGE_LARGE_OBJECT(first_page)) {
2021     /* Promote the object. */
2022     int remaining_bytes;
2023     int next_page;
2024     int bytes_freed;
2025     int old_bytes_used;
2026     int mmask, mflags;
2027    
2028     /*
2029     * Note: Any page write protection must be removed, else a later
2030     * scavenge_newspace may incorrectly not scavenge these pages.
2031     * This would not be necessary if they are added to the new areas,
2032     * but lets do it for them all (they'll probably be written
2033     * anyway?).
2034     */
2035    
2036     gc_assert(page_table[first_page].first_object_offset == 0);
2037    
2038     next_page = first_page;
2039     remaining_bytes = nwords * sizeof(lispobj);
2040     while (remaining_bytes > PAGE_SIZE) {
2041     gc_assert(PAGE_GENERATION(next_page) == from_space);
2042     gc_assert(PAGE_ALLOCATED(next_page));
2043     gc_assert(!PAGE_UNBOXED(next_page));
2044     gc_assert(PAGE_LARGE_OBJECT(next_page));
2045     gc_assert(page_table[next_page].first_object_offset ==
2046     PAGE_SIZE * (first_page - next_page));
2047     gc_assert(page_table[next_page].bytes_used == PAGE_SIZE);
2048 dtc 1.1
2049 rtoy 1.66 PAGE_FLAGS_UPDATE(next_page, PAGE_GENERATION_MASK, new_space);
2050    
2051     /*
2052     * Remove any write protection. Should be able to religh on the
2053     * WP flag to avoid redundant calls.
2054     */
2055     if (PAGE_WRITE_PROTECTED(next_page)) {
2056     os_protect((os_vm_address_t) page_address(next_page), PAGE_SIZE,
2057     OS_VM_PROT_ALL);
2058     page_table[next_page].flags &= ~PAGE_WRITE_PROTECTED_MASK;
2059     }
2060     remaining_bytes -= PAGE_SIZE;
2061     next_page++;
2062     }
2063 dtc 1.14
2064 rtoy 1.66 /*
2065     * Now only one page remains, but the object may have shrunk so
2066     * there may be more unused pages which will be freed.
2067     */
2068 dtc 1.1
2069 rtoy 1.66 /* Object may have shrunk but shouldn't have grown - check. */
2070     gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2071 dtc 1.1
2072 rtoy 1.66 PAGE_FLAGS_UPDATE(next_page, PAGE_GENERATION_MASK, new_space);
2073     gc_assert(PAGE_ALLOCATED(next_page));
2074     gc_assert(!PAGE_UNBOXED(next_page));
2075    
2076     /* Adjust the bytes_used. */
2077     old_bytes_used = page_table[next_page].bytes_used;
2078     page_table[next_page].bytes_used = remaining_bytes;
2079    
2080     bytes_freed = old_bytes_used - remaining_bytes;
2081    
2082     mmask = PAGE_ALLOCATED_MASK | PAGE_UNBOXED_MASK | PAGE_LARGE_OBJECT_MASK
2083     | PAGE_GENERATION_MASK;
2084     mflags = PAGE_ALLOCATED_MASK | PAGE_LARGE_OBJECT_MASK | from_space;
2085    
2086     /* Free any remaining pages; needs care. */
2087     next_page++;
2088     while (old_bytes_used == PAGE_SIZE &&
2089     PAGE_FLAGS(next_page, mmask) == mflags &&
2090     page_table[next_page].first_object_offset ==
2091     PAGE_SIZE * (first_page - next_page)) {
2092     /*
2093     * Checks out OK, free the page. Don't need to both zeroing
2094     * pages as this should have been done before shrinking the
2095     * object. These pages shouldn't be write protected as they
2096     * should be zero filled.
2097     */
2098     gc_assert(!PAGE_WRITE_PROTECTED(next_page));
2099 dtc 1.1
2100 rtoy 1.66 old_bytes_used = page_table[next_page].bytes_used;
2101     page_table[next_page].flags &= ~PAGE_ALLOCATED_MASK;
2102     page_table[next_page].bytes_used = 0;
2103     bytes_freed += old_bytes_used;
2104     next_page++;
2105     }
2106 dtc 1.14
2107 rtoy 1.66 if (gencgc_verbose && bytes_freed > 0)
2108     fprintf(stderr, "* copy_large_boxed bytes_freed %d\n", bytes_freed);
2109 dtc 1.14
2110 rtoy 1.66 generations[from_space].bytes_allocated -=
2111     sizeof(lispobj) * nwords + bytes_freed;
2112     generations[new_space].bytes_allocated += sizeof(lispobj) * nwords;
2113     bytes_allocated -= bytes_freed;
2114 dtc 1.14
2115 rtoy 1.66 /* Add the region to the new_areas if requested. */
2116     add_new_area(first_page, 0, nwords * sizeof(lispobj));
2117 dtc 1.14
2118 rtoy 1.66 return object;
2119     } else {
2120     /* get tag of object */
2121     tag = LowtagOf(object);
2122 dtc 1.14
2123 rtoy 1.66 /* allocate space */
2124     new = gc_quick_alloc_large(nwords * sizeof(lispobj));
2125 dtc 1.15
2126 rtoy 1.66 dest = new;
2127     source = (lispobj *) PTR(object);
2128 dtc 1.14
2129 rtoy 1.66 /* copy the object */
2130     while (nwords > 0) {
2131     dest[0] = source[0];
2132     dest[1] = source[1];
2133     dest += 2;
2134     source += 2;
2135     nwords -= 2;
2136     }
2137 dtc 1.14
2138 rtoy 1.66 /* return lisp pointer of new object */
2139     return (lispobj) new | tag;
2140     }
2141     }
2142 dtc 1.14
2143 rtoy 1.66 /* Copying UnBoxed Objects. */
2144     static inline lispobj
2145     copy_unboxed_object(lispobj object, int nwords)
2146     {
2147     int tag;
2148     lispobj *new;
2149     lispobj *source, *dest;
2150    
2151     gc_assert(Pointerp(object));
2152     gc_assert(from_space_p(object));
2153     gc_assert((nwords & 0x01) == 0);
2154 dtc 1.1
2155     /* get tag of object */
2156     tag = LowtagOf(object);
2157 dtc 1.14
2158 dtc 1.1 /* allocate space */
2159 rtoy 1.66 new = gc_quick_alloc_unboxed(nwords * sizeof(lispobj));
2160 dtc 1.14
2161 dtc 1.1 dest = new;
2162     source = (lispobj *) PTR(object);
2163 dtc 1.14
2164 rtoy 1.66 /* Copy the object */
2165 dtc 1.1 while (nwords > 0) {
2166 rtoy 1.66 dest[0] = source[0];
2167     dest[1] = source[1];
2168     dest += 2;
2169     source += 2;
2170     nwords -= 2;
2171 dtc 1.1 }
2172 dtc 1.14
2173 rtoy 1.66 /* Return lisp pointer of new object. */
2174 dtc 1.14 return (lispobj) new | tag;
2175 dtc 1.1 }
2176    
2177    
2178 dtc 1.14 /*
2179     * Copying Large Unboxed Objects. If the object is in a large object
2180     * region then it is simply promoted, else it is copied. If it's large
2181     * enough then it's copied to a large object region.
2182     *
2183     * Bignums and vectors may have shrunk. If the object is not copied
2184     * the space needs to be reclaimed, and the page_tables corrected.
2185     */
2186 rtoy 1.66 static lispobj
2187     copy_large_unboxed_object(lispobj object, int nwords)
2188 dtc 1.1 {
2189 rtoy 1.66 int tag;
2190     lispobj *new;
2191     lispobj *source, *dest;
2192     int first_page;
2193    
2194     gc_assert(Pointerp(object));
2195     gc_assert(from_space_p(object));
2196     gc_assert((nwords & 0x01) == 0);
2197    
2198     if (gencgc_verbose && nwords > 1024 * 1024)
2199 cshapiro 1.87 fprintf(stderr, "** copy_large_unboxed_object: %lu\n",
2200 agoncharov 1.90 (unsigned long) (nwords * sizeof(lispobj)));
2201 rtoy 1.66
2202     /* Check if it's a large object. */
2203     first_page = find_page_index((void *) object);
2204     gc_assert(first_page >= 0);
2205 dtc 1.14
2206 rtoy 1.66 if (PAGE_LARGE_OBJECT(first_page)) {
2207     /*
2208     * Promote the object. Note: Unboxed objects may have been
2209     * allocated to a BOXED region so it may be necessary to change
2210     * the region to UNBOXED.
