/[cmucl]/src/compiler/macros.lisp
ViewVC logotype

Contents of /src/compiler/macros.lisp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.13 - (show annotations)
Mon Nov 5 19:10:18 1990 UTC (23 years, 5 months ago) by wlott
Branch: MAIN
Changes since 1.12: +1 -1 lines
Fixed ftype proclaim of defprinter-prin[1c] to allow nil for the indent.
1 ;;; -*- Package: C; Log: C.Log -*-
2 ;;;
3 ;;; **********************************************************************
4 ;;; This code was written as part of the Spice Lisp project at
5 ;;; Carnegie-Mellon University, and has been placed in the public domain.
6 ;;; If you want to use this code or any part of Spice Lisp, please contact
7 ;;; Scott Fahlman (FAHLMAN@CMUC).
8 ;;; **********************************************************************
9 ;;;
10 ;;; Random types and macros used in writing the compiler.
11 ;;;
12 ;;; Written by Rob MacLachlan
13 ;;;
14 (in-package 'c)
15
16 (export '(lisp::with-compilation-unit) "LISP")
17
18 (export '(policy symbolicate def-ir1-translator def-source-transform
19 def-primitive-translator deftransform defknown defoptimizer
20 derive-type optimizer ltn-annotate ir2-convert attributes
21 def-boolean-attribute attributes-union attributes-intersection
22 attributes=))
23
24 (proclaim '(special *wild-type* *universal-type* *compiler-error-context*))
25
26 ;;;; Deftypes:
27
28 ;;;
29 ;;; Should be standard:
30 (deftype boolean () '(member t nil))
31
32 ;;;
33 ;;; Inlinep is used to determine how a function is called. The values have
34 ;;; these meanings:
35 ;;; Nil No declaration seen: do whatever you feel like, but don't dump
36 ;;; an inline expansion.
37 ;;;
38 ;;; :Notinline Notinline declaration seen: always do full function call.
39 ;;;
40 ;;; :Inline Inline declaration seen: save expansion, expanding to it if
41 ;;; policy favors.
42 ;;;
43 ;;; :Maybe-Inline
44 ;;; Retain expansion, but only use it opportunistically.
45 ;;;
46 (deftype inlinep () '(member :inline :maybe-inline :notinline nil))
47
48
49 ;;;; The Policy macro:
50
51 (proclaim '(special *lexical-environment*))
52
53 (eval-when (#-new-compiler compile load eval)
54 (defconstant policy-parameter-slots
55 '((speed . cookie-speed) (space . cookie-space) (safety . cookie-safety)
56 (cspeed . cookie-cspeed) (brevity . cookie-brevity)
57 (debug . cookie-debug)))
58
59 ;;; Find-Used-Parameters -- Internal
60 ;;;
61 ;;; Find all the policy parameters which are actually mentioned in Stuff,
62 ;;; returning the names in a list. We assume everything is evaluated.
63 ;;;
64 (defun find-used-parameters (stuff)
65 (if (atom stuff)
66 (if (assoc stuff policy-parameter-slots) (list stuff) ())
67 (collect ((res () nunion))
68 (dolist (arg (cdr stuff) (res))
69 (res (find-used-parameters arg))))))
70
71 ); Eval-When (Compile Load Eval)
72
73 ;;; Policy -- Public
74 ;;;
75 ;;; This macro provides some syntactic sugar for querying the settings of
76 ;;; the compiler policy parameters.
77 ;;;
78 (defmacro policy (node &rest conditions)
79 "Policy Node Condition*
80 Test whether some conditions apply to the current compiler policy for Node.
81 Each condition is a predicate form which accesses the policy values by
82 referring to them as the variables SPEED, SPACE, SAFETY, CSPEED, BREVITY and
83 DEBUG. The results of all the conditions are combined with AND and returned
84 as the result.
85
86 Node is a form which is evaluated to obtain the node which the policy is for.
87 If Node is NIL, then we use the current policy as defined by *default-cookie*
88 and *current-cookie*. This option is only well defined during IR1
89 conversion."
90 (let* ((form `(and ,@conditions))
91 (n-cookie (gensym))
92 (binds (mapcar
93 #'(lambda (name)
94 (let ((slot (cdr (assoc name policy-parameter-slots))))
95 `(,name (,slot ,n-cookie))))
96 (find-used-parameters form))))
97 `(let* ((,n-cookie (lexenv-cookie
98 ,(if node
99 `(node-lexenv ,node)
100 '*lexical-environment*)))
101 ,@binds)
102 ,form)))
103
104
105 ;;;; Source-hacking defining forms:
106
107 (eval-when (#-new-compiler compile load eval)
108
109 ;;; Symbolicate -- Interface
110 ;;;
111 ;;; Concatenate together the names of some strings and symbols, producing
112 ;;; a symbol in the current package.
