/[cmucl]/src/compiler/macros.lisp
ViewVC logotype

Contents of /src/compiler/macros.lisp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.55 - (show annotations)
Thu Aug 4 16:00:04 2005 UTC (8 years, 8 months ago) by rtoy
Branch: MAIN
CVS Tags: double-double-array-base, double-double-init-sparc-2, double-double-base, snapshot-2007-09, snapshot-2007-08, snapshot-2007-05, snapshot-2006-11, snapshot-2006-10, double-double-init-sparc, snapshot-2006-12, snapshot-2007-01, snapshot-2007-02, release-19d, double-double-init-ppc, release-19c, release-19c-base, double-double-init-%make-sparc, snapshot-2007-03, snapshot-2007-04, snapshot-2007-07, snapshot-2007-06, double-double-array-checkpoint, double-double-reader-checkpoint-1, release-19d-base, double-double-irrat-end, release-19d-pre2, release-19d-pre1, double-double-init-checkpoint-1, double-double-reader-base, double-double-init-x86, snapshot-2005-11, double-double-sparc-checkpoint-1, snapshot-2005-10, snapshot-2005-12, release-19c-pre1, double-double-irrat-start, snapshot-2005-09, snapshot-2007-10, snapshot-2007-11, snapshot-2006-02, snapshot-2006-03, snapshot-2006-01, snapshot-2006-06, snapshot-2006-07, snapshot-2006-04, snapshot-2006-05, pre-telent-clx, snapshot-2006-08, snapshot-2006-09
Branch point for: double-double-reader-branch, double-double-array-branch, release-19d-branch, double-double-branch, release-19c-branch
Changes since 1.54: +12 -2 lines
Funcalling a special form signals an undefined-function error, but the
error object didn't include a value for the cell-error-name.

Fix this by defining a separate function for each special form in
CMUCL and making it the symbol-function for the symbol.  (Previously,
it was just the same function for all symbols.)  Could we do something
better than this?
1 ;;; -*- Package: C; Log: C.Log -*-
2 ;;;
3 ;;; **********************************************************************
4 ;;; This code was written as part of the CMU Common Lisp project at
5 ;;; Carnegie Mellon University, and has been placed in the public domain.
6 ;;;
7 (ext:file-comment
8 "$Header: /tiger/var/lib/cvsroots/cmucl/src/compiler/macros.lisp,v 1.55 2005/08/04 16:00:04 rtoy Exp $")
9 ;;;
10 ;;; **********************************************************************
11 ;;;
12 ;;; Random types and macros used in writing the compiler.
13 ;;;
14 ;;; Written by Rob MacLachlan
15 ;;;
16 (in-package "C")
17
18 (export '(lisp::with-compilation-unit) "LISP")
19
20 (export '(policy symbolicate def-ir1-translator def-source-transform
21 def-primitive-translator deftransform defknown defoptimizer
22 derive-type optimizer ltn-annotate ir2-convert attributes
23 def-boolean-attribute attributes-union attributes-intersection
24 attributes=))
25
26 (declaim (special *wild-type* *universal-type* *compiler-error-context*))
27
28 ;;;; Deftypes:
29
30 ;;;
31 ;;; Inlinep is used to determine how a function is called. The values have
32 ;;; these meanings:
33 ;;; Nil No declaration seen: do whatever you feel like, but don't dump
34 ;;; an inline expansion.
35 ;;;
36 ;;; :Notinline Notinline declaration seen: always do full function call.
37 ;;;
38 ;;; :Inline Inline declaration seen: save expansion, expanding to it if
39 ;;; policy favors.
40 ;;;
41 ;;; :Maybe-Inline
42 ;;; Retain expansion, but only use it opportunistically.
43 ;;;
44 (deftype inlinep () '(member :inline :maybe-inline :notinline nil))
45
46
47 ;;;; The Policy macro:
48
49 (declaim (special *lexical-environment*))
50
51 (eval-when (compile load eval)
52 (defconstant policy-parameter-slots
53 '((speed . cookie-speed) (space . cookie-space) (safety . cookie-safety)
54 (cspeed . cookie-cspeed) (brevity . cookie-brevity)
55 (debug . cookie-debug) (float-accuracy . cookie-float-accuracy)))
56
57 ;;; Find-Used-Parameters -- Internal
58 ;;;
59 ;;; Find all the policy parameters which are actually mentioned in Stuff,
60 ;;; returning the names in a list. We assume everything is evaluated.
61 ;;;
62 (defun find-used-parameters (stuff)
63 (if (atom stuff)
64 (if (assoc stuff policy-parameter-slots) (list stuff) ())
65 (collect ((res () nunion))
66 (dolist (arg (cdr stuff) (res))
67 (res (find-used-parameters arg))))))
68
69 ); Eval-When (Compile Load Eval)
70
71 ;;; Policy -- Public
72 ;;;
73 ;;; This macro provides some syntactic sugar for querying the settings of
74 ;;; the compiler policy parameters.
75 ;;;
76 (defmacro policy (node &rest conditions)
77 "Policy Node Condition*
78 Test whether some conditions apply to the current compiler policy for Node.
79 Each condition is a predicate form which accesses the policy values by
80 referring to them as the variables SPEED, SPACE, SAFETY, CSPEED, BREVITY and
81 DEBUG. The results of all the conditions are combined with AND and returned
82 as the result.
83
84 Node is a form which is evaluated to obtain the node which the policy is for.
85 If Node is NIL, then we use the current policy as defined by *default-cookie*
86 and *current-cookie*. This option is only well defined during IR1
87 conversion."
88 (let* ((form `(and ,@conditions))
89 (n-cookie (gensym))
90 (binds (mapcar
91 #'(lambda (name)
92 (let ((slot (cdr (assoc name policy-parameter-slots))))
93 `(,name (,slot ,n-cookie))))
94 (find-used-parameters form))))
95 `(let* ((,n-cookie (lexenv-cookie
96 ,(if node
97 `(node-lexenv ,node)
98 '*lexical-environment*)))
99 ,@binds)
100 ,form)))
101
102
103 ;;;; Source-hacking defining forms:
104
105 (eval-when (compile load eval)
106
107 ;;; Symbolicate -- Interface
108 ;;;
109 ;;; Concatenate together the names of some strings and symbols, producing
110 ;;; a symbol in the current package.
111 ;;;
112 (declaim (function symbolicate (&rest (or string symbol)) symbol))
113 (defun symbolicate (&rest things)
114 (declare (values symbol))
115 (values (intern (reduce #'(lambda (x y)
116 (concatenate 'string (string x) (string y)))
117 things))))
118
119 ); Eval-When (Compile Load Eval)
120
121 ;;; SPECIAL-FORM-FUNCTION -- Internal
122 ;;;
123 ;;; This function is stored in the SYMBOL-FUNCTION of special form names so
124 ;;; that they are FBOUND.
125 ;;;
126 (defun special-form-function (&rest stuff)
127 (declare (ignore stuff))
128 (error 'simple-undefined-function
129 :format-control "Can't funcall the SYMBOL-FUNCTION of special forms."))