2211     */
2212     int remaining_bytes;
2213     int next_page;
2214     int bytes_freed;
2215     int old_bytes_used;
2216     int mmask, mflags;
2217    
2218     gc_assert(page_table[first_page].first_object_offset == 0);
2219    
2220     next_page = first_page;
2221     remaining_bytes = nwords * sizeof(lispobj);
2222     while (remaining_bytes > PAGE_SIZE) {
2223     gc_assert(PAGE_GENERATION(next_page) == from_space);
2224     gc_assert(PAGE_ALLOCATED(next_page));
2225     gc_assert(PAGE_LARGE_OBJECT(next_page));
2226     gc_assert(page_table[next_page].first_object_offset ==
2227     PAGE_SIZE * (first_page - next_page));
2228     gc_assert(page_table[next_page].bytes_used == PAGE_SIZE);
2229    
2230     PAGE_FLAGS_UPDATE(next_page,
2231     PAGE_UNBOXED_MASK | PAGE_GENERATION_MASK,
2232     PAGE_UNBOXED_MASK | new_space);
2233     remaining_bytes -= PAGE_SIZE;
2234     next_page++;
2235     }
2236 dtc 1.1
2237 rtoy 1.66 /*
2238     * Now only one page remains, but the object may have shrunk so
2239     * there may be more unused pages which will be freed.
2240     */
2241 dtc 1.1
2242 rtoy 1.66 /* Object may have shrunk but shouldn't have grown - check. */
2243     gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2244 dtc 1.1
2245 rtoy 1.66 PAGE_FLAGS_UPDATE(next_page, PAGE_ALLOCATED_MASK | PAGE_UNBOXED_MASK
2246     | PAGE_GENERATION_MASK,
2247     PAGE_ALLOCATED_MASK | PAGE_UNBOXED_MASK | new_space);
2248    
2249     /* Adjust the bytes_used. */
2250     old_bytes_used = page_table[next_page].bytes_used;
2251     page_table[next_page].bytes_used = remaining_bytes;
2252    
2253     bytes_freed = old_bytes_used - remaining_bytes;
2254    
2255     mmask = PAGE_ALLOCATED_MASK | PAGE_LARGE_OBJECT_MASK
2256     | PAGE_GENERATION_MASK;
2257     mflags = PAGE_ALLOCATED_MASK | PAGE_LARGE_OBJECT_MASK | from_space;
2258    
2259     /* Free any remaining pages; needs care. */
2260     next_page++;
2261     while (old_bytes_used == PAGE_SIZE &&
2262     PAGE_FLAGS(next_page, mmask) == mflags &&
2263     page_table[next_page].first_object_offset ==
2264     PAGE_SIZE * (first_page - next_page)) {
2265     /*
2266     * Checks out OK, free the page. Don't need to both zeroing
2267     * pages as this should have been done before shrinking the
2268     * object. These pages shouldn't be write protected, even if
2269     * boxed they should be zero filled.
2270     */
2271     gc_assert(!PAGE_WRITE_PROTECTED(next_page));
2272 dtc 1.14
2273 rtoy 1.66 old_bytes_used = page_table[next_page].bytes_used;
2274     page_table[next_page].flags &= ~PAGE_ALLOCATED_MASK;
2275     page_table[next_page].bytes_used = 0;
2276     bytes_freed += old_bytes_used;
2277     next_page++;
2278     }
2279 dtc 1.14
2280 rtoy 1.66 if (gencgc_verbose && bytes_freed > 0)
2281     fprintf(stderr, "* copy_large_unboxed bytes_freed %d\n",
2282     bytes_freed);
2283    
2284     generations[from_space].bytes_allocated -=
2285     sizeof(lispobj) * nwords + bytes_freed;
2286     generations[new_space].bytes_allocated += sizeof(lispobj) * nwords;
2287     bytes_allocated -= bytes_freed;
2288 dtc 1.14
2289 rtoy 1.66 return object;
2290     } else {
2291     /* get tag of object */
2292     tag = LowtagOf(object);
2293 dtc 1.14
2294 rtoy 1.66 /* allocate space */
2295     new = gc_quick_alloc_large_unboxed(nwords * sizeof(lispobj));
2296 dtc 1.14
2297 rtoy 1.66 dest = new;
2298     source = (lispobj *) PTR(object);
2299 dtc 1.14
2300 rtoy 1.66 /* copy the object */
2301     while (nwords > 0) {
2302     dest[0] = source[0];
2303     dest[1] = source[1];
2304     dest += 2;
2305     source += 2;
2306     nwords -= 2;
2307     }
2308 dtc 1.14
2309 rtoy 1.66 /* return lisp pointer of new object */
2310     return (lispobj) new | tag;
2311 dtc 1.1 }
2312     }
2313 rtoy 1.66
2314 dtc 1.1
2315     /* Scavenging */
2316 toy 1.49
2317     /*
2318     * Douglas Crosher says:
2319     *
2320     * There were two different ways in which the scavenger dispatched,
2321     * and DIRECT_SCAV was one option. This code did work at one stage
2322     * but testing showed it to be slower. When DIRECT_SCAV is enabled
2323     * the scavenger dispatches via the scavtab for all objects, and when
2324     * disabled the scavenger firstly detects and handles some common
2325     * cases itself before dispatching.
2326     */
2327 dtc 1.1
2328     #define DIRECT_SCAV 0
2329    
2330 gerd 1.38 static void
2331 rtoy 1.66 scavenge(void *start_obj, long nwords)
2332 dtc 1.1 {
2333 rtoy 1.66 lispobj *start;
2334 toy 1.42
2335 rtoy 1.66 start = (lispobj *) start_obj;
2336    
2337     while (nwords > 0) {
2338     lispobj object;
2339     int words_scavenged;
2340 dtc 1.14
2341 rtoy 1.66 object = *start;
2342     /* Not a forwarding pointer. */
2343     gc_assert(object != 0x01);
2344 dtc 1.14
2345 dtc 1.1 #if DIRECT_SCAV
2346 rtoy 1.66 words_scavenged = scavtab[TypeOf(object)] (start, object);
2347     #else /* not DIRECT_SCAV */
2348     if (Pointerp(object)) {
2349 gerd 1.38 #ifdef GC_ASSERTIONS
2350 rtoy 1.66 check_escaped_stack_object(start, object);
2351 gerd 1.38 #endif
2352 dtc 1.14
2353 rtoy 1.66 if (from_space_p(object)) {
2354     lispobj *ptr = (lispobj *) PTR(object);
2355     lispobj first_word = *ptr;
2356    
2357     if (first_word == 0x01) {
2358     *start = ptr[1];
2359     words_scavenged = 1;
2360     } else
2361     words_scavenged = scavtab[TypeOf(object)] (start, object);
2362     } else
2363     words_scavenged = 1;
2364     } else if ((object & 3) == 0)
2365 gerd 1.38 words_scavenged = 1;
2366 rtoy 1.66 else
2367     words_scavenged = scavtab[TypeOf(object)] (start, object);
2368 gerd 1.38 #endif /* not DIRECT_SCAV */
2369 dtc 1.14
2370 rtoy 1.66 start += words_scavenged;
2371     nwords -= words_scavenged;
2372 gerd 1.38 }
2373 rtoy 1.66
2374     gc_assert(nwords == 0);
2375 dtc 1.1 }
2376 rtoy 1.66
2377 dtc 1.1
2378 cwang 1.55 #if !(defined(i386) || defined(__x86_64))
2379 toy 1.33 /* Scavenging Interrupt Contexts */
2380    
2381     static int boxed_registers[] = BOXED_REGISTERS;
2382    
2383 rtoy 1.66 static void
2384     scavenge_interrupt_context(os_context_t * context)
2385 toy 1.33 {
2386 rtoy 1.66 int i;
2387 rtoy 1.69 unsigned long pc_code_offset;
2388 rtoy 1.66
2389 toy 1.33 #ifdef reg_LIP
2390 rtoy 1.66 unsigned long lip;
2391     unsigned long lip_offset;
2392     int lip_register_pair;
2393 toy 1.33 #endif
2394 rtoy 1.68 #ifdef reg_LR
2395     unsigned long lr_code_offset;
2396     #endif
2397     #ifdef reg_CTR
2398     unsigned long ctr_code_offset;
2399     #endif
2400 toy 1.33 #ifdef SC_NPC
2401 rtoy 1.66 unsigned long npc_code_offset;
2402 toy 1.33 #endif
2403    
2404     #ifdef reg_LIP
2405 rtoy 1.66 /* Find the LIP's register pair and calculate it's offset */
2406     /* before we scavenge the context. */
2407 toy 1.33
2408 rtoy 1.66 /*
2409     * I (RLT) think this is trying to find the boxed register that is
2410     * closest to the LIP address, without going past it. Usually, it's
2411     * reg_CODE or reg_LRA. But sometimes, nothing can be found.