113 ;;;
114 (proclaim '(function symbolicate (&rest (or string symbol)) symbol))
115 (defun symbolicate (&rest things)
116 (values (intern (reduce #'(lambda (x y)
117 (concatenate 'string (string x) (string y)))
118 things))))
119
120 ); Eval-When (Compile Load Eval)
121
122 ;;; SPECIAL-FORM-FUNCTION -- Internal
123 ;;;
124 ;;; This function is stored in the SYMBOL-FUNCTION of special form names so
125 ;;; that they are FBOUND.
126 ;;;
127 (defun special-form-function (&rest stuff)
128 (declare (ignore stuff))
129 (error "Can't funcall the SYMBOL-FUNCTION of special forms."))
130
131 ;;; Def-IR1-Translator -- Interface
132 ;;;
133 ;;; Parse defmacro style lambda-list, setting things up so that a compiler
134 ;;; error happens if the syntax is invalid.
135 ;;;
136 (defmacro def-ir1-translator (name (lambda-list start-var cont-var
137 &key (kind :special-form))
138 &body body)
139 "Def-IR1-Translator Name (Lambda-List Start-Var Cont-Var {Key Value}*)
140 [Doc-String] Form*
141 Define a function that converts a Special-Form or other magical thing into
142 IR1. Lambda-List is a defmacro style lambda list. Start-Var and Cont-Var
143 are bound to the start and result continuations for the resulting IR1.
144 This keyword is defined:
145 Kind
146 The function kind to associate with Name (default :special-form)."
147 (let ((fn-name (symbolicate "IR1-CONVERT-" name))
148 (n-form (gensym))
149 (n-env (gensym)))
150 (multiple-value-bind (body decls doc)
151 (lisp::parse-defmacro
152 lambda-list n-form body name
153 :error-string "Wrong number of arguments to special form ~S: ~D."
154 :doc-string-allowed t
155 :environment n-env)
156 `(progn
157 (proclaim '(function ,fn-name (continuation continuation t) void))
158 (defun ,fn-name (,start-var ,cont-var ,n-form)
159 (let ((,n-env *lexical-environment*))
160 ,@decls
161 (macrolet ((error (&rest args)
162 `(compiler-error ,@args)))
163 ,body)))
164 ,@(when doc
165 `((setf (documentation ',name 'function) ,doc)))
166 (setf (info function ir1-convert ',name) #',fn-name)
167 (setf (info function kind ',name) ,kind)
168 #+new-compiler
169 ,@(when (eq kind :special-form)
170 `((setf (symbol-function ',name) #'special-form-function)))))))
171
172
173 ;;; Def-Source-Transform -- Interface
174 ;;;
175 ;;; Similar to Def-IR1-Translator, except that we pass if the syntax is
176 ;;; invalid.
177 ;;;
178 (defmacro def-source-transform (name lambda-list &body body)
179 "Def-Source-Transform Name Lambda-List Form*
180 Define a macro-like source-to-source transformation for the function Name.
181 A source transform may \"pass\" by returning a non-nil second value. If the
182 transform passes, then the form is converted as a normal function call. If
183 the supplied arguments are not compatible with the specified lambda-list,
184 then the transform automatically passes.
185
186 Source-Transforms may only be defined for functions. Source transformation
187 is not attempted if the function is declared Notinline. Source transforms
188 should not examine their arguments. If it matters how the function is used,
189 then Deftransform should be used to define an IR1 transformation.
190
191 If the desirability of the transformation depends on the current Optimize
192 parameters, then the Policy macro should be used to determine when to pass."
193 (let ((fn-name (symbolicate "SOURCE-TRANSFORM-" name))
194 (n-form (gensym))
195 (n-env (gensym)))
196 (multiple-value-bind (body decls)
197 (lisp::parse-defmacro lambda-list n-form body name
198 :error-string "Foo!"
199 :environment n-env)
200 `(progn
201 (defun ,fn-name (,n-form)
202 (let ((,n-env *lexical-environment*))
203 ,@decls
204 (macrolet ((error (&rest stuff)
205 (declare (ignore stuff))
206 `(return-from ,',fn-name (values nil t))))
207 ,body)))
208 (setf (info function source-transform ',name) #',fn-name)))))
209
210
211 (defmacro def-primitive-translator (name lambda-list &body body)
212 "Def-Primitive-Translator Name Lambda-List Form*
213 Define a function that converts a use of (%PRIMITIVE Name ...) into Lisp
214 code. Lambda-List is a defmacro style lambda list."
