/[cmucl]/src/compiler/macros.lisp
ViewVC logotype

Contents of /src/compiler/macros.lisp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.4.1.1 - (show annotations) (vendor branch)
Tue Jun 5 13:05:30 1990 UTC (23 years, 10 months ago) by ram
Changes since 1.4: +0 -0 lines
*** empty log message ***
1 ;;; -*- Package: C; Log: C.Log -*-
2 ;;;
3 ;;; **********************************************************************
4 ;;; This code was written as part of the Spice Lisp project at
5 ;;; Carnegie-Mellon University, and has been placed in the public domain.
6 ;;; If you want to use this code or any part of Spice Lisp, please contact
7 ;;; Scott Fahlman (FAHLMAN@CMUC).
8 ;;; **********************************************************************
9 ;;;
10 ;;; Random types and macros used in writing the compiler.
11 ;;;
12 ;;; Written by Rob MacLachlan
13 ;;;
14 (in-package 'c)
15
16 (export '(lisp::with-compilation-unit) "LISP")
17
18 (proclaim '(special *wild-type* *universal-type* *compiler-error-context*))
19
20
21 ;;; Undefined-Value -- Public
22 ;;;
23 ;;; This is here until we figure out what to do with it.
24 ;;;
25 (proclaim '(inline undefined-value))
26 (eval-when (#-new-compiler compile load eval)
27 (defun undefined-value ()
28 '%undefined%)
29 );
30
31 ;;;; Deftypes:
32
33 ;;;
34 ;;; Should be standard:
35 (deftype boolean () '(member t nil))
36
37 ;;;
38 ;;; Inlinep is used to determine how a function is called. The values have
39 ;;; these meanings:
40 ;;; Nil No declaration seen: do whatever you feel like, but don't dump
41 ;;; an inline expansion.
42 ;;;
43 ;;; :Notinline Notinline declaration seen: always do full function call.
44 ;;;
45 ;;; :Inline Inline declaration seen: save expansion, expanding to it if
46 ;;; policy favors.
47 ;;;
48 ;;; :Maybe-Inline
49 ;;; Retain expansion, but only use it opportunistically.
50 ;;;
51 (deftype inlinep () '(member :inline :maybe-inline :notinline nil))
52
53
54 ;;;; The Policy macro:
55
56 (proclaim '(special *current-cookie* *default-cookie*))
57
58 (eval-when (#-new-compiler compile load eval)
59 (defconstant policy-parameter-slots
60 '((speed . cookie-speed) (space . cookie-space) (safety . cookie-safety)
61 (cspeed . cookie-cspeed) (brevity . cookie-brevity)
62 (debug . cookie-debug)))
63
64 ;;; Find-Used-Parameters -- Internal
65 ;;;
66 ;;; Find all the policy parameters which are actually mentioned in Stuff,
67 ;;; returning the names in a list. We assume everything is evaluated.
68 ;;;
69 (defun find-used-parameters (stuff)
70 (if (atom stuff)
71 (if (assoc stuff policy-parameter-slots) (list stuff) ())
72 (collect ((res () nunion))
73 (dolist (arg (cdr stuff) (res))
74 (res (find-used-parameters arg))))))
75
76 ); Eval-When (Compile Load Eval)
77
78 ;;; Policy -- Public
79 ;;;
80 ;;; This macro provides some syntactic sugar for querying the settings of
81 ;;; the compiler policy parameters.
82 ;;;
83 (defmacro policy (node &rest conditions)
84 "Policy Node Condition*
85 Test whether some conditions apply to the current compiler policy for Node.
86 Each condition is a predicate form which accesses the policy values by
87 referring to them as the variables SPEED, SPACE, SAFETY, CSPEED, BREVITY and
88 DEBUG. The results of all the conditions are combined with AND and returned
89 as the result.
90
91 Node is a form which is evaluated to obtain the node which the policy is for.
92 If Node is NIL, then we use the current policy as defined by *default-cookie*
93 and *current-cookie*. This option is only well defined during IR1
94 conversion."
95 (let* ((form `(and ,@conditions))
96 (n-current (gensym))
97 (n-default (gensym))
98 (binds (mapcar
99 #'(lambda (name)
100 (let ((slot (cdr (assoc name policy-parameter-slots))))
101 `(,name (or (,slot ,n-current) (,slot ,n-default)))))
102 (find-used-parameters form))))
103 (if node
104 (let ((n-node (gensym)))
105 `(let* ((,n-node ,node)
106 (,n-default (node-default-cookie ,n-node))
107 (,n-current (node-cookie ,n-node))
108 ,@binds)
109 ,form))
110 `(let* ((,n-default *default-cookie*)
111 (,n-current *current-cookie*)
112 ,@binds)
113 ,form))))
114
115
116 ;;;; Source-hacking defining forms:
117
118 (eval-when (#-new-compiler compile load eval)
119
120 ;;; Symbolicate -- Interface
121 ;;;
122 ;;; Concatenate together the names of some strings and symbols, producing
123 ;;; a symbol in the current package.
124 ;;;
125 (proclaim '(function symbolicate (&rest (or string symbol)) symbol))
126 (defun symbolicate (&rest things)
127 (values (intern (reduce #'(lambda (x y)
128 (concatenate 'string (string x) (string y)))
129 things))))
130
131 ); Eval-When (Compile Load Eval)
132
133
134 ;;; Def-IR1-Translator -- Interface
135 ;;;
136 ;;; Parse defmacro style lambda-list, setting things up so that a compiler
137 ;;; error happens if the syntax is invalid.
138 ;;;
139 (defmacro def-ir1-translator (name (lambda-list start-var cont-var
140 &key (kind :special-form))
141 &body body)
142 "Def-IR1-Translator Name (Lambda-List Start-Var Cont-Var {Key Value}*)
143 [Doc-String] Form*
144 Define a function that converts a Special-Form or other magical thing into
145 IR1. Lambda-List is a defmacro style lambda list. Start-Var and Cont-Var
146 are bound to the start and result continuations for the resulting IR1.