2412     */
2413     lip = SC_REG(context, reg_LIP);
2414     lip_offset = 0x7FFFFFFF;
2415     lip_register_pair = -1;
2416     for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
2417     unsigned long reg;
2418     long offset;
2419     int index;
2420    
2421     index = boxed_registers[i];
2422     reg = SC_REG(context, index);
2423     if (Pointerp(reg) && PTR(reg) <= lip) {
2424     offset = lip - reg;
2425     if (offset < lip_offset) {
2426     lip_offset = offset;
2427     lip_register_pair = index;
2428     }
2429     }
2430 toy 1.33 }
2431     #endif /* reg_LIP */
2432    
2433 rtoy 1.69 /*
2434     * Compute the PC's offset from the start of the CODE
2435     * register.
2436     */
2437 rtoy 1.66 pc_code_offset = SC_PC(context) - SC_REG(context, reg_CODE);
2438 toy 1.33 #ifdef SC_NPC
2439 rtoy 1.66 npc_code_offset = SC_NPC(context) - SC_REG(context, reg_CODE);
2440 toy 1.33 #endif /* SC_NPC */
2441    
2442 rtoy 1.68 #ifdef reg_LR
2443     lr_code_offset = SC_REG(context, reg_LR) - SC_REG(context, reg_CODE);
2444     #endif
2445     #ifdef reg_CTR
2446     ctr_code_offset = SC_REG(context, reg_CTR) - SC_REG(context, reg_CODE);
2447     #endif
2448 rtoy 1.75
2449 rtoy 1.66 /* Scanvenge all boxed registers in the context. */
2450     for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
2451     int index;
2452     lispobj foo;
2453    
2454     index = boxed_registers[i];
2455     foo = SC_REG(context, index);
2456     scavenge(&foo, 1);
2457     SC_REG(context, index) = foo;
2458    
2459     scavenge(&(SC_REG(context, index)), 1);
2460 toy 1.33 }
2461    
2462     #ifdef reg_LIP
2463 rtoy 1.66 /* Fix the LIP */
2464 toy 1.33
2465 rtoy 1.66 /*
2466     * But what happens if lip_register_pair is -1? SC_REG on Solaris
2467     * (see solaris_register_address in solaris-os.c) will return
2468     * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
2469     * that what we really want? My guess is that that is not what we
2470     * want, so if lip_register_pair is -1, we don't touch reg_LIP at
2471     * all. But maybe it doesn't really matter if LIP is trashed?
2472     */
2473     if (lip_register_pair >= 0) {
2474     SC_REG(context, reg_LIP) =
2475     SC_REG(context, lip_register_pair) + lip_offset;
2476 toy 1.33 }
2477     #endif /* reg_LIP */
2478 rtoy 1.66
2479     /* Fix the PC if it was in from space */
2480 rtoy 1.69 if (from_space_p(SC_PC(context))) {
2481     SC_PC(context) = SC_REG(context, reg_CODE) + pc_code_offset;
2482     }
2483 toy 1.33 #ifdef SC_NPC
2484 rtoy 1.69 if (from_space_p(SC_NPC(context))) {
2485 rtoy 1.66 SC_NPC(context) = SC_REG(context, reg_CODE) + npc_code_offset;
2486 rtoy 1.69 }
2487 toy 1.33 #endif /* SC_NPC */
2488 rtoy 1.68
2489     #ifdef reg_LR
2490 rtoy 1.69 if (from_space_p(SC_REG(context, reg_LR))) {
2491     SC_REG(context, reg_LR) = SC_REG(context, reg_CODE) + lr_code_offset;
2492 rtoy 1.68 }
2493     #endif
2494     #ifdef reg_CTR
2495 rtoy 1.69 if (from_space_p(SC_REG(context, reg_CTR))) {
2496     SC_REG(context, reg_CTR) = SC_REG(context, reg_CODE) + ctr_code_offset;
2497 rtoy 1.68 }
2498     #endif
2499 toy 1.33 }
2500    
2501 rtoy 1.66 void
2502     scavenge_interrupt_contexts(void)
2503 toy 1.33 {
2504 rtoy 1.66 int i, index;
2505     os_context_t *context;
2506 toy 1.33
2507 toy 1.40 #ifdef PRINTNOISE
2508 rtoy 1.66 printf("Scavenging interrupt contexts ...\n");
2509 toy 1.40 #endif
2510    
2511 rtoy 1.66 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX));
2512 toy 1.33
2513     #if defined(DEBUG_PRINT_CONTEXT_INDEX)
2514 rtoy 1.66 printf("Number of active contexts: %d\n", index);
2515 toy 1.33 #endif
2516    
2517 rtoy 1.66 for (i = 0; i < index; i++) {
2518     context = lisp_interrupt_contexts[i];
2519     scavenge_interrupt_context(context);
2520 toy 1.33 }
2521     }
2522     #endif
2523    
2524 dtc 1.1 /* Code and Code-Related Objects */
2525    
2526 toy 1.33 /*
2527     * Aargh! Why is SPARC so different here? What is the advantage of
2528     * making it different from all the other ports?
2529     */
2530 cshapiro 1.87 #if defined(sparc) || (defined(DARWIN) && defined(__ppc__))
2531 toy 1.33 #define RAW_ADDR_OFFSET 0
2532     #else
2533 dtc 1.14 #define RAW_ADDR_OFFSET (6 * sizeof(lispobj) - type_FunctionPointer)
2534 toy 1.33 #endif
2535 dtc 1.1
2536     static lispobj trans_function_header(lispobj object);
2537     static lispobj trans_boxed(lispobj object);
2538    
2539     #if DIRECT_SCAV
2540 rtoy 1.66 static int
2541     scav_function_pointer(lispobj * where, lispobj object)
2542 dtc 1.1 {
2543 rtoy 1.66 gc_assert(Pointerp(object));
2544 dtc 1.1
2545 rtoy 1.66 if (from_space_p(object)) {
2546     lispobj first, *first_pointer;
2547 dtc 1.14
2548 rtoy 1.66 /*
2549     * Object is a pointer into from space - check to see if it has
2550     * been forwarded.
2551     */
2552     first_pointer = (lispobj *) PTR(object);
2553     first = *first_pointer;
2554 dtc 1.14
2555 rtoy 1.66 if (first == 0x01) {
2556     /* Forwarded */
2557     *where = first_pointer[1];
2558     return 1;
2559     } else {
2560     int type;
2561     lispobj copy;
2562 dtc 1.14
2563 rtoy 1.66 /*
2564     * Must transport object -- object may point to either a
2565     * function header, a closure function header, or to a closure
2566     * header.
2567     */
2568 dtc 1.14
2569 rtoy 1.66 type = TypeOf(first);
2570     switch (type) {
2571     case type_FunctionHeader:
2572     case type_ClosureFunctionHeader:
2573     copy = trans_function_header(object);
2574     break;
2575     default:
2576     copy = trans_boxed(object);
2577     break;
2578     }
2579 dtc 1.14
2580 rtoy 1.66 if (copy != object) {
2581     /* Set forwarding pointer. */
2582     first_pointer[0] = 0x01;
2583     first_pointer[1] = copy;
2584     }
2585 dtc 1.14
2586 rtoy 1.66 first = copy;
2587     }
2588 dtc 1.14
2589 rtoy 1.66 gc_assert(Pointerp(first));
2590     gc_assert(!from_space_p(first));
2591 dtc 1.14
2592 rtoy 1.66 *where = first;
2593     }
2594     return 1;
2595 dtc 1.1 }
2596     #else
2597 rtoy 1.66 static int
2598     scav_function_pointer(lispobj * where, lispobj object)
2599 dtc 1.1 {
2600 rtoy 1.66 lispobj *first_pointer;
2601     lispobj copy;
2602    
2603     gc_assert(Pointerp(object));
2604    
2605     /* Object is a pointer into from space - no a FP. */
2606     first_pointer = (lispobj *) PTR(object);
2607 dtc 1.1
2608 rtoy 1.66 /*
2609     * Must transport object -- object may point to either a function
2610     * header, a closure function header, or to a closure header.