215 (let ((fn-name (symbolicate "PRIMITIVE-TRANSLATE-" name))
216 (n-form (gensym))
217 (n-env (gensym)))
218 (multiple-value-bind (body decls)
219 (lisp::parse-defmacro
220 lambda-list n-form body name
221 :error-string "Wrong number of arguments to primitive ~S: ~D."
222 :environment n-env)
223 `(progn
224 (defun ,fn-name (,n-form)
225 (let ((,n-env *lexical-environment*))
226 ,@decls
227 (macrolet ((error (&rest args)
228 `(compiler-error ,@args)))
229 ,body)))
230 (setf (gethash ',name *primitive-translators*) ',fn-name)))))
231
232
233 ;;;; Lambda-list parsing utilities:
234 ;;;
235 ;;; IR1 transforms, optimizers and type inferencers need to be able to parse
236 ;;; the IR1 representation of a function call using a standard function
237 ;;; lambda-list.
238
239
240 (eval-when (#-new-compiler compile load eval)
241
242 ;;; Parse-Deftransform -- Internal
243 ;;;
244 ;;; Given a deftransform style lambda-list, generate code that parses the
245 ;;; arguments of a combination with respect to that lambda-list. Body is the
246 ;;; the list of forms which are to be evaluated within the bindings. Args is
247 ;;; the variable that holds list of argument continuations. Error-Form is a
248 ;;; form which is evaluated when the syntax of the supplied arguments is
249 ;;; incorrect or a non-constant argument keyword is supplied. Defaults and
250 ;;; other gunk are ignored. The second value is a list of all the arguments
251 ;;; bound. We make the variables IGNORABLE so that we don't have to manually
252 ;;; declare them Ignore if their only purpose is to make the syntax work.
253 ;;;
254 (proclaim '(function parse-deftransform (list list symbol t) list))
255 (defun parse-deftransform (lambda-list body args error-form)
256 (multiple-value-bind (req opt restp rest keyp keys allowp)
257 (parse-lambda-list lambda-list)
258 (let* ((min-args (length req))
259 (max-args (+ min-args (length opt)))
260 (n-keys (gensym)))
261 (collect ((binds)
262 (vars)
263 (pos 0 +)
264 (keywords))
265 (dolist (arg req)
266 (vars arg)
267 (binds `(,arg (nth ,(pos) ,args)))
268 (pos 1))
269
270 (dolist (arg opt)
271 (let ((var (if (atom arg) arg (first arg))))
272 (vars var)
273 (binds `(,var (nth ,(pos) ,args)))
274 (pos 1)))
275
276 (when restp
277 (vars rest)
278 (binds `(,rest (nthcdr ,(pos) ,args))))
279
280 (dolist (spec keys)
281 (if (or (atom spec) (atom (first spec)))
282 (let* ((var (if (atom spec) spec (first spec)))
283 (key (intern (symbol-name var) "KEYWORD")))
284 (vars var)
285 (binds `(,var (find-keyword-continuation ,n-keys ,key)))
286 (keywords key))
287 (let* ((head (first spec))
288 (var (second head))
289 (key (first head)))
290 (vars var)
291 (binds `(,var (find-keyword-continuation ,n-keys ,key)))
292 (keywords key))))
293
294 (let ((n-length (gensym))
295 (limited-legal (not (or restp keyp))))
296 (values
297 `(let ((,n-length (length ,args))
298 ,@(when keyp `((,n-keys (nthcdr ,(pos) ,args)))))
299 (unless (and
300 ,(if limited-legal
301 `(<= ,min-args ,n-length ,max-args)
302 `(<= ,min-args ,n-length))
303 ,@(when keyp
304 (if allowp
305 `((check-keywords-constant ,n-keys))
306 `((check-transform-keys ,n-keys ',(keywords))))))
307 ,error-form)
308 (let ,(binds)
309 ;;; ### Bootstrap hack...
310 #+new-compiler
311 (declare (ignorable ,@(vars)))
312 #-new-compiler
313 (progn ,@(vars))
314 ,@body))
315 (vars)))))))
316
317 ); Eval-When (Compile Load Eval)
318
319
320 ;;;; Utilities used at run-time for parsing keyword args in IR1:
321
322 ;;; Find-Keyword-Continuation -- Internal
323 ;;;
324 ;;; This function is used by the result of Parse-Deftransform to find the
325 ;;; continuation for the value of the keyword argument Key in the list of
326 ;;; continuations Args. It returns the continuation if the keyword is present,
327 ;;; or NIL otherwise. The legality and constantness of the keywords should
328 ;;; already have been checked.