147 This keyword is defined:
148 Kind
149 The function kind to associate with Name (default :special-form)."
150 (let ((fn-name (symbolicate "IR1-CONVERT-" name))
151 (n-form (gensym))
152 (n-env (gensym)))
153 (multiple-value-bind (body decls doc)
154 (lisp::parse-defmacro
155 lambda-list n-form body name
156 :error-string "Wrong number of arguments to special form ~S: ~D."
157 :doc-string-allowed t
158 :environment n-env)
159 `(progn
160 (proclaim '(function ,fn-name (continuation continuation t) void))
161 (defun ,fn-name (,start-var ,cont-var ,n-form)
162 (let ((,n-env *fenv*))
163 ,@decls
164 (macrolet ((error (&rest args)
165 `(compiler-error ,@args)))
166 ,body)))
167 ,@(when doc
168 `((setf (documentation ',name 'function) ,doc)))
169 (setf (info function ir1-convert ',name) #',fn-name)
170 (setf (info function kind ',name) ,kind)))))
171
172
173 ;;; Def-Source-Transform -- Interface
174 ;;;
175 ;;; Similar to Def-IR1-Translator, except that we pass if the syntax is
176 ;;; invalid.
177 ;;;
178 (defmacro def-source-transform (name lambda-list &body body)
179 "Def-Source-Transform Name Lambda-List Form*
180 Define a macro-like source-to-source transformation for the function Name.
181 A source transform may \"pass\" by returning a non-nil second value. If the
182 transform passes, then the form is converted as a normal function call. If
183 the supplied arguments are not compatible with the specified lambda-list,
184 then the transform automatically passes.
185
186 Source-Transforms may only be defined for functions. Source transformation
187 is not attempted if the function is declared Notinline. Source transforms
188 should not examine their arguments. If it matters how the function is used,
189 then Deftransform should be used to define an IR1 transformation.
190
191 If the desirability of the transformation depends on the current Optimize
192 parameters, then the Policy macro should be used to determine when to pass."
193 (let ((fn-name (symbolicate "SOURCE-TRANSFORM-" name))
194 (n-form (gensym))
195 (n-env (gensym)))
196 (multiple-value-bind (body decls)
197 (lisp::parse-defmacro lambda-list n-form body name
198 :error-string "Foo!"
199 :environment n-env)
200 `(progn
201 (defun ,fn-name (,n-form)
202 (let ((,n-env *fenv*))
203 ,@decls
204 (macrolet ((error (&rest stuff)
205 (declare (ignore stuff))
206 `(return-from ,',fn-name (values nil t))))
207 ,body)))
208 (setf (info function source-transform ',name) #',fn-name)))))
209
210
211 (defmacro def-primitive-translator (name lambda-list &body body)
212 "Def-Primitive-Translator Name Lambda-List Form*
213 Define a function that converts a use of (%PRIMITIVE Name ...) into Lisp
214 code. Lambda-List is a defmacro style lambda list."
215 (let ((fn-name (symbolicate "PRIMITIVE-TRANSLATE-" name))
216 (n-form (gensym))
217 (n-env (gensym)))
218 (multiple-value-bind (body decls)
219 (lisp::parse-defmacro
220 lambda-list n-form body name
221 :error-string "Wrong number of arguments to primitive ~S: ~D."
222 :environment n-env)
223 `(progn
224 (defun ,fn-name (,n-form)
225 (let ((,n-env *fenv*))
226 ,@decls
227 (macrolet ((error (&rest args)
228 `(compiler-error ,@args)))
229 ,body)))
230 (setf (gethash ',name *primitive-translators*) ',fn-name)))))
231
232
233 ;;;; Lambda-list parsing utilities:
234 ;;;
235 ;;; IR1 transforms, optimizers and type inferencers need to be able to parse
236 ;;; the IR1 representation of a function call using a standard function
237 ;;; lambda-list.
238
239
240 (eval-when (#-new-compiler compile load eval)
241
242 ;;; Parse-Lambda-List -- Interface
243 ;;;
244 ;;; Break a lambda-list into its component parts. We return eight values:
245 ;;; 1] A list of the required args.
246 ;;; 2] A list of the optional arg specs.
247 ;;; 3] True if a rest arg was specified.
248 ;;; 4] The rest arg.
249 ;;; 5] A boolean indicating whether keywords args are present.
250 ;;; 6] A list of the keyword arg specs.
251 ;;; 7] True if &allow-other-keys was specified.
252 ;;; 8] A list of the &aux specifiers.
253 ;;;
254 ;;; The top-level lambda-list syntax is checked for validity, but the arg
255 ;;; specifiers are just passed through untouched. If something is wrong, we
256 ;;; use Compiler-Error, aborting compilation to the last recovery point.
257 ;;;
258 ;;; [Eventually this should go into the code sources, since it is used in
259 ;;; various random places such as the function type parsing.]