2611     */
2612 dtc 1.14
2613 rtoy 1.66 switch (TypeOf(*first_pointer)) {
2614     case type_FunctionHeader:
2615     case type_ClosureFunctionHeader:
2616     copy = trans_function_header(object);
2617     break;
2618     default:
2619     copy = trans_boxed(object);
2620     break;
2621     }
2622 dtc 1.14
2623 rtoy 1.66 if (copy != object) {
2624     /* Set forwarding pointer */
2625     first_pointer[0] = 0x01;
2626     first_pointer[1] = copy;
2627     }
2628 dtc 1.14
2629 rtoy 1.66 gc_assert(Pointerp(copy));
2630     gc_assert(!from_space_p(copy));
2631 dtc 1.1
2632 rtoy 1.66 *where = copy;
2633 dtc 1.14
2634 rtoy 1.66 return 1;
2635 dtc 1.1 }
2636     #endif
2637    
2638 cwang 1.55 #if defined(i386) || defined(__x86_64)
2639 dtc 1.14 /*
2640 cwang 1.54 * Scan an x86 compiled code object, looking for possible fixups that
2641 dtc 1.14 * have been missed after a move.
2642     *
2643     * Two types of fixups are needed:
2644     * 1. Absolution fixups to within the code object.
2645     * 2. Relative fixups to outside the code object.
2646     *
2647     * Currently only absolution fixups to the constant vector, or to the
2648     * code area are checked.
2649     */
2650 rtoy 1.66 void
2651     sniff_code_object(struct code *code, unsigned displacement)
2652 dtc 1.1 {
2653 rtoy 1.66 int nheader_words, ncode_words, nwords;
2654     void *p;
2655     void *constants_start_addr, *constants_end_addr;
2656     void *code_start_addr, *code_end_addr;
2657     int fixup_found = 0;
2658 dtc 1.14
2659 rtoy 1.66 if (!check_code_fixups)
2660     return;
2661 dtc 1.3
2662 rtoy 1.66 /*
2663     * It's ok if it's byte compiled code. The trace table offset will
2664     * be a fixnum if it's x86 compiled code - check.
2665     */
2666     if (code->trace_table_offset & 0x3) {
2667 dtc 1.14 #if 0
2668 rtoy 1.66 fprintf(stderr, "*** Sniffing byte compiled code object at %x.\n",
2669     code);
2670 dtc 1.14 #endif
2671 rtoy 1.66 return;
2672     }
2673    
2674     /* Else it's x86 machine code. */
2675    
2676     ncode_words = fixnum_value(code->code_size);
2677     nheader_words = HeaderValue(*(lispobj *) code);
2678     nwords = ncode_words + nheader_words;
2679    
2680     constants_start_addr = (void *) code + 5 * sizeof(lispobj);
2681     constants_end_addr = (void *) code + nheader_words * sizeof(lispobj);
2682     code_start_addr = (void *) code + nheader_words * sizeof(lispobj);
2683     code_end_addr = (void *) code + nwords * sizeof(lispobj);
2684    
2685     /* Work through the unboxed code. */
2686     for (p = code_start_addr; p < code_end_addr; p++) {
2687     void *data = *(void **) p;
2688     unsigned d1 = *((unsigned char *) p - 1);
2689     unsigned d2 = *((unsigned char *) p - 2);
2690     unsigned d3 = *((unsigned char *) p - 3);
2691     unsigned d4 = *((unsigned char *) p - 4);
2692     unsigned d5 = *((unsigned char *) p - 5);
2693     unsigned d6 = *((unsigned char *) p - 6);
2694    
2695     /*
2696     * Check for code references.
2697     *
2698     * Check for a 32 bit word that looks like an absolute reference
2699     * to within the code adea of the code object.
2700     */
2701     if (data >= code_start_addr - displacement
2702     && data < code_end_addr - displacement) {
2703     /* Function header */
2704     if (d4 == 0x5e
2705     && ((unsigned long) p - 4 -
2706     4 * HeaderValue(*((unsigned long *) p - 1))) ==
2707     (unsigned long) code) {
2708     /* Skip the function header */
2709     p += 6 * 4 - 4 - 1;
2710     continue;
2711     }
2712     /* Push imm32 */
2713     if (d1 == 0x68) {
2714     fixup_found = 1;
2715     fprintf(stderr,
2716     "Code ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2717     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2718     (unsigned long) data);
2719     fprintf(stderr, "*** Push $0x%.8lx\n", (unsigned long) data);
2720     }
2721     /* Mov [reg-8],imm32 */
2722     if (d3 == 0xc7
2723     && (d2 == 0x40 || d2 == 0x41 || d2 == 0x42 || d2 == 0x43
2724     || d2 == 0x45 || d2 == 0x46 || d2 == 0x47)
2725     && d1 == 0xf8) {
2726     fixup_found = 1;
2727     fprintf(stderr,
2728     "Code ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2729     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2730     (unsigned long) data);
2731     fprintf(stderr, "*** Mov [reg-8],$0x%.8lx\n",
2732     (unsigned long) data);
2733     }
2734     /* Lea reg, [disp32] */
2735     if (d2 == 0x8d && (d1 & 0xc7) == 5) {
2736     fixup_found = 1;
2737     fprintf(stderr,
2738     "Code ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2739     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2740     (unsigned long) data);
2741     fprintf(stderr, "*** Lea reg,[$0x%.8lx]\n",
2742     (unsigned long) data);
2743     }
2744     }
2745    
2746     /*
2747     * Check for constant references.
2748     *
2749     * Check for a 32 bit word that looks like an absolution reference
2750     * to within the constant vector. Constant references will be
2751     * aligned.
2752     */
2753     if (data >= constants_start_addr - displacement
2754     && data < constants_end_addr - displacement
2755     && ((unsigned long) data & 0x3) == 0) {
2756     /* Mov eax,m32 */
2757     if (d1 == 0xa1) {
2758     fixup_found = 1;
2759     fprintf(stderr,
2760     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2761     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2762     (unsigned long) data);
2763     fprintf(stderr, "*** Mov eax,0x%.8lx\n", (unsigned long) data);
2764     }
2765    
2766     /* Mov m32,eax */
2767     if (d1 == 0xa3) {
2768     fixup_found = 1;
2769     fprintf(stderr,
2770     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2771     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2772     (unsigned long) data);
2773     fprintf(stderr, "*** Mov 0x%.8lx,eax\n", (unsigned long) data);
2774     }
2775    
2776     /* Cmp m32,imm32 */
2777     if (d1 == 0x3d && d2 == 0x81) {
2778     fixup_found = 1;
2779     fprintf(stderr,
2780     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2781     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2782     (unsigned long) data);
2783     /* XX Check this */
2784     fprintf(stderr, "*** Cmp 0x%.8lx,immed32\n",
2785     (unsigned long) data);
2786     }
2787    
2788     /* Check for a mod=00, r/m=101 byte. */
2789     if ((d1 & 0xc7) == 5) {
2790     /* Cmp m32,reg */
2791     if (d2 == 0x39) {
2792     fixup_found = 1;
2793     fprintf(stderr,
2794     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2795     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2796     (unsigned long) data);
2797     fprintf(stderr, "*** Cmp 0x%.8lx,reg\n",
2798     (unsigned long) data);
2799     }
2800     /* Cmp reg32,m32 */
2801     if (d2 == 0x3b) {
2802     fixup_found = 1;
2803     fprintf(stderr,
2804     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2805     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2806     (unsigned long) data);
2807     fprintf(stderr, "*** Cmp reg32,0x%.8lx\n",
2808     (unsigned long) data);
2809     }
2810     /* Mov m32,reg32 */
2811     if (d2 == 0x89) {
2812     fixup_found = 1;
2813     fprintf(stderr,
2814     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2815     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2816     (unsigned long) data);
2817     fprintf(stderr, "*** Mov 0x%.8lx,reg32\n",
2818     (unsigned long) data);
2819     }
2820     /* Mov reg32,m32 */
2821     if (d2 == 0x8b) {
2822     fixup_found = 1;
2823     fprintf(stderr,
2824     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2825     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2826     (unsigned long) data);
2827     fprintf(stderr, "*** Mov reg32,0x%.8lx\n",
2828     (unsigned long) data);
2829     }
2830     /* Lea reg32,m32 */
2831     if (d2 == 0x8d) {
2832     fixup_found = 1;
2833     fprintf(stderr,
2834     "Abs. const. ref. @ %lx: %.2x %.2x %.2x %.2x %.2x %.2x (%.8lx)\n",
2835     (unsigned long) p, d6, d5, d4, d3, d2, d1,
2836     (unsigned long) data);
2837     fprintf(stderr, "*** Lea reg32,0x%.8lx\n",
2838     (unsigned long) data);
2839     }
2840     }
2841     }
2842     }
2843    
2844     /* If anything was found print out some info. on the code object. */
2845     if (fixup_found) {
2846     fprintf(stderr,
2847     "*** Compiled code object at %lx: header_words=%d code_words=%d .\n",
2848     (unsigned long) code, nheader_words, ncode_words);
2849     fprintf(stderr,
2850     "*** Const. start = %lx; end= %lx; Code start = %lx; end = %lx\n",
2851     (unsigned long) constants_start_addr,
2852     (unsigned long) constants_end_addr,
2853     (unsigned long) code_start_addr, (unsigned long) code_end_addr);
2854     }
2855     }
2856 dtc 1.1
2857 rtoy 1.66 static void
2858     apply_code_fixups(struct code *old_code, struct code *new_code)
2859     {
2860     int nheader_words, ncode_words, nwords;
2861     void *constants_start_addr, *constants_end_addr;
2862     void *code_start_addr, *code_end_addr;
2863     lispobj fixups = NIL;
2864     unsigned long displacement =
2865 dtc 1.1
2866 rtoy 1.66 (unsigned long) new_code - (unsigned long) old_code;
2867     struct vector *fixups_vector;
2868 dtc 1.14
2869     /*
2870 rtoy 1.66 * It's ok if it's byte compiled code. The trace table offset will
2871     * be a fixnum if it's x86 compiled code - check.