329 ;;;
330 (proclaim '(function find-keyword-continuation (list keyword) (or continuation null)))
331 (defun find-keyword-continuation (args key)
332 (do ((arg args (cddr arg)))
333 ((null arg) nil)
334 (when (eq (continuation-value (first arg)) key)
335 (return (second arg)))))
336
337
338 ;;; Check-Keywords-Constant -- Internal
339 ;;;
340 ;;; This function is used by the result of Parse-Deftransform to verify that
341 ;;; alternating continuations in Args are constant and that there is an even
342 ;;; number of args.
343 ;;;
344 (proclaim '(function check-keywords-constant (list) boolean))
345 (defun check-keywords-constant (args)
346 (do ((arg args (cddr arg)))
347 ((null arg) t)
348 (unless (and (rest arg)
349 (constant-continuation-p (first arg)))
350 (return nil))))
351
352
353 ;;; Check-Transform-Keys -- Internal
354 ;;;
355 ;;; This function is used by the result of Parse-Deftransform to verify that
356 ;;; the list of continuations Args is a well-formed keyword arglist and that
357 ;;; only keywords present in the list Keys are supplied.
358 ;;;
359 (proclaim '(function check-transform-keys (list list) boolean))
360 (defun check-transform-keys (args keys)
361 (and (check-keywords-constant args)
362 (do ((arg args (cddr arg)))
363 ((null arg) t)
364 (unless (member (continuation-value (first arg)) keys)
365 (return nil)))))
366
367
368 ;;;; Deftransform:
369
370 ;;; Deftransform -- Interface
371 ;;;
372 ;;; Parse the lambda-list and generate code to test the policy and
373 ;;; automatically create the result lambda.
374 ;;;
375 (defmacro deftransform (name (lambda-list &optional (arg-types '*) (result-type '*)
376 &key result policy node defun-only)
377 &body body)
378 "Deftransform Name (Lambda-List [Arg-Types] [Result-Type] {Key Value}*)
379 Declaration* Form*
380 Define an IR1 transformation for Name. An IR1 transformation computes a
381 lambda that replaces the function variable reference for the call. A
382 transform may pass (decide not to transform the call) by calling the Give-Up
383 function. Lambda-List both determines how the current call is parsed and
384 specifies the Lambda-List for the resulting lambda.
385
386 We parse the call and bind each of the lambda-list variables to the
387 continuation which represents the value of the argument. When parsing the
388 call, we ignore the defaults, and always bind the variables for unsupplied
389 arguments to NIL. If a required argument is missing, an unknown keyword is
390 supplied, or an argument keyword is not a constant, then the transform
391 automatically passes. The Declarations apply to the bindings made by
392 Deftransform at transformation time, rather than to the variables of the
393 resulting lambda. Bound-but-not-referenced warnings are suppressed for the
394 lambda-list variables.
395
396 Normally, the body evaluates to a form which becomes the body of an
397 automatically constructed lambda. We make Lambda-List the lambda-list for
398 the lambda, and automatically insert declarations of the argument and result
399 types. If the second value of the body is non-null, then it is a list of
400 declarations which are to be inserted at the head of the lambda. Automatic
401 lambda generation may be inhibited by explicitly returning a lambda from the
402 body.
403
404 The Arg-Types and Result-Type are used to create a function type which the
405 call must satisfy before transformation is attempted. The function type
406 specifier is constructed by wrapping (FUNCTION ...) around these values, so
407 the lack of a restriction may be specified by omitting the argument or
408 supplying *. The argument syntax specified in the Arg-Types need not be the
409 same as that in the Lambda-List, but the transform will never happen if
410 the syntaxes can't be satisfied simultaneously. If there is an existing
411 transform for the same function that has the same type, then it is replaced
412 with the new definition.
413
414 These are the legal keyword options:
415 :Result - A variable which is bound to the result continuation.
416 :Node - A variable which is bound to the combination node for the call.
417 :Policy - A form which is supplied to the Policy macro to determine whether
418 this transformation is appropriate. If the result is false, then
419 the transform automatically passes.
420 :Defun-Only
421 - Don't actually instantiate a transform, instead just DEFUN
422 Name with the specified transform definition function. This may
423 be later instantiated with %Deftransform."