260 ;;;
261 (proclaim '(function parse-lambda-list (list)
262 (values list list boolean t boolean list boolean list)))
263 (defun parse-lambda-list (list)
264 (collect ((required)
265 (optional)
266 (keys)
267 (aux))
268 (let ((restp nil)
269 (rest nil)
270 (keyp nil)
271 (allowp nil)
272 (state :required))
273 (dolist (arg list)
274 (if (and (symbolp arg)
275 (let ((name (symbol-name arg)))
276 (and (/= (length name) 0)
277 (char= (char name 0) #\&))))
278 (case arg
279 (&optional
280 (unless (eq state :required)
281 (compiler-error "Misplaced &optional in lambda-list: ~S." list))
282 (setq state '&optional))
283 (&rest
284 (unless (member state '(:required &optional))
285 (compiler-error "Misplaced &rest in lambda-list: ~S." list))
286 (setq state '&rest))
287 (&key
288 (unless (member state '(:required &optional :post-rest))
289 (compiler-error "Misplaced &key in lambda-list: ~S." list))
290 (setq keyp t)
291 (setq state '&key))
292 (&allow-other-keys
293 (unless (eq state '&key)
294 (compiler-error "Misplaced &allow-other-keys in lambda-list: ~S." list))
295 (setq allowp t state '&allow-other-keys))
296 (&aux
297 (when (eq state '&rest)
298 (compiler-error "Misplaced &aux in lambda-list: ~S." list))
299 (setq state '&aux))
300 (t
301 (compiler-error "Unknown &keyword in lambda-list: ~S." arg)))
302 (case state
303 (:required (required arg))
304 (&optional (optional arg))
305 (&rest
306 (setq restp t rest arg state :post-rest))
307 (&key (keys arg))
308 (&aux (aux arg))
309 (t
310 (compiler-error "Found garbage in lambda-list when expecting a keyword: ~S." arg)))))
311 (values (required) (optional) restp rest keyp (keys) allowp (aux)))))
312
313
314 ;;; Parse-Deftransform -- Internal
315 ;;;
316 ;;; Given a deftransform style lambda-list, generate code that parses the
317 ;;; arguments of a combination with respect to that lambda-list. Body is the
318 ;;; the list of forms which are to be evaluated within the bindings. Args is
319 ;;; the variable that holds list of argument continuations. Error-Form is a
320 ;;; form which is evaluated when the syntax of the supplied arguments is
321 ;;; incorrect or a non-constant argument keyword is supplied. Defaults and
322 ;;; other gunk are ignored. The second value is a list of all the arguments
323 ;;; bound. We make the variables IGNORABLE so that we don't have to manually
324 ;;; declare them Ignore if their only purpose is to make the syntax work.
325 ;;;
326 (proclaim '(function parse-deftransform (list list symbol t) list))
327 (defun parse-deftransform (lambda-list body args error-form)
328 (multiple-value-bind (req opt restp rest keyp keys allowp)
329 (parse-lambda-list lambda-list)
330 (let* ((min-args (length req))
331 (max-args (+ min-args (length opt)))
332 (n-keys (gensym)))
333 (collect ((binds)
334 (vars)
335 (pos 0 +)
336 (keywords))
337 (dolist (arg req)
338 (vars arg)
339 (binds `(,arg (nth ,(pos) ,args)))
340 (pos 1))
341
342 (dolist (arg opt)
343 (let ((var (if (atom arg) arg (first arg))))
344 (vars var)
345 (binds `(,var (nth ,(pos) ,args)))
346 (pos 1)))
347
348 (when restp
349 (vars rest)
350 (binds `(,rest (nthcdr ,(pos) ,args))))
351
352 (dolist (spec keys)
353 (if (or (atom spec) (atom (first spec)))
354 (let* ((var (if (atom spec) spec (first spec)))
355 (key (intern (symbol-name var) "KEYWORD")))
356 (vars var)
357 (binds `(,var (find-keyword-continuation ,n-keys ,key)))
358 (keywords key))
359 (let* ((head (first spec))
360 (var (second head))
361 (key (first head)))
362 (vars var)
363 (binds `(,var (find-keyword-continuation ,n-keys ,key)))
364 (keywords key))))
365
366 (let ((n-length (gensym))
367 (limited-legal (not (or restp keyp))))
368 (values
369 `(let ((,n-length (length ,args))
370 ,@(when keyp `((,n-keys (nthcdr ,(pos) ,args)))))
371 (unless (and
372 ,(if limited-legal
373 `(<= ,min-args ,n-length ,max-args)
374 `(<= ,min-args ,n-length))
375 ,@(when keyp
376 (if allowp
377 `((check-keywords-constant ,n-keys))
378 `((check-transform-keys ,n-keys ',(keywords))))))
379 ,error-form)
380 (let ,(binds)
381 ;;; ### Bootstrap hack...
382 #+new-compiler
383 (declare (ignorable ,@(vars)))
384 #-new-compiler
385 (progn ,@(vars))
386 ,@body))
387 (vars)))))))
388
389 ); Eval-When (Compile Load Eval)
390
391
392 ;;;; Utilities used at run-time for parsing keyword args in IR1:
393
394 ;;; Find-Keyword-Continuation -- Internal
395 ;;;
396 ;;; This function is used by the result of Parse-Deftransform to find the
397 ;;; continuation for the value of the keyword argument Key in the list of
398 ;;; continuations Args. It returns the continuation if the keyword is present,
399 ;;; or NIL otherwise. The legality and constantness of the keywords should
400 ;;; already have been checked.
401 ;;;
402 (proclaim '(function find-keyword-continuation (list keyword) (or continuation null)))
403 (defun find-keyword-continuation (args key)
404 (do ((arg args (cddr arg)))
405 ((null arg) nil)
406 (when (eq (continuation-value (first arg)) key)
407 (return (second arg)))))
408
409
410 ;;; Check-Keywords-Constant -- Internal
411 ;;;
412 ;;; This function is used by the result of Parse-Deftransform to verify that
413 ;;; alternating continuations in Args are constant and that there is an even
414 ;;; number of args.
415 ;;;
416 (proclaim '(function check-keywords-constant (list) boolean))
417 (defun check-keywords-constant (args)
418 (do ((arg args (cddr arg)))
419 ((null arg) t)
420 (unless (and (rest arg)
421 (constant-continuation-p (first arg)))
422 (return nil))))
423
424
425 ;;; Check-Transform-Keys -- Internal
426 ;;;
427 ;;; This function is used by the result of Parse-Deftransform to verify that
428 ;;; the list of continuations Args is a well-formed keyword arglist and that
429 ;;; only keywords present in the list Keys are supplied.