2872 dtc 1.14 */
2873 rtoy 1.66 if (new_code->trace_table_offset & 0x3) {
2874     #if 0
2875     fprintf(stderr, "*** Byte compiled code object at %x.\n", new_code);
2876     #endif
2877     return;
2878 dtc 1.1 }
2879    
2880 rtoy 1.66 /* Else it's x86 machine code. */
2881     ncode_words = fixnum_value(new_code->code_size);
2882     nheader_words = HeaderValue(*(lispobj *) new_code);
2883     nwords = ncode_words + nheader_words;
2884 dtc 1.14 #if 0
2885 rtoy 1.66 fprintf(stderr,
2886     "*** Compiled code object at %x: header_words=%d code_words=%d .\n",
2887     new_code, nheader_words, ncode_words);
2888     #endif
2889     constants_start_addr = (void *) new_code + 5 * sizeof(lispobj);
2890     constants_end_addr = (void *) new_code + nheader_words * sizeof(lispobj);
2891     code_start_addr = (void *) new_code + nheader_words * sizeof(lispobj);
2892     code_end_addr = (void *) new_code + nwords * sizeof(lispobj);
2893     #if 0
2894     fprintf(stderr,
2895     "*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
2896     constants_start_addr, constants_end_addr, code_start_addr,
2897     code_end_addr);
2898 dtc 1.14 #endif
2899 dtc 1.1
2900 rtoy 1.66 /*
2901     * The first constant should be a pointer to the fixups for this
2902     * code objects - Check.
2903     */
2904     fixups = new_code->constants[0];
2905    
2906     /*
2907     * It will be 0 or the unbound-marker if there are no fixups, and
2908     * will be an other pointer if it is valid.
2909     */
2910     if (fixups == 0 || fixups == type_UnboundMarker || !Pointerp(fixups)) {
2911     /* Check for possible errors. */
2912     if (check_code_fixups)
2913     sniff_code_object(new_code, displacement);
2914 dtc 1.14
2915     #if 0
2916 rtoy 1.66 fprintf(stderr, "Fixups for code object not found!?\n");
2917     fprintf(stderr,
2918     "*** Compiled code object at %x: header_words=%d code_words=%d .\n",
2919     new_code, nheader_words, ncode_words);
2920     fprintf(stderr,
2921     "*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
2922     constants_start_addr, constants_end_addr, code_start_addr,
2923     code_end_addr);
2924 dtc 1.14 #endif
2925 rtoy 1.66 return;
2926     }
2927 dtc 1.1
2928 rtoy 1.66 fixups_vector = (struct vector *) PTR(fixups);
2929 dtc 1.1
2930 rtoy 1.66 /* Could be pointing to a forwarding pointer. */
2931     if (Pointerp(fixups) && find_page_index((void *) fixups_vector) != -1
2932     && fixups_vector->header == 0x01) {
2933 dtc 1.19 #if 0
2934 rtoy 1.66 fprintf(stderr, "* FF\n");
2935 dtc 1.19 #endif
2936 rtoy 1.66 /* If so then follow it. */
2937     fixups_vector = (struct vector *) PTR((lispobj) fixups_vector->length);
2938     }
2939 dtc 1.14 #if 0
2940 rtoy 1.66 fprintf(stderr, "Got the fixups\n");
2941 dtc 1.14 #endif
2942 dtc 1.1
2943 rtoy 1.66 if (TypeOf(fixups_vector->header) == type_SimpleArrayUnsignedByte32) {
2944 dtc 1.14 /*
2945 rtoy 1.66 * Got the fixups for the code block. Now work through the
2946     * vector, and apply a fixup at each address.
2947 dtc 1.14 */
2948 rtoy 1.66 int length = fixnum_value(fixups_vector->length);
2949     int i;
2950    
2951     for (i = 0; i < length; i++) {
2952     unsigned offset = fixups_vector->data[i];
2953    
2954     /* Now check the current value of offset. */
2955     unsigned long old_value =
2956     *(unsigned long *) ((unsigned long) code_start_addr + offset);
2957    
2958     /*
2959     * If it's within the old_code object then it must be an
2960     * absolute fixup (relative ones are not saved).
2961     */
2962     if (old_value >= (unsigned long) old_code
2963     && old_value <
2964     (unsigned long) old_code + nwords * sizeof(lispobj))
2965     /* So add the dispacement. */
2966     *(unsigned long *) ((unsigned long) code_start_addr + offset) =
2967     old_value + displacement;
2968     else
2969     /*
2970     * It is outside the old code object so it must be a relative
2971     * fixup (absolute fixups are not saved). So subtract the
2972     * displacement.
2973     */
2974     *(unsigned long *) ((unsigned long) code_start_addr + offset) =
2975     old_value - displacement;
2976     }
2977 dtc 1.1 }
2978 dtc 1.14
2979 rtoy 1.66 /* Check for possible errors. */
2980     if (check_code_fixups)
2981     sniff_code_object(new_code, displacement);
2982 dtc 1.1 }
2983 toy 1.33 #endif
2984 dtc 1.1
2985 rtoy 1.66 static struct code *
2986     trans_code(struct code *code)
2987 dtc 1.1 {
2988 rtoy 1.66 struct code *new_code;
2989     lispobj l_code, l_new_code;
2990     int nheader_words, ncode_words, nwords;
2991     unsigned long displacement;
2992     lispobj fheaderl, *prev_pointer;
2993 dtc 1.14
2994     #if 0
2995 rtoy 1.66 fprintf(stderr, "\nTransporting code object located at 0x%08x.\n",
2996     (unsigned long) code);
2997 dtc 1.14 #endif
2998    
2999 rtoy 1.66 /* If object has already been transported, just return pointer */
3000     if (*(lispobj *) code == 0x01) {
3001     return (struct code *) (((lispobj *) code)[1]);
3002 toy 1.33 }
3003 dtc 1.14
3004    
3005 rtoy 1.66 gc_assert(TypeOf(code->header) == type_CodeHeader);
3006 dtc 1.14
3007 rtoy 1.66 /* prepare to transport the code vector */
3008     l_code = (lispobj) code | type_OtherPointer;
3009 dtc 1.14
3010 rtoy 1.66 ncode_words = fixnum_value(code->code_size);
3011     nheader_words = HeaderValue(code->header);
3012     nwords = ncode_words + nheader_words;
3013     nwords = CEILING(nwords, 2);
3014 dtc 1.1
3015 rtoy 1.66 l_new_code = copy_large_object(l_code, nwords);
3016     new_code = (struct code *) PTR(l_new_code);
3017    
3018     /* May not have been moved. */
3019     if (new_code == code)
3020     return new_code;
3021 dtc 1.14
3022 rtoy 1.66 displacement = l_new_code - l_code;
3023 dtc 1.14
3024     #if 0
3025 rtoy 1.66 fprintf(stderr, "Old code object at 0x%08x, new code object at 0x%08x.\n",
3026     (unsigned long) code, (unsigned long) new_code);
3027     fprintf(stderr, "Code object is %d words long.\n", nwords);
3028 dtc 1.14 #endif
3029    
3030 rtoy 1.66 /* set forwarding pointer */
3031     ((lispobj *) code)[0] = 0x01;
3032     ((lispobj *) code)[1] = l_new_code;
3033 dtc 1.14
3034 rtoy 1.66 /*
3035     * Set forwarding pointers for all the function headers in the code
3036     * object; also fix all self pointers.