130
131 ;;; CONVERT-CONDITION-INTO-COMPILER-ERROR -- Internal
132 ;;;
133 ;;; Passed to parse-defmacro when we want compiler errors instead of real
134 ;;; errors.
135 ;;;
136 (declaim (inline convert-condition-into-compiler-error))
137 (defun convert-condition-into-compiler-error (datum &rest stuff)
138 (if (stringp datum)
139 (apply #'compiler-error datum stuff)
140 (compiler-error "~A"
141 (if (symbolp datum)
142 (apply #'make-condition datum stuff)
143 datum))))
144
145 ;;; Def-IR1-Translator -- Interface
146 ;;;
147 ;;; Parse defmacro style lambda-list, setting things up so that a compiler
148 ;;; error happens if the syntax is invalid.
149 ;;;
150 (defmacro def-ir1-translator (name (lambda-list start-var cont-var
151 &key (kind :special-form))
152 &body body)
153 "Def-IR1-Translator Name (Lambda-List Start-Var Cont-Var {Key Value}*)
154 [Doc-String] Form*
155 Define a function that converts a Special-Form or other magical thing into
156 IR1. Lambda-List is a defmacro style lambda list. Start-Var and Cont-Var
157 are bound to the start and result continuations for the resulting IR1.
158 This keyword is defined:
159 Kind
160 The function kind to associate with Name (default :special-form)."
161 (let ((fn-name (symbolicate "IR1-CONVERT-" name))
162 (n-form (gensym))
163 (n-env (gensym)))
164 (multiple-value-bind
165 (body decls doc)
166 (lisp::parse-defmacro lambda-list n-form body name "special form"
167 :doc-string-allowed t
168 :environment n-env
169 :error-fun 'convert-condition-into-compiler-error)
170 `(progn
171 (declaim (function ,fn-name (continuation continuation t) void))
172 (defun ,fn-name (,start-var ,cont-var ,n-form)
173 (let ((,n-env *lexical-environment*))
174 ,@decls
175 ,body))
176 ,@(when doc
177 `((setf (documentation ',name 'function) ,doc)))
178 (setf (info function ir1-convert ',name) #',fn-name)
179 (setf (info function kind ',name) ,kind)
180 ,@(when (eq kind :special-form)
181 ;; Define a special function that signals an error if we
182 ;; try to funcall the special form. And then make this
183 ;; function the symbol-function for the symbol.
184 `((defun ,(symbolicate "SPECIAL-FORM-FUNCTION-" name) (&rest stuff)
185 (declare (ignore stuff))
186 (error 'simple-undefined-function
187 :name ',name
188 :format-control "Can't funcall the SYMBOL-FUNCTION of the special form ~A."
189 :format-arguments (list ',name)))
190 (setf (symbol-function ',name)
191 (function ,(symbolicate "SPECIAL-FORM-FUNCTION-" name)))))))))
192
193
194 ;;; Def-Source-Transform -- Interface
195 ;;;
196 ;;; Similar to Def-IR1-Translator, except that we pass if the syntax is
197 ;;; invalid.
198 ;;;
199 (defmacro def-source-transform (name lambda-list &body body)
200 "Def-Source-Transform Name Lambda-List Form*
201 Define a macro-like source-to-source transformation for the function Name.
202 A source transform may \"pass\" by returning a non-nil second value. If the
203 transform passes, then the form is converted as a normal function call. If
204 the supplied arguments are not compatible with the specified lambda-list,
205 then the transform automatically passes.
206
207 Source-Transforms may only be defined for functions. Source transformation
208 is not attempted if the function is declared Notinline. Source transforms
209 should not examine their arguments. If it matters how the function is used,
210 then Deftransform should be used to define an IR1 transformation.
211
212 If the desirability of the transformation depends on the current Optimize
213 parameters, then the Policy macro should be used to determine when to pass."
214 (let ((fn-name
215 (if (listp name)
216 (collect ((pieces))
217 (dolist (piece name)
218 (pieces "-")
219 (pieces piece))
220 (apply #'symbolicate "SOURCE-TRANSFORM" (pieces)))
221 (symbolicate "SOURCE-TRANSFORM-" name)))
222 (n-form (gensym))
223 (n-env (gensym)))
224 (multiple-value-bind
225 (body decls)
226 (lisp::parse-defmacro lambda-list n-form body name "form"
227 :environment n-env
228 :error-fun `(lambda (&rest stuff)
229 (declare (ignore stuff))
230 (return-from ,fn-name
231 (values nil t))))
232 `(progn
233 (defun ,fn-name (,n-form)
234 (let ((,n-env *lexical-environment*))
235 ,@decls
236 ,body))
237 (setf (info function source-transform ',name) #',fn-name)))))
238
239
240 (defmacro def-primitive-translator (name lambda-list &body body)
241 "Def-Primitive-Translator Name Lambda-List Form*
242 Define a function that converts a use of (%PRIMITIVE Name ...) into Lisp
243 code. Lambda-List is a defmacro style lambda list."
244 (let ((fn-name (symbolicate "PRIMITIVE-TRANSLATE-" name))
245 (n-form (gensym))
246 (n-env (gensym)))
247 (multiple-value-bind
248 (body decls)
249 (lisp::parse-defmacro lambda-list n-form body name "%primitive"
250 :environment n-env
251 :error-fun 'convert-condition-into-compiler-error)
252 `(progn
253 (defun ,fn-name (,n-form)
254 (let ((,n-env *lexical-environment*))
255 ,@decls
256 ,body))
257 (setf (gethash ',name *primitive-translators*) ',fn-name)))))
258
259
260 ;;;; Lambda-list parsing utilities:
261 ;;;
262 ;;; IR1 transforms, optimizers and type inferencers need to be able to parse
263 ;;; the IR1 representation of a function call using a standard function
264 ;;; lambda-list.
265
266
267 (eval-when (compile load eval)
268
269 ;;; Parse-Deftransform -- Internal
270 ;;;
271 ;;; Given a deftransform style lambda-list, generate code that parses the
272 ;;; arguments of a combination with respect to that lambda-list. Body is the
273 ;;; the list of forms which are to be evaluated within the bindings. Args is
274 ;;; the variable that holds list of argument continuations. Error-Form is a
275 ;;; form which is evaluated when the syntax of the supplied arguments is
276 ;;; incorrect or a non-constant argument keyword is supplied. Defaults and
277 ;;; other gunk are ignored. The second value is a list of all the arguments
278 ;;; bound. We make the variables IGNORABLE so that we don't have to manually
279 ;;; declare them Ignore if their only purpose is to make the syntax work.