430 ;;;
431 (proclaim '(function check-transform-keys (list list) boolean))
432 (defun check-transform-keys (args keys)
433 (and (check-keywords-constant args)
434 (do ((arg args (cddr arg)))
435 ((null arg) t)
436 (unless (member (continuation-value (first arg)) keys)
437 (return nil)))))
438
439
440 ;;;; Deftransform:
441
442 ;;; Deftransform -- Interface
443 ;;;
444 ;;; Parse the lambda-list and generate code to test the policy and
445 ;;; automatically create the result lambda.
446 ;;;
447 (defmacro deftransform (name (lambda-list &optional (arg-types '*) (result-type '*)
448 &key result policy node defun-only)
449 &body body)
450 "Deftransform Name (Lambda-List [Arg-Types] [Result-Type] {Key Value}*)
451 Declaration* Form*
452 Define an IR1 transformation for Name. An IR1 transformation computes a
453 lambda that replaces the function variable reference for the call. A
454 transform may pass (decide not to transform the call) by calling the Give-Up
455 function. Lambda-List both determines how the current call is parsed and
456 specifies the Lambda-List for the resulting lambda.
457
458 We parse the call and bind each of the lambda-list variables to the
459 continuation which represents the value of the argument. When parsing the
460 call, we ignore the defaults, and always bind the variables for unsupplied
461 arguments to NIL. If a required argument is missing, an unknown keyword is
462 supplied, or an argument keyword is not a constant, then the transform
463 automatically passes. The Declarations apply to the bindings made by
464 Deftransform at transformation time, rather than to the variables of the
465 resulting lambda. Bound-but-not-referenced warnings are suppressed for the
466 lambda-list variables.
467
468 Normally, the body evaluates to a form which becomes the body of an
469 automatically constructed lambda. We make Lambda-List the lambda-list for
470 the lambda, and automatically insert declarations of the argument and result
471 types. If the second value of the body is non-null, then it is a list of
472 declarations which are to be inserted at the head of the lambda. Automatic
473 lambda generation may be inhibited by explicitly returning a lambda from the
474 body.
475
476 The Arg-Types and Result-Type are used to create a function type which the
477 call must satisfy before transformation is attempted. The function type
478 specifier is constructed by wrapping (FUNCTION ...) around these values, so
479 the lack of a restriction may be specified by omitting the argument or
480 supplying *. The argument syntax specified in the Arg-Types need not be the
481 same as that in the Lambda-List, but the transform will never happen if
482 the syntaxes can't be satisfied simultaneously. If there is an existing
483 transform for the same function that has the same type, then it is replaced
484 with the new definition.
485
486 These are the legal keyword options:
487 :Result - A variable which is bound to the result continuation.
488 :Node - A variable which is bound to the combination node for the call.
489 :Policy - A form which is supplied to the Policy macro to determine whether
490 this transformation is appropriate. If the result is false, then
491 the transform automatically passes.
492 :Defun-Only
493 - Don't actually instantiate a transform, instead just DEFUN
494 Name with the specified transform definition function. This may
495 be later instantiated with %Deftransform."
496
497 (let ((n-args (gensym))
498 (n-node (or node (gensym)))
499 (n-decls (gensym))
500 (n-lambda (gensym)))
501 (multiple-value-bind (parsed-form vars)
502 (parse-deftransform
503 lambda-list
504 (if policy
505 `(progn
506 (unless (policy ,n-node ,policy) (give-up))
507 ,@body)
508 body)
509 n-args '(give-up))
510 (let ((stuff
511 `((,n-node)
512 (let* ((,n-args (basic-combination-args ,n-node))
513 ,@(when result
514 `((,result (node-cont ,n-node)))))
515 (multiple-value-bind (,n-lambda ,n-decls)
516 ,parsed-form
517 (if (and (consp ,n-lambda) (eq (car ,n-lambda) 'lambda))
518 ,n-lambda
519 `(lambda ,',lambda-list
520 (declare (ignorable ,@',vars))
521 ,@,n-decls
522 ,,n-lambda)))))))
523 (if defun-only
524 `(defun ,name ,@stuff)
525 `(%deftransform
526 ',name
527 '(function ,arg-types ,result-type)
528 #'(lambda ,@stuff)))))))
529
530 ;;;; Defknown, Defoptimizer:
531
532 ;;; Defknown -- Interface
533 ;;;
534 ;;; This macro should be the way that all implementation independent
535 ;;; information about functions is made known to the compiler.
536 ;;;
537 (defmacro defknown (name arg-types result-type &optional (attributes '(any))
538 &rest keys)
539 "Defknown Name Arg-Types Result-Type [Attributes] {Key Value}*
540 Declare the function Name to be a known function. We construct a type
541 specifier for the function by wrapping (FUNCTION ...) around the Arg-Types
542 and Result-Type. Attributes is a an unevaluated list of the boolean
543 attributes that the function has. These attributes are meaningful here:
544 call
545 May call functions that are passed as arguments. In order to determine
546 what other effects are present, we must find the effects of all arguments
547 that may be functions.
548
549 unsafe
550 May incorporate arguments in the result or somehow pass them upward.
551
552 unwind
553 May fail to return during correct execution. Errors are O.K.
554
555 any
556 The (default) worst case. Includes all the other bad things, plus any
557 other possible bad thing.
558
559 foldable
560 May be constant-folded. The function has no side effects, but may be
561 affected by side effects on the arguments. e.g. SVREF, MAPC.
562
563 flushable
564 May be eliminated if value is unused. The function has no side effects
565 except possibly CONS. If a function is defined to signal errors, then
566 it is not flushable even if it is movable or foldable.
567
568 movable
569 May be moved with impunity. Has no side effects except possibly CONS,
570 and is affected only by its arguments.
571
572 predicate
573 A true predicate likely to be open-coded. This is a hint to IR1
574 conversion that it should ensure calls always appear as an IF test.
575 Not usually specified to Defknown, since this is implementation
576 dependent, and is usually automatically set by the Define-VOP
577 :Conditional option.
578
579 Name may also be a list of names, in which case the same information is given
580 to all the names. The keywords specify the initial values for various
581 optimizers that the function might have."