3037     */
3038 dtc 1.14
3039 rtoy 1.66 fheaderl = code->entry_points;
3040     prev_pointer = &new_code->entry_points;
3041 dtc 1.14
3042 rtoy 1.66 while (fheaderl != NIL) {
3043     struct function *fheaderp, *nfheaderp;
3044     lispobj nfheaderl;
3045 dtc 1.14
3046 rtoy 1.66 fheaderp = (struct function *) PTR(fheaderl);
3047     gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
3048 dtc 1.14
3049 rtoy 1.66 /*
3050     * Calcuate the new function pointer and the new function header.
3051     */
3052     nfheaderl = fheaderl + displacement;
3053     nfheaderp = (struct function *) PTR(nfheaderl);
3054 dtc 1.14
3055 rtoy 1.66 /* set forwarding pointer */
3056     ((lispobj *) fheaderp)[0] = 0x01;
3057     ((lispobj *) fheaderp)[1] = nfheaderl;
3058 dtc 1.14
3059 rtoy 1.66 /* Fix self pointer */
3060     nfheaderp->self = nfheaderl + RAW_ADDR_OFFSET;
3061 dtc 1.14
3062 rtoy 1.66 *prev_pointer = nfheaderl;
3063 dtc 1.14
3064 rtoy 1.66 fheaderl = fheaderp->next;
3065     prev_pointer = &nfheaderp->next;
3066     }
3067 dtc 1.1
3068 dtc 1.14 #if 0
3069 rtoy 1.66 sniff_code_object(new_code, displacement);
3070 dtc 1.14 #endif
3071 cwang 1.55 #if defined(i386) || defined(__x86_64)
3072 rtoy 1.66 apply_code_fixups(code, new_code);
3073 toy 1.33 #else
3074 rtoy 1.66 /* From gc.c */
3075 toy 1.33 #ifndef MACH
3076 rtoy 1.66 os_flush_icache((os_vm_address_t) (((int *) new_code) + nheader_words),
3077     ncode_words * sizeof(int));
3078 toy 1.33 #endif
3079     #endif
3080 dtc 1.14
3081 rtoy 1.66 return new_code;
3082 dtc 1.1 }
3083    
3084 rtoy 1.66 static int
3085     scav_code_header(lispobj * where, lispobj object)
3086 dtc 1.1 {
3087 rtoy 1.66 struct code *code;
3088     int nheader_words, ncode_words, nwords;
3089     lispobj fheaderl;
3090     struct function *fheaderp;
3091    
3092     code = (struct code *) where;
3093     ncode_words = fixnum_value(code->code_size);
3094     nheader_words = HeaderValue(object);
3095     nwords = ncode_words + nheader_words;
3096     nwords = CEILING(nwords, 2);
3097 dtc 1.14
3098 rtoy 1.66 /* Scavenge the boxed section of the code data block */
3099     scavenge(where + 1, nheader_words - 1);
3100 dtc 1.1
3101 rtoy 1.66 /*
3102     * Scavenge the boxed section of each function object in the code
3103     * data block
3104     */
3105     fheaderl = code->entry_points;
3106     while (fheaderl != NIL) {
3107     fheaderp = (struct function *) PTR(fheaderl);
3108     gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
3109 dtc 1.1
3110 rtoy 1.66 scavenge(&fheaderp->name, 1);
3111     scavenge(&fheaderp->arglist, 1);
3112     scavenge(&fheaderp->type, 1);
3113 dtc 1.14
3114 rtoy 1.66 fheaderl = fheaderp->next;
3115     }
3116 dtc 1.14
3117 rtoy 1.66 return nwords;
3118 dtc 1.1 }
3119    
3120 rtoy 1.66 static lispobj
3121     trans_code_header(lispobj object)
3122 dtc 1.1 {
3123 rtoy 1.66 struct code *ncode;
3124 dtc 1.1
3125 rtoy 1.66 ncode = trans_code((struct code *) PTR(object));
3126     return (lispobj) ncode | type_OtherPointer;
3127 dtc 1.1 }
3128    
3129 rtoy 1.66 static int
3130     size_code_header(lispobj * where)
3131 dtc 1.1 {
3132 rtoy 1.66 struct code *code;
3133     int nheader_words, ncode_words, nwords;
3134 dtc 1.1
3135 rtoy 1.66 code = (struct code *) where;
3136 dtc 1.14
3137 rtoy 1.66 ncode_words = fixnum_value(code->code_size);
3138     nheader_words = HeaderValue(code->header);
3139     nwords = ncode_words + nheader_words;
3140     nwords = CEILING(nwords, 2);
3141 dtc 1.1
3142 rtoy 1.66 return nwords;
3143 dtc 1.1 }
3144    
3145 cwang 1.55 #if !(defined(i386) || defined(__x86_64))
3146 dtc 1.1
3147 rtoy 1.66 static int
3148     scav_return_pc_header(lispobj * where, lispobj object)
3149 dtc 1.1 {
3150     fprintf(stderr, "GC lossage. Should not be scavenging a ");
3151     fprintf(stderr, "Return PC Header.\n");
3152 gerd 1.32 fprintf(stderr, "where = 0x%08lx, object = 0x%08lx",
3153 dtc 1.1 (unsigned long) where, (unsigned long) object);
3154     lose(NULL);
3155     return 0;
3156     }
3157    
3158 gerd 1.38 #endif /* not i386 */
3159    
3160 rtoy 1.66 static lispobj
3161     trans_return_pc_header(lispobj object)
3162 dtc 1.1 {
3163 rtoy 1.66 struct function *return_pc;
3164     unsigned long offset;
3165     struct code *code, *ncode;
3166 dtc 1.1
3167 rtoy 1.66 return_pc = (struct function *) PTR(object);
3168     offset = HeaderValue(return_pc->header) * sizeof(lispobj);
3169 dtc 1.1
3170 rtoy 1.66 /* Transport the whole code object */
3171     code = (struct code *) ((unsigned long) return_pc - offset);
3172 dtc 1.14
3173 rtoy 1.66 ncode = trans_code(code);
3174    
3175     return ((lispobj) ncode + offset) | type_OtherPointer;
3176 dtc 1.1 }
3177    
3178 dtc 1.14 /*
3179     * On the 386, closures hold a pointer to the raw address instead of
3180     * the function object.