280 ;;;
281 (defun parse-deftransform (lambda-list body args error-form)
282 (declare (list lambda-list body) (symbol args))
283 (multiple-value-bind (req opt restp rest keyp keys allowp)
284 (parse-lambda-list lambda-list)
285 (let* ((min-args (length req))
286 (max-args (+ min-args (length opt)))
287 (n-keys (gensym)))
288 (collect ((binds)
289 (vars)
290 (pos 0 +)
291 (keywords))
292 (dolist (arg req)
293 (vars arg)
294 (binds `(,arg (nth ,(pos) ,args)))
295 (pos 1))
296
297 (dolist (arg opt)
298 (let ((var (if (atom arg) arg (first arg))))
299 (vars var)
300 (binds `(,var (nth ,(pos) ,args)))
301 (pos 1)))
302
303 (when restp
304 (vars rest)
305 (binds `(,rest (nthcdr ,(pos) ,args))))
306
307 (dolist (spec keys)
308 (if (or (atom spec) (atom (first spec)))
309 (let* ((var (if (atom spec) spec (first spec)))
310 (key (intern (symbol-name var) "KEYWORD")))
311 (vars var)
312 (binds `(,var (find-keyword-continuation ,n-keys ,key)))
313 (keywords key))
314 (let* ((head (first spec))
315 (var (second head))
316 (key (first head)))
317 (vars var)
318 (binds `(,var (find-keyword-continuation ,n-keys ,key)))
319 (keywords key))))
320
321 (let ((n-length (gensym))
322 (limited-legal (not (or restp keyp))))
323 (values
324 `(let ((,n-length (length ,args))
325 ,@(when keyp `((,n-keys (nthcdr ,(pos) ,args)))))
326 (unless (and
327 ,(if limited-legal
328 `(<= ,min-args ,n-length ,max-args)
329 `(<= ,min-args ,n-length))
330 ,@(when keyp
331 (if allowp
332 `((check-keywords-constant ,n-keys))
333 `((check-transform-keys ,n-keys ',(keywords))))))
334 ,error-form)
335 (let ,(binds)
336 (declare (ignorable ,@(vars)))
337 ,@body))
338 (vars)))))))
339
340 ); Eval-When (Compile Load Eval)
341
342
343 ;;;; Deftransform:
344
345 ;;; Deftransform -- Interface
346 ;;;
347 ;;; Parse the lambda-list and generate code to test the policy and
348 ;;; automatically create the result lambda.
349 ;;;
350 (defmacro deftransform (name (lambda-list &optional (arg-types '*)
351 (result-type '*)
352 &key result policy node defun-only
353 eval-name important (when :native))
354 &parse-body (body decls doc))
355 "Deftransform Name (Lambda-List [Arg-Types] [Result-Type] {Key Value}*)
356 Declaration* [Doc-String] Form*
357 Define an IR1 transformation for Name. An IR1 transformation computes a
358 lambda that replaces the function variable reference for the call. A
359 transform may pass (decide not to transform the call) by calling the Give-Up
360 function. Lambda-List both determines how the current call is parsed and
361 specifies the Lambda-List for the resulting lambda.
362
363 We parse the call and bind each of the lambda-list variables to the
364 continuation which represents the value of the argument. When parsing the
365 call, we ignore the defaults, and always bind the variables for unsupplied
366 arguments to NIL. If a required argument is missing, an unknown keyword is
367 supplied, or an argument keyword is not a constant, then the transform
368 automatically passes. The Declarations apply to the bindings made by
369 Deftransform at transformation time, rather than to the variables of the
370 resulting lambda. Bound-but-not-referenced warnings are suppressed for the
371 lambda-list variables. The Doc-String is used when printing efficiency notes
372 about the defined transform.
373
374 Normally, the body evaluates to a form which becomes the body of an
375 automatically constructed lambda. We make Lambda-List the lambda-list for
376 the lambda, and automatically insert declarations of the argument and result
377 types. If the second value of the body is non-null, then it is a list of
378 declarations which are to be inserted at the head of the lambda. Automatic
379 lambda generation may be inhibited by explicitly returning a lambda from the
380 body.
381
382 The Arg-Types and Result-Type are used to create a function type which the
383 call must satisfy before transformation is attempted. The function type
384 specifier is constructed by wrapping (FUNCTION ...) around these values, so
385 the lack of a restriction may be specified by omitting the argument or
386 supplying *. The argument syntax specified in the Arg-Types need not be the
387 same as that in the Lambda-List, but the transform will never happen if
388 the syntaxes can't be satisfied simultaneously. If there is an existing
389 transform for the same function that has the same type, then it is replaced
390 with the new definition.
391
392 These are the legal keyword options:
393 :Result - A variable which is bound to the result continuation.
394 :Node - A variable which is bound to the combination node for the call.
395 :Policy - A form which is supplied to the Policy macro to determine whether
396 this transformation is appropriate. If the result is false, then
397 the transform automatically passes.
398 :Eval-Name
399 - The name and argument/result types are actually forms to be
400 evaluated. Useful for getting closures that transform similar
401 functions.
402 :Defun-Only
403 - Don't actually instantiate a transform, instead just DEFUN
404 Name with the specified transform definition function. This may
405 be later instantiated with %Deftransform.
406 :Important
407 - If supplied and non-NIL, note this transform as ``important,''
408 which means effeciency notes will be generated when this
409 transform fails even if brevity=speed (but not if brevity>speed)
410 :When {:Native | :Byte | :Both}
411 - Indicates whether this transform applies to native code,
412 byte-code or both (default :native.)"
413
414 (when (and eval-name defun-only)
415 (error "Can't specify both DEFUN-ONLY and EVAL-NAME."))
416 (let ((n-args (gensym))
417 (n-node (or node (gensym)))
418 (n-decls (gensym))
419 (n-lambda (gensym))
420 (body `(,@decls ,@body)))
421 (multiple-value-bind (parsed-form vars)
422 (parse-deftransform
423 lambda-list
424 (if policy
425 `((unless (policy ,n-node ,policy) (give-up))
426 ,@body)
427 body)
428 n-args '(give-up))
429 (let ((stuff
430 `((,n-node)
431 (let* ((,n-args (basic-combination-args ,n-node))
432 ,@(when result
433 `((,result (node-cont ,n-node)))))
434 (multiple-value-bind (,n-lambda ,n-decls)
435 ,parsed-form
436 (if (and (consp ,n-lambda) (eq (car ,n-lambda) 'lambda))
437 ,n-lambda
438 `(lambda ,',lambda-list
439 (declare (ignorable ,@',vars))
440 ,@,n-decls
441 ,,n-lambda)))))))
442 (if defun-only
443 `(defun ,name ,@(when doc `(,doc)) ,@stuff)
444 `(%deftransform
445 ,(if eval-name name `',name)
446 ,(if eval-name
447 ``(function ,,arg-types ,,result-type)
448 `'(function ,arg-types ,result-type))
449 #'(lambda ,@stuff)
450 ,doc
451 ,(if important t nil)
452 ,when))))))
453
454 ;;;; Defknown, Defoptimizer:
455
456 ;;; Defknown -- Interface
457 ;;;
458 ;;; This macro should be the way that all implementation independent
459 ;;; information about functions is made known to the compiler.
460 ;;;
461 (defmacro defknown (name arg-types result-type &optional (attributes '(any))
462 &rest keys)
463 "Defknown Name Arg-Types Result-Type [Attributes] {Key Value}*
464 Declare the function Name to be a known function. We construct a type
465 specifier for the function by wrapping (FUNCTION ...) around the Arg-Types
466 and Result-Type. Attributes is a an unevaluated list of the boolean
467 attributes that the function has. These attributes are meaningful here:
468 call
469 May call functions that are passed as arguments. In order to determine
470 what other effects are present, we must find the effects of all arguments
471 that may be functions.