582 (when (and (intersection attributes '(any call unwind))
583 (intersection attributes '(movable)))
584 (error "Function cannot have both good and bad attributes: ~S" attributes))
585
586 `(%defknown ',(if (and (consp name)
587 (not (eq (car name) 'setf)))
588 name
589 (list name))
590 '(function ,arg-types ,result-type)
591 (ir1-attributes ,@(if (member 'any attributes)
592 (union '(call unsafe unwind) attributes)
593 attributes))
594 ,@keys))
595
596
597 ;;; Defoptimizer -- Interface
598 ;;;
599 ;;; Create a function which parses combination args according to a
600 ;;; Lambda-List, optionally storing it in a function-info slot.
601 ;;;
602 (defmacro defoptimizer (what (lambda-list &optional (n-node (gensym))
603 &rest vars)
604 &body body)
605 "Defoptimizer (Function Kind) (Lambda-List [Node-Var] Var*)
606 Declaration* Form*
607 Define some Kind of optimizer for the named Function. Function must be a
608 known function. Lambda-List is used to parse the arguments to the
609 combination as in Deftransform. If the argument syntax is invalid or there
610 are non-constant keys, then we simply return NIL.
611
612 The function is DEFUN'ed as Function-Kind-OPTIMIZER. Possible kinds are
613 DERIVE-TYPE, OPTIMIZER, LTN-ANNOTATE and IR2-CONVERT. If a symbol is
614 specified instead of a (Function Kind) list, then we just do a DEFUN with the
615 symbol as its name, and don't do anything with the definition. This is
616 useful for creating optimizers to be passed by name to DEFKNOWN.
617
618 If supplied, Node-Var is bound to the combination node being optimized. If
619 additional Vars are supplied, then they are used as the rest of the optimizer
620 function's lambda-list. LTN-ANNOTATE methods are passed an additional POLICY
621 argument, and IR2-CONVERT methods are passed an additional IR2-BLOCK
622 argument."
623
624 (let ((name (if (symbolp what) what
625 (symbolicate (first what) "-" (second what) "-OPTIMIZER"))))
626
627 (let ((n-args (gensym)))
628 `(progn
629 (defun ,name (,n-node ,@vars)
630 (let ((,n-args (basic-combination-args ,n-node)))
631 ,(parse-deftransform lambda-list body n-args
632 `(return-from ,name nil))))
633 ,@(when (consp what)
634 `((setf (,(symbolicate "FUNCTION-INFO-" (second what))
635 (function-info-or-lose ',(first what)))
636 #',name)))))))
637
638
639 ;;;; IR groveling macros:
640
641 ;;; Do-Blocks, Do-Blocks-Backwards -- Interface
642 ;;;
643 (defmacro do-blocks ((block-var component &optional ends result) &body body)
644 "Do-Blocks (Block-Var Component [Ends] [Result-Form]) {Declaration}* {Form}*
645 Iterate over the blocks in a component, binding Block-Var to each block in
646 turn. The value of Ends determines whether to iterate over dummy head and
647 tail blocks:
648 NIL -- Skip Head and Tail (the default)
649 :Head -- Do head but skip tail
650 :Tail -- Do tail but skip head
651 :Both -- Do both head and tail
652
653 If supplied, Result-Form is the value to return."
654 (unless (member ends '(nil :head :tail :both))
655 (error "Losing Ends value: ~S." ends))
656 (let ((n-component (gensym))
657 (n-tail (gensym)))
658 `(let* ((,n-component ,component)
659 (,n-tail ,(if (member ends '(:both :tail))
660 nil
661 `(component-tail ,n-component))))
662 (do ((,block-var ,(if (member ends '(:both :head))
663 `(component-head ,n-component)
664 `(block-next (component-head ,n-component)))
665 (block-next ,block-var)))
666 ((eq ,block-var ,n-tail) ,result)
667 ,@body))))
668 ;;;
669 (defmacro do-blocks-backwards ((block-var component &optional ends result) &body body)
670 "Do-Blocks-Backwards (Block-Var Component [Ends] [Result-Form]) {Declaration}* {Form}*
671 Like Do-Blocks, only iterate over the blocks in reverse order."
672 (unless (member ends '(nil :head :tail :both))
673 (error "Losing Ends value: ~S." ends))
674 (let ((n-component (gensym))
675 (n-head (gensym)))
676 `(let* ((,n-component ,component)
677 (,n-head ,(if (member ends '(:both :head))
678 nil
679 `(component-head ,n-component))))
680 (do ((,block-var ,(if (member ends '(:both :tail))
681 `(component-tail ,n-component)
682 `(block-prev (component-tail ,n-component)))
683 (block-prev ,block-var)))
684 ((eq ,block-var ,n-head) ,result)
685 ,@body))))
686
687
688 ;;; Do-Uses -- Interface
689 ;;;
690 ;;; Could change it not to replicate the code someday perhaps...
691 ;;;
692 (defmacro do-uses ((node-var continuation &optional result) &body body)
693 "Do-Uses (Node-Var Continuation [Result]) {Declaration}* {Form}*
694 Iterate over the uses of Continuation, binding Node to each one succesively."
695 (once-only ((n-cont continuation))
696 `(ecase (continuation-kind ,n-cont)
697 (:unused)
698 (:inside-block
699 (block nil
700 (let ((,node-var (continuation-use ,n-cont)))
701 ,@body
702 ,result)))
703 ((:block-start :deleted-block-start)
704 (dolist (,node-var (block-start-uses (continuation-block ,n-cont))
705 ,result)
706 ,@body)))))
707
708
709 ;;; Do-Nodes, Do-Nodes-Backwards -- Interface
710 ;;;
711 ;;; In the forward case, we terminate on Last-Cont so that we don't have to
712 ;;; worry about our termination condition being changed when new code is added
713 ;;; during the iteration. In the backward case, we do NODE-PREV before
714 ;;; evaluating the body so that we can keep going when the current node is
715 ;;; deleted.