3181     */
3182 cwang 1.55 #if defined(i386) || defined(__x86_64)
3183 gerd 1.38
3184 rtoy 1.66 static int
3185     scav_closure_header(lispobj * where, lispobj object)
3186 dtc 1.1 {
3187 rtoy 1.66 struct closure *closure;
3188     lispobj fun;
3189 dtc 1.1
3190 rtoy 1.66 closure = (struct closure *) where;
3191     fun = closure->function - RAW_ADDR_OFFSET;
3192     scavenge(&fun, 1);
3193     /* The function may have moved so update the raw address. But don't
3194     write unnecessarily. */
3195     if (closure->function != fun + RAW_ADDR_OFFSET)
3196     closure->function = fun + RAW_ADDR_OFFSET;
3197 dtc 1.14
3198 rtoy 1.66 return 2;
3199 dtc 1.1 }
3200 gerd 1.38
3201     #endif /* i386 */
3202    
3203 cwang 1.55 #if !(defined(i386) || defined(__x86_64))
3204 dtc 1.1
3205 rtoy 1.66 static int
3206     scav_function_header(lispobj * where, lispobj object)
3207 dtc 1.1 {
3208     fprintf(stderr, "GC lossage. Should not be scavenging a ");
3209     fprintf(stderr, "Function Header.\n");
3210 gerd 1.32 fprintf(stderr, "where = 0x%08lx, object = 0x%08lx",
3211 dtc 1.1 (unsigned long) where, (unsigned long) object);
3212     lose(NULL);
3213     return 0;
3214     }
3215    
3216 gerd 1.38 #endif /* not i386 */
3217    
3218 rtoy 1.66 static lispobj
3219     trans_function_header(lispobj object)
3220 dtc 1.1 {
3221 rtoy 1.66 struct function *fheader;
3222     unsigned long offset;
3223     struct code *code, *ncode;
3224 dtc 1.14
3225 rtoy 1.66 fheader = (struct function *) PTR(object);
3226     offset = HeaderValue(fheader->header) * sizeof(lispobj);
3227 dtc 1.14
3228 rtoy 1.66 /* Transport the whole code object */
3229     code = (struct code *) ((unsigned long) fheader - offset);
3230     ncode = trans_code(code);
3231 dtc 1.14
3232 rtoy 1.66 return ((lispobj) ncode + offset) | type_FunctionPointer;
3233 dtc 1.1 }
3234 rtoy 1.66
3235 dtc 1.1
3236     /* Instances */
3237    
3238     #if DIRECT_SCAV
3239 rtoy 1.66 static int
3240     scav_instance_pointer(lispobj * where, lispobj object)
3241 dtc 1.1 {
3242 rtoy 1.66 if (from_space_p(object)) {
3243     lispobj first, *first_pointer;
3244 dtc 1.14
3245 rtoy 1.66 /*
3246     * object is a pointer into from space. check to see if it has
3247     * been forwarded
3248     */
3249     first_pointer = (lispobj *) PTR(object);
3250     first = *first_pointer;
3251 dtc 1.14
3252 rtoy 1.66 if (first == 0x01)
3253     /* Forwarded. */
3254     first = first_pointer[1];
3255     else {
3256     first = trans_boxed(object);
3257     gc_assert(first != object);
3258     /* Set forwarding pointer */
3259     first_pointer[0] = 0x01;
3260     first_pointer[1] = first;
3261     }
3262     *where = first;
3263 dtc 1.1 }
3264 rtoy 1.66 return 1;
3265 dtc 1.1 }
3266     #else
3267 rtoy 1.66 static int
3268     scav_instance_pointer(lispobj * where, lispobj object)
3269 dtc 1.1 {
3270 rtoy 1.66 lispobj copy, *first_pointer;
3271 dtc 1.14
3272 rtoy 1.66 /* Object is a pointer into from space - not a FP */
3273     copy = trans_boxed(object);
3274 dtc 1.1
3275 rtoy 1.66 gc_assert(copy != object);
3276 dtc 1.1
3277 rtoy 1.66 first_pointer = (lispobj *) PTR(object);
3278 dtc 1.14
3279 rtoy 1.66 /* Set forwarding pointer. */
3280     first_pointer[0] = 0x01;
3281     first_pointer[1] = copy;
3282     *where = copy;
3283 dtc 1.1
3284 rtoy 1.66 return 1;
3285 dtc 1.1 }
3286     #endif
3287 rtoy 1.66
3288 dtc 1.1
3289     /* Lists and Conses */
3290    
3291     static lispobj trans_list(lispobj object);
3292    
3293     #if DIRECT_SCAV
3294 rtoy 1.66 static int
3295     scav_list_pointer(lispobj * where, lispobj object)
3296 dtc 1.1 {
3297 rtoy 1.66 gc_assert(Pointerp(object));
3298 dtc 1.1
3299 rtoy 1.66 if (from_space_p(object)) {
3300     lispobj first, *first_pointer;
3301 dtc 1.14
3302 rtoy 1.66 /*
3303     * Object is a pointer into from space - check to see if it has
3304     * been forwarded.
3305     */
3306     first_pointer = (lispobj *) PTR(object);
3307     first = *first_pointer;
3308 dtc 1.14
3309 rtoy 1.66 if (first == 0x01)
3310     /* Forwarded. */
3311     first = first_pointer[1];
3312     else {
3313     first = trans_list(object);
3314    
3315     /* Set forwarding pointer */
3316     first_pointer[0] = 0x01;
3317     first_pointer[1] = first;
3318     }
3319 dtc 1.14
3320 rtoy 1.66 gc_assert(Pointerp(first));
3321     gc_assert(!from_space_p(first));
3322     *where = first;
3323 dtc 1.1 }
3324 rtoy 1.66 return 1;
3325 dtc 1.1 }
3326     #else
3327 rtoy 1.66 static int
3328     scav_list_pointer(lispobj * where, lispobj object)
3329 dtc 1.1 {
3330 rtoy 1.66 lispobj first, *first_pointer;
3331 dtc 1.1
3332 rtoy 1.66 gc_assert(Pointerp(object));
3333 dtc 1.1
3334 rtoy 1.66 /* Object is a pointer into from space - not FP */
3335 dtc 1.14
3336 rtoy 1.66 first = trans_list(object);
3337     gc_assert(first != object);
3338 dtc 1.1
3339 rtoy 1.66 first_pointer = (lispobj *) PTR(object);
3340 dtc 1.1
3341 rtoy 1.66 /* Set forwarding pointer */
3342     first_pointer[0] = 0x01;
3343     first_pointer[1] = first;
3344 dtc 1.1
3345 rtoy 1.66 gc_assert(Pointerp(first));
3346     gc_assert(!from_space_p(first));
3347     *where = first;
3348     return 1;
3349 dtc 1.1 }
3350     #endif
3351    
3352 rtoy 1.66 static lispobj
3353     trans_list(lispobj object)
3354 dtc 1.1 {
3355 rtoy 1.66 lispobj new_list_pointer;
3356     struct cons *cons, *new_cons;
3357     lispobj cdr;
3358 dtc 1.1
3359 rtoy 1.66 gc_assert(from_space_p(object));
3360 dtc 1.1
3361 rtoy 1.66 cons = (struct cons *) PTR(object);
3362 dtc 1.14
3363 rtoy 1.66 /* copy 'object' */
3364     new_cons = (struct cons *) gc_quick_alloc(sizeof(struct cons));
3365 dtc 1.1
3366 rtoy 1.66 new_cons->car = cons->car;
3367     new_cons->cdr = cons->cdr; /* updated later */
3368     new_list_pointer = (lispobj) new_cons | LowtagOf(object);
3369    
3370     /* Grab the cdr before it is clobbered */
3371     cdr = cons->cdr;
3372 dtc 1.1
3373 rtoy 1.66 /* Set forwarding pointer (clobbers start of list). */
3374     cons->car = 0x01;
3375     cons->cdr = new_list_pointer;
3376    
3377     /* Try to linearize the list in the cdr direction to help reduce paging. */
3378     while (1) {
3379     lispobj new_cdr;
3380     struct cons *cdr_cons, *new_cdr_cons;
3381 dtc 1.1
3382 rtoy 1.66 if (LowtagOf(cdr) != type_ListPointer || !from_space_p(cdr)
3383     || *((lispobj *) PTR(cdr)) == 0x01)
3384     break;
3385 dtc 1.14
3386 rtoy 1.66 cdr_cons = (struct cons *) PTR(cdr);
3387 dtc 1.14
3388 rtoy 1.66 /* copy 'cdr' */
3389     new_cdr_cons = (struct cons *) gc_quick_alloc(sizeof(struct cons));
3390 dtc 1.14
3391 rtoy 1.66 new_cdr_cons->car = cdr_cons->car;
3392     new_cdr_cons->cdr = cdr_cons->cdr;
3393     new_cdr = (lispobj) new_cdr_cons | LowtagOf(cdr);
3394 dtc 1.14
3395 rtoy 1.66 /* Grab the cdr before it is clobbered */
3396     cdr = cdr_cons->cdr;
3397 dtc 1.14
3398 rtoy 1.66 /* Set forwarding pointer */
3399     cdr_cons->car = 0x01;
3400     cdr_cons->cdr = new_cdr;
3401 dtc 1.14
3402 rtoy 1.66 /*
3403     * Update the cdr of the last cons copied into new space to keep
3404     * the newspace scavenge from having to do it.
3405     */
3406     new_cons->cdr = new_cdr;
3407 dtc 1.14
3408 rtoy 1.66 new_cons = new_cdr_cons;
3409     }
3410 dtc 1.14
3411 rtoy 1.66 return new_list_pointer;
3412 dtc 1.1 }
3413 rtoy 1.66
3414 dtc 1.1
3415     /* Scavenging and Transporting Other Pointers */
3416    
3417     #if DIRECT_SCAV
3418 rtoy 1.66 static int
3419     scav_other_pointer(lispobj * where, lispobj object)
3420 dtc 1.1 {
3421 rtoy 1.66 gc_assert(Pointerp(object));
3422 dtc 1.1
3423 rtoy 1.66 if (from_space_p(object)) {
3424     lispobj first, *first_pointer;
3425    
3426     /*
3427     * Object is a pointer into from space. check to see if it has
3428     * been forwarded.