472
473 unsafe
474 May incorporate arguments in the result or somehow pass them upward.
475
476 unwind
477 May fail to return during correct execution. Errors are O.K.
478
479 any
480 The (default) worst case. Includes all the other bad things, plus any
481 other possible bad thing.
482
483 foldable
484 May be constant-folded. The function has no side effects, but may be
485 affected by side effects on the arguments. e.g. SVREF, MAPC.
486
487 flushable
488 May be eliminated if value is unused. The function has no side effects
489 except possibly CONS. If a function is defined to signal errors, then
490 it is not flushable even if it is movable or foldable.
491
492 movable
493 May be moved with impunity. Has no side effects except possibly CONS,
494 and is affected only by its arguments.
495
496 predicate
497 A true predicate likely to be open-coded. This is a hint to IR1
498 conversion that it should ensure calls always appear as an IF test.
499 Not usually specified to Defknown, since this is implementation
500 dependent, and is usually automatically set by the Define-VOP
501 :Conditional option.
502
503 Name may also be a list of names, in which case the same information is given
504 to all the names. The keywords specify the initial values for various
505 optimizers that the function might have."
506 (when (and (intersection attributes '(any call unwind))
507 (intersection attributes '(movable)))
508 (error "Function cannot have both good and bad attributes: ~S" attributes))
509
510 `(%defknown ',(if (and (consp name)
511 (not (eq (car name) 'setf)))
512 name
513 (list name))
514 '(function ,arg-types ,result-type)
515 (ir1-attributes ,@(if (member 'any attributes)
516 (union '(call unsafe unwind) attributes)
517 attributes))
518 ,@keys))
519
520
521 ;;; Defoptimizer -- Interface
522 ;;;
523 ;;; Create a function which parses combination args according to a
524 ;;; Lambda-List, optionally storing it in a function-info slot.
525 ;;;
526 (defmacro defoptimizer (what (lambda-list &optional (n-node (gensym))
527 &rest vars)
528 &body body)
529 "Defoptimizer (Function Kind) (Lambda-List [Node-Var] Var*)
530 Declaration* Form*
531 Define some Kind of optimizer for the named Function. Function must be a
532 known function. Lambda-List is used to parse the arguments to the
533 combination as in Deftransform. If the argument syntax is invalid or there
534 are non-constant keys, then we simply return NIL.
535
536 The function is DEFUN'ed as Function-Kind-OPTIMIZER. Possible kinds are
537 DERIVE-TYPE, OPTIMIZER, LTN-ANNOTATE and IR2-CONVERT. If a symbol is
538 specified instead of a (Function Kind) list, then we just do a DEFUN with the
539 symbol as its name, and don't do anything with the definition. This is
540 useful for creating optimizers to be passed by name to DEFKNOWN.
541
542 If supplied, Node-Var is bound to the combination node being optimized. If
543 additional Vars are supplied, then they are used as the rest of the optimizer
544 function's lambda-list. LTN-ANNOTATE methods are passed an additional POLICY
545 argument, and IR2-CONVERT methods are passed an additional IR2-BLOCK
546 argument."
547
548 (let ((name (if (symbolp what) what
549 (symbolicate (first what) "-" (second what) "-OPTIMIZER"))))
550
551 (let ((n-args (gensym)))
552 `(progn
553 (defun ,name (,n-node ,@vars)
554 (let ((,n-args (basic-combination-args ,n-node)))
555 ,(parse-deftransform lambda-list body n-args
556 `(return-from ,name nil))))
557 ,@(when (consp what)
558 `((setf (,(symbolicate "FUNCTION-INFO-" (second what))
559 (function-info-or-lose ',(first what)))
560 #',name)))))))
561
562
563 ;;;; IR groveling macros:
564
565 ;;; Do-Blocks, Do-Blocks-Backwards -- Interface
566 ;;;
567 (defmacro do-blocks ((block-var component &optional ends result) &body body)
568 "Do-Blocks (Block-Var Component [Ends] [Result-Form]) {Declaration}* {Form}*
569 Iterate over the blocks in a component, binding Block-Var to each block in
570 turn. The value of Ends determines whether to iterate over dummy head and
571 tail blocks:
572 NIL -- Skip Head and Tail (the default)
573 :Head -- Do head but skip tail
574 :Tail -- Do tail but skip head
575 :Both -- Do both head and tail
576
577 If supplied, Result-Form is the value to return."
578 (unless (member ends '(nil :head :tail :both))
579 (error "Losing Ends value: ~S." ends))
580 (let ((n-component (gensym))
581 (n-tail (gensym)))
582 `(let* ((,n-component ,component)
583 (,n-tail ,(if (member ends '(:both :tail))
584 nil
585 `(component-tail ,n-component))))
586 (do ((,block-var ,(if (member ends '(:both :head))
587 `(component-head ,n-component)
588 `(block-next (component-head ,n-component)))
589 (block-next ,block-var)))
590 ((eq ,block-var ,n-tail) ,result)
591 ,@body))))
592 ;;;
593 (defmacro do-blocks-backwards ((block-var component &optional ends result) &body body)
594 "Do-Blocks-Backwards (Block-Var Component [Ends] [Result-Form]) {Declaration}* {Form}*
595 Like Do-Blocks, only iterate over the blocks in reverse order."
596 (unless (member ends '(nil :head :tail :both))
597 (error "Losing Ends value: ~S." ends))
598 (let ((n-component (gensym))
599 (n-head (gensym)))
600 `(let* ((,n-component ,component)
601 (,n-head ,(if (member ends '(:both :head))
602 nil
603 `(component-head ,n-component))))
604 (do ((,block-var ,(if (member ends '(:both :tail))
605 `(component-tail ,n-component)
606 `(block-prev (component-tail ,n-component)))
607 (block-prev ,block-var)))
608 ((eq ,block-var ,n-head) ,result)
609 ,@body))))
610
611
612 ;;; Do-Uses -- Interface
613 ;;;
614 ;;; Could change it not to replicate the code someday perhaps...
615 ;;;
616 (defmacro do-uses ((node-var continuation &optional result) &body body)
617 "Do-Uses (Node-Var Continuation [Result]) {Declaration}* {Form}*
618 Iterate over the uses of Continuation, binding Node to each one succesively."
619 (once-only ((n-cont continuation))
620 `(ecase (continuation-kind ,n-cont)
621 (:unused)
622 (:inside-block
623 (block nil
624 (let ((,node-var (continuation-use ,n-cont)))
625 ,@body
626 ,result)))
627 ((:block-start :deleted-block-start)
628 (dolist (,node-var (block-start-uses (continuation-block ,n-cont))
629 ,result)
630 ,@body)))))
631
632
633 ;;; Do-Nodes, Do-Nodes-Backwards -- Interface
634 ;;;
635 ;;; In the forward case, we terminate on Last-Cont so that we don't have to
636 ;;; worry about our termination condition being changed when new code is added
637 ;;; during the iteration. In the backward case, we do NODE-PREV before
638 ;;; evaluating the body so that we can keep going when the current node is
639 ;;; deleted.