716 ;;;
717 (defmacro do-nodes ((node-var cont-var block &optional result) &body body)
718 "Do-Nodes (Node-Var Cont-Var Block [Result]) {Declaration}* {Form}*
719 Iterate over the nodes in Block, binding Node-Var to the each node and
720 Cont-Var to the node's Cont."
721 (let ((n-block (gensym))
722 (n-last-cont (gensym)))
723 `(let* ((,n-block ,block)
724 (,n-last-cont (node-cont (block-last ,n-block))))
725 (do* ((,node-var (continuation-next (block-start ,n-block))
726 (continuation-next ,cont-var))
727 (,cont-var (node-cont ,node-var) (node-cont ,node-var)))
728 (())
729 ,@body
730 (when (eq ,cont-var ,n-last-cont)
731 (return ,result))))))
732 ;;;
733 (defmacro do-nodes-backwards ((node-var cont-var block &optional result)
734 &body body)
735 "Do-Nodes-Backwards (Node-Var Cont-Var Block [Result]) {Declaration}* {Form}*
736 Like Do-Nodes, only iterates in reverse order."
737 (let ((n-block (gensym))
738 (n-start (gensym))
739 (n-last (gensym))
740 (n-next (gensym)))
741 `(let* ((,n-block ,block)
742 (,n-start (block-start ,n-block))
743 (,n-last (block-last ,n-block)))
744 (do* ((,cont-var (node-cont ,n-last) ,n-next)
745 (,node-var ,n-last (continuation-use ,cont-var))
746 (,n-next (node-prev ,node-var) (node-prev ,node-var)))
747 (())
748 ,@body
749 (when (eq ,n-next ,n-start)
750 (return ,result))))))
751
752
753 ;;; With-IR1-Environment -- Interface
754 ;;;
755 ;;; The lexical environment is presumably already null...
756 ;;;
757 (defmacro with-ir1-environment (node &rest forms)
758 "With-IR1-Environment Node Form*
759 Bind the IR1 context variables so that IR1 conversion can be done after the
760 main conversion pass has finished.
761
762 Care must be taken to ensure that blocks have the correct cleanup. New
763 blocks will initially be created with the End-Cleanup of Node's block. This
764 is not an issue if newly created blocks are inside a new function -- it is
765 only a problem if IR1 convert or Make-Block is called directly, and not if
766 IR1-Convert-Lambda is called."
767 (let ((n-node (gensym))
768 (n-block (gensym))
769 (n-cont (gensym))
770 (n-component (gensym)))
771 `(let* ((,n-node ,node)
772 (,n-cont (node-prev ,n-node))
773 (,n-block (continuation-block ,n-cont))
774 (,n-component (block-component ,n-block))
775 (*current-cleanup* (block-end-cleanup ,n-block))
776 (*current-cookie* (node-cookie ,n-node))
777 (*default-cookie* (node-default-cookie ,n-node))
778 (*current-lambda* (block-lambda ,n-block))
779 (*current-component* ,n-component)
780 (*current-path* (node-source-path ,n-node))
781 (*current-form* nil)
782 (*fenv* ())
783 (*inlines* ())
784 (*type-restrictions* ())
785 (*venv* ())
786 (*benv* ())
787 (*tenv* ()))
788 ,@forms)))
789
790
791 ;;; WITH-IR1-NAMESPACE -- Interface
792 ;;;
793 ;;; Bind the hashtables used for keeping track of global variables,
794 ;;; functions, &c.
795 ;;;
796 (defmacro with-ir1-namespace (&body forms)
797 `(let ((*free-variables* (make-hash-table :test #'eq))
798 (*free-functions* (make-hash-table :test #'equal))
799 (*constants* (make-hash-table :test #'equal))
800 (*source-paths* (make-hash-table :test #'eq)))
801 ,@forms))
802
803
804 ;;;; The Defprinter macro:
805
806 (defvar *defprint-pretty* nil
807 "If true, defprinter print functions print each slot on a separate line.")
808
809
810 ;;; Defprinter-Prin1, Defprinter-Princ -- Internal
811 ;;;
812 ;;; These functions are called by the expansion of the Defprinter
813 ;;; macro to do the actual printing.
814 ;;;
815 (proclaim '(ftype (function (symbol t stream fixnum) void)
816 defprinter-prin1 defprinter-princ))
817 (defun defprinter-prin1 (name value stream indent)
818 (if *defprint-pretty*
819 (format stream "~&~VT ~A:~%~VT ~S" indent name indent value)
820 (format stream " ~A= ~S" name value)))
821 ;;;
822 (defun defprinter-princ (name value stream indent)
823 (if *defprint-pretty*
824 (format stream "~&~VT ~A:~%~VT ~A" indent name indent value)
825 (format stream " ~A= ~A" name value)))
826
827 ;;; Start-Defprinter, Finish-Defprinter -- Internal
828 ;;;
829 ;;; Start and finish the the printing of a defprinter function.
830 ;;;
831 (defun start-defprinter (name stream indent object)
832 (declare (symbol name) (stream stream) (index indent))
833 (declare (ignore indent))
834 (format stream "#<~S ~X" name (system:%primitive make-fixnum object)))
835 ;;;
836 (defun finish-defprinter (name stream indent)
837 (declare (symbol name) (stream stream) (index indent))
838 (declare (ignore name))
839 (if *defprint-pretty*
840 (format stream ">~%~VT" indent)
841 (format stream ">")))
842
843 (defmacro defprinter (name &rest slots)
844 "Defprinter Name Slot-Desc*
845 Define some kind of reasonable defstruct structure-print function. Name
846 is the name of the structure. We define a function %PRINT-name which
847 prints the slots in the structure in the way described by the Slot-Descs.
848 Each Slot-Desc can be a slot name, indicating that the slot should simply
849 be printed. A Slot-Desc may also be a list of a slot name and other stuff.