3429     */
3430     first_pointer = (lispobj *) PTR(object);
3431     first = *first_pointer;
3432    
3433     if (first == 0x01) {
3434     /* Forwarded. */
3435     first = first_pointer[1];
3436     *where = first;
3437     } else {
3438     first = (transother[TypeOf(first)]) (object);
3439    
3440     if (first != object) {
3441     /* Set forwarding pointer */
3442     first_pointer[0] = 0x01;
3443     first_pointer[1] = first;
3444     *where = first;
3445     }
3446     }
3447    
3448     gc_assert(Pointerp(first));
3449     gc_assert(!from_space_p(first));
3450     }
3451     return 1;
3452     }
3453     #else
3454     static int
3455     scav_other_pointer(lispobj * where, lispobj object)
3456     {
3457 dtc 1.1 lispobj first, *first_pointer;
3458 dtc 1.14
3459 rtoy 1.66 gc_assert(Pointerp(object));
3460    
3461     /* Object is a pointer into from space - not FP */
3462 dtc 1.1 first_pointer = (lispobj *) PTR(object);
3463 dtc 1.14
3464 rtoy 1.66 first = (transother[TypeOf(*first_pointer)]) (object);
3465 dtc 1.14
3466 rtoy 1.66 if (first != object) {
3467 dtc 1.1 /* Set forwarding pointer */
3468     first_pointer[0] = 0x01;
3469     first_pointer[1] = first;
3470     *where = first;
3471     }
3472 dtc 1.14
3473 dtc 1.1 gc_assert(Pointerp(first));
3474     gc_assert(!from_space_p(first));
3475    
3476 rtoy 1.66 return 1;
3477 dtc 1.1 }
3478     #endif
3479 rtoy 1.66
3480 dtc 1.1
3481     /* Immediate, Boxed, and Unboxed Objects */
3482    
3483 rtoy 1.66 static int
3484     size_pointer(lispobj * where)
3485 dtc 1.1 {
3486     return 1;
3487     }
3488    
3489 rtoy 1.66 static int
3490     scav_immediate(lispobj * where, lispobj object)
3491 dtc 1.1 {
3492     return 1;
3493     }
3494    
3495 rtoy 1.66 static lispobj
3496     trans_immediate(lispobj object)
3497 dtc 1.1 {
3498     fprintf(stderr, "GC lossage. Trying to transport an immediate!?\n");
3499     lose(NULL);
3500     return NIL;
3501     }
3502    
3503 rtoy 1.66 static int
3504     size_immediate(lispobj * where)
3505 dtc 1.1 {
3506     return 1;
3507     }
3508    
3509    
3510 rtoy 1.66 static int
3511     scav_boxed(lispobj * where, lispobj object)
3512 dtc 1.1 {
3513     return 1;
3514     }
3515    
3516 rtoy 1.66 static lispobj
3517     trans_boxed(lispobj object)
3518 dtc 1.1 {
3519 rtoy 1.66 lispobj header;
3520     unsigned long length;
3521 dtc 1.1
3522 rtoy 1.66 gc_assert(Pointerp(object));
3523 dtc 1.1
3524 rtoy 1.66 header = *((lispobj *) PTR(object));
3525     length = HeaderValue(header) + 1;
3526     length = CEILING(length, 2);
3527 dtc 1.1
3528 rtoy 1.66 return copy_object(object, length);
3529 dtc 1.1 }
3530    
3531 rtoy 1.66 static lispobj
3532     trans_boxed_large(lispobj object)
3533 dtc 1.1 {
3534 rtoy 1.66 lispobj header;
3535     unsigned long length;
3536 dtc 1.1
3537 rtoy 1.66 gc_assert(Pointerp(object));
3538 dtc 1.1
3539 rtoy 1.66 header = *((lispobj *) PTR(object));
3540     length = HeaderValue(header) + 1;
3541     length = CEILING(length, 2);
3542 dtc 1.1
3543 rtoy 1.66 return copy_large_object(object, length);
3544 dtc 1.1 }
3545    
3546 rtoy 1.66 static int
3547     size_boxed(lispobj * where)
3548 dtc 1.1 {
3549 rtoy 1.66 lispobj header;
3550     unsigned long length;
3551 dtc 1.1
3552 rtoy 1.66 header = *where;
3553     length = HeaderValue(header) + 1;
3554     length = CEILING(length, 2);
3555 dtc 1.1
3556 rtoy 1.66 return length;
3557 dtc 1.1 }
3558    
3559 rtoy 1.67 /* Not needed on sparc and ppc because the raw_addr has a function lowtag */
3560 cshapiro 1.87 #if !(defined(sparc) || (defined(DARWIN) && defined(__ppc__)))
3561 rtoy 1.66 static int
3562     scav_fdefn(lispobj * where, lispobj object)
3563 dtc 1.1 {
3564 rtoy 1.66 struct fdefn *fdefn;
3565 dtc 1.14
3566 rtoy 1.66 fdefn = (struct fdefn *) where;
3567 dtc 1.14
3568 rtoy 1.66 if ((char *) (fdefn->function + RAW_ADDR_OFFSET) == fdefn->raw_addr) {
3569     scavenge(where + 1, sizeof(struct fdefn) / sizeof(lispobj) - 1);
3570 dtc 1.14
3571 rtoy 1.66 /* Don't write unnecessarily */
3572     if (fdefn->raw_addr != (char *) (fdefn->function + RAW_ADDR_OFFSET))
3573     fdefn->raw_addr = (char *) (fdefn->function + RAW_ADDR_OFFSET);
3574 dtc 1.14
3575 rtoy 1.66 return sizeof(struct fdefn) / sizeof(lispobj);
3576     } else
3577     return 1;
3578 dtc 1.1 }
3579 rtoy 1.57 #endif
3580 dtc 1.1
3581 rtoy 1.66 static int
3582     scav_unboxed(lispobj * where, lispobj object)
3583 dtc 1.1 {
3584 rtoy 1.66 unsigned long length;
3585 dtc 1.1
3586 rtoy 1.66 length = HeaderValue(object) + 1;
3587     length = CEILING(length, 2);
3588 dtc 1.1
3589 rtoy 1.66 return length;
3590 dtc 1.1 }
3591    
3592 rtoy 1.66 static lispobj
3593     trans_unboxed(lispobj object)
3594 dtc 1.1 {
3595 rtoy 1.66 lispobj header;
3596     unsigned long length;
3597 dtc 1.1
3598    
3599 rtoy 1.66 gc_assert(Pointerp(object));
3600 dtc 1.1
3601 rtoy 1.66 header = *((lispobj *) PTR(object));
3602     length = HeaderValue(header) + 1;
3603     length = CEILING(length, 2);
3604 dtc 1.1
3605 rtoy 1.66 return copy_unboxed_object(object, length);
3606 dtc 1.1 }
3607    
3608 rtoy 1.66 static lispobj
3609     trans_unboxed_large(lispobj object)
3610 dtc 1.1 {
3611 rtoy 1.66 lispobj header;
3612     unsigned long length;
3613 dtc 1.1
3614    
3615 rtoy 1.66 gc_assert(Pointerp(object));
3616 dtc 1.1
3617 rtoy 1.66 header = *((lispobj *) PTR(object));
3618     length = HeaderValue(header) + 1;
3619     length = CEILING(length, 2);
3620 dtc 1.1
3621 rtoy 1.66 return copy_large_unboxed_object(object, length);
3622 dtc 1.1 }
3623    
3624 rtoy 1.66 static int
3625     size_unboxed(lispobj * where)
3626 dtc 1.1 {
3627 rtoy 1.66 lispobj header;
3628     unsigned long length;
3629 dtc 1.1
3630 rtoy 1.66 header = *where;
3631     length = HeaderValue(header) + 1;
3632     length = CEILING(length, 2);
3633 dtc 1.1
3634 rtoy 1.66 return length;
3635 dtc 1.1 }
3636 rtoy 1.66
3637 dtc 1.1
3638     /* Vector-Like Objects */
3639    
3640     #define NWORDS(x,y) (CEILING((x),(y)) / (y))
3641    
3642 rtoy 1.66 static int
3643     size_string(lispobj * where)
3644 dtc 1.1 {
3645 rtoy 1.66 struct vector *vector;
3646     int length, nwords;
3647 dtc 1.1
3648 rtoy 1.66 /*
3649     * NOTE: Strings contain one more byte of data than the length
3650     * slot indicates.
3651     */
3652 dtc 1.1
3653 rtoy 1.66 vector = (struct vector *) where;
3654     length = fixnum_value(vector->length) + 1;
3655 rtoy 1.98 #ifndef UNICODE
3656 cwang 1.55 #ifdef __x86_64
3657 rtoy 1.66 nwords = CEILING(NWORDS(length, 8) + 2, 2);
3658 cwang 1.55 #else
3659 rtoy 1.66 nwords = CEILING(NWORDS(length, 4) + 2, 2);
3660 cwang 1.55 #endif
3661 rtoy 1.98 #else
3662    </