640 ;;;
641 ;;; When Restart-P is supplied to DO-NODES, we start iterating over again at
642 ;;; the beginning of the block when we run into a continuation whose block
643 ;;; differs from the one we are trying to iterate over, either beacuse the
644 ;;; block was split, or because a node was deleted out from under us (hence its
645 ;;; block is NIL.) If the block start is deleted, we just punt. With
646 ;;; Restart-P, we are also more careful about termination, re-indirecting the
647 ;;; BLOCK-LAST each time.
648 ;;;
649 (defmacro do-nodes ((node-var cont-var block &key restart-p) &body body)
650 "Do-Nodes (Node-Var Cont-Var Block {Key Value}*) {Declaration}* {Form}*
651 Iterate over the nodes in Block, binding Node-Var to the each node and
652 Cont-Var to the node's Cont. The only keyword option is Restart-P, which
653 causes iteration to be restarted when a node is deleted out from under us (if
654 not supplied, this is an error.)"
655 (let ((n-block (gensym))
656 (n-last-cont (gensym)))
657 `(let* ((,n-block ,block)
658 ,@(unless restart-p
659 `((,n-last-cont (node-cont (block-last ,n-block))))))
660 (do* ((,node-var (continuation-next (block-start ,n-block))
661 ,(if restart-p
662 `(cond
663 ((eq (continuation-block ,cont-var) ,n-block)
664 (assert (continuation-next ,cont-var))
665 (continuation-next ,cont-var))
666 (t
667 (let ((start (block-start ,n-block)))
668 (unless (eq (continuation-kind start)
669 :block-start)
670 (return nil))
671 (continuation-next start))))
672 `(continuation-next ,cont-var)))
673 (,cont-var (node-cont ,node-var) (node-cont ,node-var)))
674 (())
675 ,@body
676 (when ,(if restart-p
677 `(eq ,node-var (block-last ,n-block))
678 `(eq ,cont-var ,n-last-cont))
679 (return nil))))))
680 ;;;
681 (defmacro do-nodes-backwards ((node-var cont-var block) &body body)
682 "Do-Nodes-Backwards (Node-Var Cont-Var Block) {Declaration}* {Form}*
683 Like Do-Nodes, only iterates in reverse order."
684 (let ((n-block (gensym))
685 (n-start (gensym))
686 (n-last (gensym))
687 (n-next (gensym)))
688 `(let* ((,n-block ,block)
689 (,n-start (block-start ,n-block))
690 (,n-last (block-last ,n-block)))
691 (do* ((,cont-var (node-cont ,n-last) ,n-next)
692 (,node-var ,n-last (continuation-use ,cont-var))
693 (,n-next (and ,node-var (node-prev ,node-var))
694 (and ,node-var (node-prev ,node-var))))
695 ((null ,node-var))
696 ,@body
697 (when (eq ,n-next ,n-start)
698 (return nil))))))
699
700
701 ;;; With-IR1-Environment -- Interface
702 ;;;
703 ;;; The lexical environment is presumably already null...
704 ;;;
705 (defmacro with-ir1-environment (node &rest forms)
706 "With-IR1-Environment Node Form*
707 Bind the IR1 context variables so that IR1 conversion can be done after the
708 main conversion pass has finished."
709 (let ((n-node (gensym)))
710 `(let* ((,n-node ,node)
711 (*current-component* (block-component (node-block ,n-node)))
712 (*lexical-environment* (node-lexenv ,n-node))
713 (*current-path* (node-source-path ,n-node)))
714 ,@forms)))
715
716
717 ;;; WITH-IR1-NAMESPACE -- Interface
718 ;;;
719 ;;; Bind the hashtables used for keeping track of global variables,
720 ;;; functions, &c. Also establish condition handlers.
721 ;;;
722 (defmacro with-ir1-namespace (&body forms)
723 `(let ((*free-variables* (make-hash-table :test #'eq))
724 (*free-functions* (make-hash-table :test #'equal))
725 (*constants* (make-hash-table :test #'equal))
726 (*coalesce-constants* t)
727 (*source-paths* (make-hash-table :test #'eq)))
728 (handler-bind ((compiler-error #'compiler-error-handler)
729 (style-warning #'compiler-style-warning-handler)
730 (warning #'compiler-warning-handler))
731 ,@forms)))
732
733
734 ;;; LEXENV-FIND -- Interface
735 ;;;
736 (defmacro lexenv-find (name slot &key test)
737 "LEXENV-FIND Name Slot {Key Value}*
738 Look up Name in the lexical environment namespace designated by Slot,
739 returning the <value, T>, or <NIL, NIL> if no entry. The :TEST keyword
740 may be used to determine the name equality predicate."
741 (once-only ((n-res `(assoc ,name (,(symbolicate "LEXENV-" slot)
742 *lexical-environment*)
743 :test ,(or test '#'eq))))
744 `(if ,n-res
745 (values (cdr ,n-res) t)
746 (values nil nil))))
747
748 ;;;
749 ;;; LEXENV-FIND-FUNCTION -- Interface
750 ;;;
751 ;;; Find local function with name NAME in *LEXICAL-ENVIRONMENT*.
752 ;;;
753 (defun lexenv-find-function (name)
754 (lexenv-find name functions
755 :test (lambda (x y)
756 (or (equal x y)
757 (and (consp y)
758 (member (car y) '(flet labels))
759 (equal x (cadr y)))))))
760
761
762
763 ;;; With-debug-counters -- Interface
764 ;;;
765 ;;; Bind the hashtables and counters used for keeping track of
766 ;;; continuation, TN, and label IDs for the debug dumping routines.
767 ;;;
768 (defmacro with-debug-counters (&body forms)
769 `(let ((*continuation-numbers* (make-hash-table :test #'eq))
770 (*number-continuations* (make-hash-table :test #'eql))
771 (*continuation-number* 0)
772 (*tn-ids* (make-hash-table :test #'eq))
773 (*id-tns* (make-hash-table :test #'eql))
774 (*tn-id* 0)
775 (*id-labels* (make-hash-table :test #'eq))
776 (*label-ids* (make-hash-table :test #'eql))
777 (*label-id* 0))
778 ,@forms))
779
780
781 ;;;; The Defprinter macro:
782
783 (defvar *defprint-pretty* nil
784 "If true, defprinter print functions print each slot on a separate line.")
785
786
787 ;;; Defprinter-Prin1, Defprinter-Princ -- Internal
788 ;;;
789 ;;; These functions are called by the expansion of the Defprinter
790 ;;; macro to do the actual printing.
791 ;;;
792 (defun defprinter-prin1 (name value stream &optional indent)
793 (declare (symbol name) (stream stream) (ignore indent))
794 (write-string " " stream)
795 (when *print-pretty*
796 (pprint-newline :linear stream))
797 (princ name stream)
798 (write-string "= " stream)
799 (prin1 value stream))
800 ;;;
801 (defun defprinter-princ (name value stream &optional indent)
802 (declare (symbol name) (stream stream) (ignore indent))
803 (write-string " " stream)
804 (when *print-pretty*
805 (pprint-newline :linear stream))
806 (princ name stream)
807 (write-string "= " stream)
808 (princ value stream))
809
810 (defmacro defprinter (name &rest slots)
811 "Defprinter Name Slot-Desc*
812 Define some kind of reasonable defstruct structure-print function. Name
813 is the name of the structure. We define a function %PRINT-name which
814 prints the slots in the structure in the way described by the Slot-Descs.