850 The other stuff is composed of keywords followed by expressions. The
851 expressions are evaluated with the variable which is the slot name bound
852 to the value of the slot. These keywords are defined:
853
854 :PRIN1 Print the value of the expression instead of the slot value.
855 :PRINC Like :PRIN1, only princ the value
856 :TEST Only print something if the test is true.
857
858 If no printing thing is specified then the slot value is printed as PRIN1.
859
860 The structure being printed is bound to Structure and the stream is bound to
861 Stream."
862
863 (let ((n-indent (gensym)))
864 (flet ((sref (slot) `(,(symbolicate name "-" slot) structure)))
865 (collect ((prints))
866 (dolist (slot slots)
867 (if (atom slot)
868 (prints `(defprinter-prin1 ',slot ,(sref slot) stream ,n-indent))
869 (let ((sname (first slot))
870 (test t))
871 (collect ((stuff))
872 (do ((option (rest slot) (cddr option)))
873 ((null option)
874 (prints
875 `(let ((,sname ,(sref sname)))
876 (when ,test
877 ,@(or (stuff)
878 `((defprinter-prin1 ',sname ,sname
879 stream ,n-indent)))))))
880 (case (first option)
881 (:prin1
882 (stuff `(defprinter-prin1 ',sname ,(second option)
883 stream ,n-indent)))
884 (:princ
885 (stuff `(defprinter-princ ',sname ,(second option)
886 stream ,n-indent)))
887 (:test (setq test (second option)))
888 (t
889 (error "Losing Defprinter option: ~S." (first option)))))))))
890
891 `(defun ,(symbolicate "%PRINT-" name) (structure stream depth)
892 (let ((,n-indent (lisp::charpos stream)))
893 (start-defprinter ',name stream ,n-indent structure)
894 (let ((*print-level* (if *print-level* (- *print-level* depth 1))))
895 (unless (and *print-level* (<= *print-level* 0))
896 ,@(prints))
897 (finish-defprinter ',name stream ,n-indent)
898 nil)))))))
899
900
901 ;;;; Boolean attribute utilities:
902 ;;;
903 ;;; We need to maintain various sets of boolean attributes for known
904 ;;; functions and VOPs. To save space and allow for quick set operations, we
905 ;;; represent them as bits in a fixnum.
906 ;;;
907
908 (deftype attributes () 'fixnum)
909
910 (eval-when (#-new-compiler compile load eval)
911 ;;; Compute-Attribute-Mask -- Internal
912 ;;;
913 ;;; Given a list of attribute names and an alist that translates them to
914 ;;; masks, return the OR of the masks.
915 ;;;
916 (defun compute-attribute-mask (names alist)
917 (collect ((res 0 logior))
918 (dolist (name names)
919 (let ((mask (cdr (assoc name alist))))
920 (unless mask
921 (error "Unknown attribute name: ~S." name))
922 (res mask)))
923 (res)))
924
925 ); Eval-When (Compile Load Eval)
926
927 ;;; Def-Boolean-Attribute -- Interface
928 ;;;
929 ;;; Parse the specification and generate some accessor macros.
930 ;;;
931 (defmacro def-boolean-attribute (name &rest attribute-names)
932 "Def-Boolean-Attribute Name Attribute-Name*
933 Define a new class of boolean attributes, with the attributes havin the
934 specified Attribute-Names. Name is the name of the class, which is used to
935 generate some macros to manipulate sets of the attributes:
936
937 NAME-attributep attributes attribute-name*
938 Return true if one of the named attributes is present, false otherwise.
939
940 NAME-attributes attribute-name*
941 Return a set of the named attributes."
942
943 (let ((const-name (symbolicate name "-ATTRIBUTE-TRANSLATIONS")))
944 (collect ((alist))
945 (do ((mask 1 (ash mask 1))
946 (names attribute-names (cdr names)))
947 ((null names))
948 (alist (cons (car names) mask)))
949
950 `(progn
951 (eval-when (compile load eval)
952 (defconstant ,const-name ',(alist)))
953
954 (defmacro ,(symbolicate name "-ATTRIBUTEP")
955 (attributes &rest attribute-names)
956 "Automagically generated boolean attribute test function. See
957 Def-Boolean-Attribute."
958 `(logtest ,(compute-attribute-mask attribute-names ,const-name)
959 (the attributes ,attributes)))
960
961 (defmacro ,(symbolicate name "-ATTRIBUTES") (&rest attribute-names)
962 "Automagically generated boolean attribute creation function. See
963 Def-Boolean-Attribute."
964 (compute-attribute-mask attribute-names ,const-name))))))
965
966
967 ;;; Attributes-Union, Attributes-Intersection, Attributes= -- Interface
968 ;;;
969 ;;; And now for some gratuitous pseudo-abstraction...
970 ;;;
971 (defmacro attributes-union (&rest attributes)
972 "Returns the union of all the sets of boolean attributes which are its
973 arguments."
974 `(the attributes
975 (logior ,@(mapcar #'(lambda (x) `(the attributes ,x)) attributes))))
976 ;;;
977 (defmacro attributes-intersection (&rest attributes)
978 "Returns the intersection of all the sets of boolean attributes which are its
979 arguments."
980 `(the attributes
981 (logand ,@(mapcar #'(lambda (x) `(the attributes ,x)) attributes))))
982 ;;;
983 (proclaim '(inline attributes=))
984 (proclaim '(function attributes= (attributes attributes) boolean))
985 (defun attributes= (attr1 attr2)
986 "Returns true if the attributes present in Attr1 are indentical to those in
987 Attr2."
988 (eql attr1 attr2))
989
990
991 ;;;; The Event statistics/trace utility:
992
993 (eval-when (#-new-compiler compile load eval)
994
995 (defstruct event-info
996 ;;
997 ;; The name of this event.
998 (name nil :type symbol)
999 ;;
1000 ;; The string rescribing this event.