815 Each Slot-Desc can be a slot name, indicating that the slot should simply
816 be printed. A Slot-Desc may also be a list of a slot name and other stuff.
817 The other stuff is composed of keywords followed by expressions. The
818 expressions are evaluated with the variable which is the slot name bound
819 to the value of the slot. These keywords are defined:
820
821 :PRIN1 Print the value of the expression instead of the slot value.
822 :PRINC Like :PRIN1, only princ the value
823 :TEST Only print something if the test is true.
824
825 If no printing thing is specified then the slot value is printed as PRIN1.
826
827 The structure being printed is bound to Structure and the stream is bound to
828 Stream."
829
830 (flet ((sref (slot) `(,(symbolicate name "-" slot) structure)))
831 (collect ((prints))
832 (dolist (slot slots)
833 (if (atom slot)
834 (prints `(defprinter-prin1 ',slot ,(sref slot) stream))
835 (let ((sname (first slot))
836 (test t))
837 (collect ((stuff))
838 (do ((option (rest slot) (cddr option)))
839 ((null option)
840 (prints
841 `(let ((,sname ,(sref sname)))
842 (when ,test
843 ,@(or (stuff)
844 `((defprinter-prin1 ',sname ,sname
845 stream)))))))
846 (case (first option)
847 (:prin1
848 (stuff `(defprinter-prin1 ',sname ,(second option)
849 stream)))
850 (:princ
851 (stuff `(defprinter-princ ',sname ,(second option)
852 stream)))
853 (:test (setq test (second option)))
854 (t
855 (error "Losing Defprinter option: ~S."
856 (first option)))))))))
857
858 `(defun ,(symbolicate "%PRINT-" name) (structure stream depth)
859 (flet ((do-prints (stream)
860 (declare (ignorable stream))
861 ,@(prints)))
862 (cond (*print-readably*
863 (error "~S cannot be printed readably." structure))
864 ((and *print-level* (>= depth *print-level*))
865 (format stream "#<~S ~X>"
866 ',name
867 (get-lisp-obj-address structure)))
868 (*print-pretty*
869 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
870 (pprint-indent :current 2 stream)
871 (prin1 ',name stream)
872 (write-char #\space stream)
873 (let ((*print-base* 16)
874 (*print-radix* t))
875 (prin1 (get-lisp-obj-address structure) stream))
876 (do-prints stream)))
877 (t
878 (descend-into (stream)
879 (format stream "#<~S ~X"
880 ',name
881 (get-lisp-obj-address structure))
882 (do-prints stream)
883 (format stream ">")))))
884 nil))))
885
886
887 ;;;; Boolean attribute utilities:
888 ;;;
889 ;;; We need to maintain various sets of boolean attributes for known
890 ;;; functions and VOPs. To save space and allow for quick set operations, we
891 ;;; represent them as bits in a fixnum.
892 ;;;
893
894 (deftype attributes () 'fixnum)
895
896 (eval-when (compile load eval)
897 ;;; Compute-Attribute-Mask -- Internal
898 ;;;
899 ;;; Given a list of attribute names and an alist that translates them to
900 ;;; masks, return the OR of the masks.
901 ;;;
902 (defun compute-attribute-mask (names alist)
903 (collect ((res 0 logior))
904 (dolist (name names)
905 (let ((mask (cdr (assoc name alist))))
906 (unless mask
907 (error "Unknown attribute name: ~S." name))
908 (res mask)))
909 (res)))
910
911 ); Eval-When (Compile Load Eval)
912
913 ;;; Def-Boolean-Attribute -- Interface
914 ;;;
915 ;;; Parse the specification and generate some accessor macros.
916 ;;;
917 (defmacro def-boolean-attribute (name &rest attribute-names)
918 "Def-Boolean-Attribute Name Attribute-Name*
919 Define a new class of boolean attributes, with the attributes havin the
920 specified Attribute-Names. Name is the name of the class, which is used to
921 generate some macros to manipulate sets of the attributes:
922
923 NAME-attributep attributes attribute-name*
924 Return true if one of the named attributes is present, false otherwise.
925 When set with SETF, updates the place Attributes setting or clearing the
926 specified attributes.
927
928 NAME-attributes attribute-name*
929 Return a set of the named attributes."
930
931 (let ((const-name (symbolicate name "-ATTRIBUTE-TRANSLATIONS"))
932 (test-name (symbolicate name "-ATTRIBUTEP")))
933 (collect ((alist))
934 (do ((mask 1 (ash mask 1))
935 (names attribute-names (cdr names)))
936 ((null names))
937 (alist (cons (car names) mask)))
938
939 `(progn
940 (eval-when (compile load eval)
941 (defconstant ,const-name ',(alist)))
942
943 (defmacro ,test-name (attributes &rest attribute-names)
944 "Automagically generated boolean attribute test function. See
945 Def-Boolean-Attribute."
946 `(logtest ,(compute-attribute-mask attribute-names ,const-name)
947 (the attributes ,attributes)))
948
949 (define-setf-expander ,test-name (place &rest attributes
950 &environment env)
951
952 "Automagically generated boolean attribute setter. See
953 Def-Boolean-Attribute."
954 (multiple-value-bind (temps values stores set get)
955 (get-setf-method place env)
956 (let ((newval (gensym))
957 (n-place (gensym))
958 (mask (compute-attribute-mask attributes ,const-name)))
959 (values `(,@temps ,n-place)
960 `(,@values ,get)
961 `(,newval)
962 `(let ((,(first stores)
963 (if ,newval
964 (logior ,n-place ,mask)
965 (logand ,n-place ,(lognot mask)))))
966 ,set
967 ,newval)
968 `(,',test-name ,n-place ,@attributes)))))
969
970 (defmacro ,(symbolicate name "-ATTRIBUTES") (&rest attribute-names)
971 "Automagically generated boolean attribute creation function. See
972 Def-Boolean-Attribute."
973 (compute-attribute-mask attribute-names ,const-name))))))
974
975
976 ;;; Attributes-Union, Attributes-Intersection, Attributes= -- Interface
977 ;;;
978 ;;; And now for some gratuitous pseudo-abstraction...
979 ;;;
980 (defmacro attributes-union (&rest attributes)
981 "Returns the union of all the sets of boolean attributes which are its
982 arguments."
983 `(the attributes
984 (logior ,@(mapcar #'(lambda (x) `(the attributes ,x)) attributes))))
985 ;;;
986 (defmacro attributes-intersection (&rest attributes)
987 "Returns the intersection of all the sets of boolean attributes which are its
988 arguments."
989 `(the attributes
990 (logand ,@(mapcar #'(lambda (x) `(the attributes ,x)) attributes))))
991 ;;;
992 (declaim (inline attributes=))
993 (defun attributes= (attr1 attr2)
994 (declare (type attributes attr1 attr2))
995 "Returns true if the attributes present in Attr1 are indentical to those in
996 Attr2."
997 (eql attr1 attr2))
998
999
1000 ;;;; The Event statistics/trace utility:
1001
1002 (eval-when (compile load eval)
1003
1004 (defstruct event-info
1005 ;;
1006 ;; The name of this event.
1007 (name (required-argument) :type symbol)
1008 ;;
1009 ;; The string rescribing this event.
1010 (description (required-argument) :type string)
1011 ;;
1012 ;; The name of the variable we stash this in.
1013 (var (required-argument) :type symbol)
1014 ;;
1015 ;; The number of times this event has happened.
1016 (count 0 :type fixnum)
1017 ;;
1018 ;; The level of significance of this event.
1019 (level (required-argument) :type unsigned-byte)
1020 ;;
1021 ;; If true, a function that gets called with the node that the event happened
1022 ;; to.
1023 (action nil :type (or function null)))
1024
1025 ;;; A hashtable from event names to event-info structures.
1026 ;;;
1027 (defvar *event-info* (make-hash-table :test #'eq))
1028
1029
1030 ;;; Event-Info-Or-Lose -- Internal
1031 ;;;
1032 ;;; Return the event info for Name or die trying.
1033 ;;;
1034 (defun event-info-or-lose (name)
1035 (declare (values event-info))
1036 (let ((res (gethash name *event-info*)))
1037 (unless res
1038 (error "~S is not the name of an event." name))
1039 res))
1040
1041 ); Eval-When (Compile Load Eval)
1042
1043
1044 ;;; Event-Count, Event-Action, Event-Level -- Interface
1045 ;;;
1046 (defun event-count (name)
1047 "Return the number of times that Event has happened."
1048 (declare (symbol name) (values fixnum))
1049 (event-info-count (event-info-or-lose name)))
1050 ;;;
1051 (defun event-action (name)
1052 "Return the function that is called when Event happens. If this is null,
1053 there is no action. The function is passed the node to which the event
1054 happened, or NIL if there is no relevant node. This may be set with SETF."
1055 (declare (symbol name) (values (or function null)))
1056 (event-info-action (event-info-or-lose name)))
1057 ;;;
1058 (defun %set-event-action (name new-value)
1059 (declare (symbol name) (type (or function null) new-value)
1060 (values (or function null)))
1061 (setf (event-info-action (event-info-or-lose name))
1062 new-value))
1063 ;;;
1064 (defsetf event-action %set-event-action)
1065 ;;;
1066 (defun event-level (name)
1067 "Return the non-negative integer which represents the level of significance
1068 of the event Name. This is used to determine whether to print a message when
1069 the event happens. This may be set with SETF."
1070 (declare (symbol name) (values unsigned-byte))
1071 (event-info-level (event-info-or-lose name)))
1072 ;;;
1073 (defun %set-event-level (name new-value)
1074 (declare (symbol name) (type unsigned-byte new-value)
1075 (values unsigned-byte))
1076 (setf (event-info-level (event-info-or-lose name))
1077 new-value))
1078 ;;;
1079 (defsetf event-level %set-event-level)
1080
1081
1082 ;;; Defevent -- Interface
1083 ;;;
1084 ;;; Make an event-info structure and stash it in a variable so we can get at
1085 ;;; it quickly.
1086 ;;;
1087 (defmacro defevent (name description &optional (level 0))
1088 "Defevent Name Description
1089 Define a new kind of event. Name is a symbol which names the event and
1090 Description is a string which describes the event. Level (default 0) is the
1091 level of significance associated with this event; it is used to determine
1092 whether to print a Note when the event happens."
1093 (let ((var-name (symbolicate "*" name "-EVENT-INFO*")))
1094 `(eval-when (compile load eval)
1095 (defvar ,var-name
1096 (make-event-info :name ',name :description ',description :var ',var-name
1097 :level ,level))
1098 (setf (gethash ',name *event-info*) ,var-name)
1099 ',name)))
1100
1101 (declaim (type unsigned-byte *event-note-threshold*))
1102 (defvar *event-note-threshold* 1
1103 "This variable is a non-negative integer specifying the lowest level of
1104 event that will print a Note when it occurs.")
1105
1106 ;;; Event -- Interface
1107 ;;;
1108 ;;; Increment the counter and do any action. Mumble about the event if
1109 ;;; policy indicates.
1110 ;;;
1111 (defmacro event (name &optional node)
1112 "Event Name Node
1113 Note that the event with the specified Name has happened. Node is evaluated
1114 to determine the node to which the event happened."
1115 `(%event ,(event-info-var (event-info-or-lose name)) ,node))
1116
1117
1118 ;;; Event-Statistics, Clear-Statistics -- Interface
1119 ;;;
1120 (defun event-statistics (&optional (min-count 1) (stream *standard-output*))
1121 (declare (type unsigned-byte min-count) (stream stream) (values))
1122 "Print a listing of events and their counts, sorted by the count. Events
1123 that happened fewer than Min-Count times will not be printed. Stream is the
1124 stream to write to."
1125 (collect ((info))
1126 (maphash #'(lambda (k v)
1127 (declare (ignore k))
1128 (when (>= (event-info-count v) min-count)
1129 (info v)))
1130 *event-info*)
1131 (dolist (event (sort (info) #'> :key #'event-info-count))
1132 (format stream "~6D: ~A~%" (event-info-count event)
1133 (event-info-description event)))
1134 (values)))
1135 ;;;
1136 (defun clear-statistics ()
1137 (declare (values))
1138 (maphash #'(lambda (k v)
1139 (declare (ignore k))
1140 (setf (event-info-count v) 0))
1141 *event-info*)
1142 (values))
1143
1144
1145 ;;;; Generic list (?) functions:
1146
1147 (declaim (inline find-in position-in map-in))
1148
1149 ;;; Find-In -- Interface
1150 ;;;
1151 (defun find-in (next element list &key (key #'identity)
1152 (test #'eql test-p) (test-not nil not-p))
1153 "Find Element in a null-terminated List linked by the accessor function
1154 Next. Key, Test and Test-Not are the same as for generic sequence
1155 functions."
1156 (when (and test-p not-p)
1157 (error "Silly to supply both :Test and :Test-Not."))
1158 (if not-p
1159 (do ((current list (funcall next current)))
1160 ((null current) nil)
1161 (unless (funcall test-not (funcall key current) element)
1162 (return current)))
1163 (do ((current list (funcall next current)))
1164 ((null current) nil)
1165 (when (funcall test (funcall key current) element)
1166 (return current)))))
1167
1168 ;;; Position-In -- Interface
1169 ;;;
1170 (defun position-in (next element list &key (key #'identity)
1171 (test #'eql test-p) (test-not nil not-p))
1172 "Return the position of Element (or NIL if absent) in a null-terminated List
1173 linked by the accessor function Next. Key, Test and Test-Not are the same as
1174 for generic sequence functions."
1175 (when (and test-p not-p)
1176 (error "Silly to supply both :Test and :Test-Not."))