1001 (description nil :type string)
1002 ;;
1003 ;; The name of the variable we stash this in.
1004 (var nil :type symbol)
1005 ;;
1006 ;; The number of times this event has happened.
1007 (count 0 :type fixnum)
1008 ;;
1009 ;; The level of significance of this event.
1010 (level nil :type unsigned-byte)
1011 ;;
1012 ;; If true, a function that gets called with the node that the event happened
1013 ;; to.
1014 (action nil :type (or function null)))
1015
1016
1017 ;;; A hashtable from event names to event-info structures.
1018 ;;;
1019 (defvar *event-info* (make-hash-table :test #'eq))
1020
1021
1022 ;;; Event-Info-Or-Lose -- Internal
1023 ;;;
1024 ;;; Return the event info for Name or die trying.
1025 ;;;
1026 (proclaim '(function event-info-or-lose (t) event-info))
1027 (defun event-info-or-lose (name)
1028 (let ((res (gethash name *event-info*)))
1029 (unless res
1030 (error "~S is not the name of an event." name))
1031 res))
1032
1033 ); Eval-When (Compile Load Eval)
1034
1035
1036 ;;; Event-Count, Event-Action, Event-Level -- Interface
1037 ;;;
1038 (proclaim '(function event-count (symbol) fixnum))
1039 (defun event-count (name)
1040 "Return the number of times that Event has happened."
1041 (event-info-count (event-info-or-lose name)))
1042 ;;;
1043 (proclaim '(function event-action (symbol) (or function null)))
1044 (defun event-action (name)
1045 "Return the function that is called when Event happens. If this is null,
1046 there is no action. The function is passed the node to which the event
1047 happened, or NIL if there is no relevant node. This may be set with SETF."
1048 (event-info-action (event-info-or-lose name)))
1049 ;;;
1050 (proclaim '(function %set-event-action (symbol (or function null)) (or function null)))
1051 (defun %set-event-action (name new-value)
1052 (setf (event-info-action (event-info-or-lose name))
1053 new-value))
1054 ;;;
1055 (defsetf event-action %set-event-action)
1056 ;;;
1057 (proclaim '(function event-level (symbol) unsigned-byte))
1058 (defun event-level (name)
1059 "Return the non-negative integer which represents the level of significance
1060 of the event Name. This is used to determine whether to print a message when
1061 the event happens. This may be set with SETF."
1062 (event-info-level (event-info-or-lose name)))
1063 ;;;
1064 (proclaim '(function %set-event-level (symbol unsigned-byte) unsigned-byte))
1065 (defun %set-event-level (name new-value)
1066 (setf (event-info-level (event-info-or-lose name))
1067 new-value))
1068 ;;;
1069 (defsetf event-level %set-event-level)
1070
1071
1072 ;;; Defevent -- Interface
1073 ;;;
1074 ;;; Make an event-info structure and stash it in a variable so we can get at
1075 ;;; it quickly.
1076 ;;;
1077 (defmacro defevent (name description &optional (level 0))
1078 "Defevent Name Description
1079 Define a new kind of event. Name is a symbol which names the event and
1080 Description is a string which describes the event. Level (default 0) is the
1081 level of significance associated with this event; it is used to determine
1082 whether to print a Note when the event happens."
1083 (let ((var-name (symbolicate "*" name "-EVENT-INFO*")))
1084 `(eval-when (compile load eval)
1085 (defvar ,var-name
1086 (make-event-info :name ',name :description ',description :var ',var-name
1087 :level ,level))
1088 (setf (gethash ',name *event-info*) ,var-name)
1089 ',name)))
1090
1091 (proclaim '(type unsigned-byte *event-note-threshold*))
1092 (defvar *event-note-threshold* 1
1093 "This variable is a non-negative integer specifying the lowest level of
1094 event that will print a Note when it occurs.")
1095
1096 ;;; Event -- Interface
1097 ;;;
1098 ;;; Increment the counter and do any action. Mumble about the event if
1099 ;;; policy indicates.
1100 ;;;
1101 (defmacro event (name &optional node)
1102 "Event Name Node
1103 Note that the event with the specified Name has happened. Node is evaluated
1104 to determine the node to which the event happened."
1105 `(%event ,(event-info-var (event-info-or-lose name)) ,node))
1106 ;;;
1107 (proclaim '(function %event (event-info (or node null))))
1108 (defun %event (info node)
1109 (incf (event-info-count info))
1110 (when (and (>= (event-info-level info) *event-note-threshold*)
1111 (if node
1112 (policy node (= brevity 0))
1113 (policy nil (= brevity 0))))
1114 (let ((*compiler-error-context* node))
1115 (compiler-note (event-info-description info))))
1116
1117 (let ((action (event-info-action info)))
1118 (when action (funcall action node))))
1119
1120
1121 ;;; Event-Statistics, Clear-Statistics -- Interface
1122 ;;;
1123 (proclaim '(function event-statistics (&optional unsigned-byte stream) void))
1124 (defun event-statistics (&optional (min-count 1) (stream *standard-output*))
1125 "Print a listing of events and their counts, sorted by the count. Events
1126 that happened fewer than Min-Count times will not be printed. Stream is the
1127 stream to write to."
1128 (collect ((info))
1129 (maphash #'(lambda (k v)
1130 (declare (ignore k))
1131 (when (>= (event-info-count v) min-count)
1132 (info v)))
1133 *event-info*)
1134 (dolist (event (sort (info) #'> :key #'event-info-count))
1135 (format stream "~6D: ~A~%" (event-info-count event)
1136 (event-info-description event)))
1137 (values)))
1138 ;;;
1139 (proclaim '(function clear-statistics () void))
1140 (defun clear-statistics ()
1141 (maphash #'(lambda (k v)
1142 (declare (ignore k))
1143 (setf (event-info-count v) 0))
1144 *event-info*)
1145 (values))
1146

  ViewVC Help
Powered by ViewVC 1.1.5