1177 (if not-p
1178 (do ((current list (funcall next current))
1179 (i 0 (1+ i)))
1180 ((null current) nil)
1181 (unless (funcall test-not (funcall key current) element)
1182 (return i)))
1183 (do ((current list (funcall next current))
1184 (i 0 (1+ i)))
1185 ((null current) nil)
1186 (when (funcall test (funcall key current) element)
1187 (return i)))))
1188
1189
1190 ;;; Map-In -- Interface
1191 ;;;
1192 (defun map-in (next function list)
1193 "Map Function over the elements in a null-terminated List linked by the
1194 accessor function Next, returning a list of the results."
1195 (collect ((res))
1196 (do ((current list (funcall next current)))
1197 ((null current))
1198 (res (funcall function current)))
1199 (res)))
1200
1201
1202 ;;; Deletef-In -- Interface
1203 ;;;
1204 (defmacro deletef-in (next place item &environment env)
1205 "Deletef-In Next Place Item
1206 Delete Item from a null-terminated list linked by the accessor function Next
1207 that is stored in Place. Item must appear exactly once in the list."
1208 (multiple-value-bind
1209 (temps vals stores store access)
1210 (get-setf-method place env)
1211 (let ((n-item (gensym))
1212 (n-place (gensym))
1213 (n-current (gensym))
1214 (n-prev (gensym)))
1215 `(let* (,@(mapcar #'list temps vals)
1216 (,n-place ,access)
1217 (,n-item ,item))
1218 (if (eq ,n-place ,n-item)
1219 (let ((,(first stores) (,next ,n-place)))
1220 ,store)
1221 (do ((,n-prev ,n-place ,n-current)
1222 (,n-current (,next ,n-place)
1223 (,next ,n-current)))
1224 ((eq ,n-current ,n-item)
1225 (setf (,next ,n-prev)
1226 (,next ,n-current)))))
1227 (undefined-value)))))
1228
1229
1230 ;;; Push-In -- Interface
1231 ;;;
1232 (defmacro push-in (next item place &environment env)
1233 "Push Item onto a list linked by the accessor function Next that is stored in
1234 Place."
1235 (multiple-value-bind
1236 (temps vals stores store access)
1237 (get-setf-method place env)
1238 `(let (,@(mapcar #'list temps vals)
1239 (,(first stores) ,item))
1240 (setf (,next ,(first stores)) ,access)
1241 ,store
1242 (undefined-value))))
1243
1244
1245 ;;; EPOSITION -- Interface
1246 ;;;
1247 (defmacro eposition (&rest args)
1248 `(or (position ,@args)
1249 (error "Shouldn't happen?")))
1250
1251
1252 ;;; Modular functions
1253
1254 ;;; For a documentation, see CUT-TO-WIDTH.
1255
1256 #+modular-arith
1257 (sys:register-lisp-feature :modular-arith)
1258
1259 #+modular-arith
1260 (progn
1261 ;;; List of increasing widths
1262 (defvar *modular-funs-widths* nil)
1263 (defstruct modular-fun-info
1264 (name (required-argument) :type symbol)
1265 (width (required-argument) :type (integer 0))
1266 (lambda-list (required-argument) :type list)
1267 (prototype (required-argument) :type symbol))
1268
1269 (defun find-modular-version (fun-name width)
1270 (let ((infos (gethash fun-name kernel::*modular-funs*)))
1271 (if (listp infos)
1272 (find-if (lambda (item-width) (>= item-width width))
1273 infos
1274 :key #'modular-fun-info-width)
1275 infos)))
1276
1277 (defun %define-modular-fun (name lambda-list prototype width)
1278 (let* ((infos (the list (gethash prototype kernel::*modular-funs*)))
1279 (info (find-if (lambda (item-width) (= item-width width))
1280 infos
1281 :key #'modular-fun-info-width)))
1282 (if info
1283 (unless (and (eq name (modular-fun-info-name info))
1284 (= (length lambda-list)
1285 (length (modular-fun-info-lambda-list info))))
1286 (setf (modular-fun-info-name info) name)
1287 (warn "Redefining modular version ~S of ~S for width ~S."
1288 name prototype width))
1289 (setf (gethash prototype kernel::*modular-funs*)
1290 (merge 'list
1291 (list (make-modular-fun-info :name name
1292 :width width
1293 :lambda-list lambda-list
1294 :prototype prototype))
1295 infos
1296 #'< :key #'modular-fun-info-width))))
1297 (setq *modular-funs-widths*
1298 (merge 'list (list width) *modular-funs-widths* #'<)))
1299
1300 (defmacro define-modular-fun (name lambda-list prototype width)
1301 (check-type name symbol)
1302 (check-type prototype symbol)
1303 (check-type width unsigned-byte)
1304 (dolist (arg lambda-list)
1305 (when (member arg lambda-list-keywords)
1306 (error "Lambda list keyword ~S is not supported for ~
1307 modular function lambda lists." arg)))
1308 `(progn
1309 (%define-modular-fun ',name ',lambda-list ',prototype ,width)
1310 (defknown ,name ,(mapcar (constantly 'integer) lambda-list)
1311 (unsigned-byte ,width)
1312 (foldable flushable movable))
1313 ;; Define the modular function just in case we need it.
1314 #+nil
1315 (defun ,name ,lambda-list
1316 (flet ((prepare-argument (arg)
1317 (declare (integer arg))
1318 (etypecase arg
1319 ((unsigned-byte ,width) arg)
1320 (fixnum (logand arg ,(1- (ash 1 width))))
1321 (bignum (logand arg ,(1- (ash 1 width)))))))
1322 (,name ,@(loop for arg in lambda-list
1323 collect `(prepare-argument ,arg)))))))
1324
1325 (defun %define-good-modular-fun (name)
1326 (setf (gethash name kernel::*modular-funs*) :good)
1327 name)
1328
1329 (defmacro define-good-modular-fun (name)
1330 (check-type name symbol)
1331 `(%define-good-modular-fun ',name))
1332
1333 (defmacro define-modular-fun-optimizer
1334 (name ((&rest lambda-list) &key (width (gensym "WIDTH")))
1335 &body body)
1336 (check-type name symbol)
1337 (dolist (arg lambda-list)
1338 (when (member arg lambda-list-keywords)
1339 (error "Lambda list keyword ~S is not supported for ~
1340 modular function lambda lists." arg)))
1341 (let ((call (gensym))
1342 (args (gensym)))
1343 `(setf (gethash ',name kernel::*modular-funs*)
1344 (lambda (,call ,width)
1345 (declare (type basic-combination ,call)
1346 (type (integer 0) width))
1347 (let ((,args (basic-combination-args ,call)))
1348 (when (= (length ,args) ,(length lambda-list))
1349 (destructuring-bind ,lambda-list ,args
1350 (declare (type continuation ,@lambda-list))
1351 ,@body)))))))
1352
1353 ;;; Good modular functions. (Those that don't make the result larger.)
1354 (define-good-modular-fun logand)
1355 (define-good-modular-fun logior)
1356 ) ; modular-arith

  ViewVC Help
Powered by ViewVC 1.1.5