424
425 (let ((n-args (gensym))
426 (n-node (or node (gensym)))
427 (n-decls (gensym))
428 (n-lambda (gensym)))
429 (multiple-value-bind (parsed-form vars)
430 (parse-deftransform
431 lambda-list
432 (if policy
433 `((unless (policy ,n-node ,policy) (give-up))
434 ,@body)
435 body)
436 n-args '(give-up))
437 (let ((stuff
438 `((,n-node)
439 (let* ((,n-args (basic-combination-args ,n-node))
440 ,@(when result
441 `((,result (node-cont ,n-node)))))
442 (multiple-value-bind (,n-lambda ,n-decls)
443 ,parsed-form
444 (if (and (consp ,n-lambda) (eq (car ,n-lambda) 'lambda))
445 ,n-lambda
446 `(lambda ,',lambda-list
447 (declare (ignorable ,@',vars))
448 ,@,n-decls
449 ,,n-lambda)))))))
450 (if defun-only
451 `(defun ,name ,@stuff)
452 `(%deftransform
453 ',name
454 '(function ,arg-types ,result-type)
455 #'(lambda ,@stuff)))))))
456
457 ;;;; Defknown, Defoptimizer:
458
459 ;;; Defknown -- Interface
460 ;;;
461 ;;; This macro should be the way that all implementation independent
462 ;;; information about functions is made known to the compiler.
463 ;;;
464 (defmacro defknown (name arg-types result-type &optional (attributes '(any))
465 &rest keys)
466 "Defknown Name Arg-Types Result-Type [Attributes] {Key Value}*
467 Declare the function Name to be a known function. We construct a type
468 specifier for the function by wrapping (FUNCTION ...) around the Arg-Types
469 and Result-Type. Attributes is a an unevaluated list of the boolean
470 attributes that the function has. These attributes are meaningful here:
471 call
472 May call functions that are passed as arguments. In order to determine
473 what other effects are present, we must find the effects of all arguments
474 that may be functions.
475
476 unsafe
477 May incorporate arguments in the result or somehow pass them upward.
478
479 unwind
480 May fail to return during correct execution. Errors are O.K.
481
482 any
483 The (default) worst case. Includes all the other bad things, plus any
484 other possible bad thing.
485
486 foldable
487 May be constant-folded. The function has no side effects, but may be
488 affected by side effects on the arguments. e.g. SVREF, MAPC.
489
490 flushable
491 May be eliminated if value is unused. The function has no side effects
492 except possibly CONS. If a function is defined to signal errors, then
493 it is not flushable even if it is movable or foldable.
494
495 movable
496 May be moved with impunity. Has no side effects except possibly CONS,
497 and is affected only by its arguments.
498
499 predicate
500 A true predicate likely to be open-coded. This is a hint to IR1
501 conversion that it should ensure calls always appear as an IF test.
502 Not usually specified to Defknown, since this is implementation
503 dependent, and is usually automatically set by the Define-VOP
504 :Conditional option.
505
506 Name may also be a list of names, in which case the same information is given
507 to all the names. The keywords specify the initial values for various
508 optimizers that the function might have."
509 (when (and (intersection attributes '(any call unwind))
510 (intersection attributes '(movable)))
511 (error "Function cannot have both good and bad attributes: ~S" attributes))
512
513 `(%defknown ',(if (and (consp name)
514 (not (eq (car name) 'setf)))
515 name
516 (list name))
517 '(function ,arg-types ,result-type)
518 (ir1-attributes ,@(if (member 'any attributes)
519 (union '(call unsafe unwind) attributes)
520 attributes))
521 ,@keys))
522
523
524 ;;; Defoptimizer -- Interface
525 ;;;
526 ;;; Create a function which parses combination args according to a
527 ;;; Lambda-List, optionally storing it in a function-info slot.
528 ;;;
529 (defmacro defoptimizer (what (lambda-list &optional (n-node (gensym))
530 &rest vars)
531 &body body)
532 "Defoptimizer (Function Kind) (Lambda-List [Node-Var] Var*)
533 Declaration* Form*
534 Define some Kind of optimizer for the named Function. Function must be a
535 known function. Lambda-List is used to parse the arguments to the
536 combination as in Deftransform. If the argument syntax is invalid or there
537 are non-constant keys, then we simply return NIL.
538
539 The function is DEFUN'ed as Function-Kind-OPTIMIZER. Possible kinds are
540 DERIVE-TYPE, OPTIMIZER, LTN-ANNOTATE and IR2-CONVERT. If a symbol is
541 specified instead of a (Function Kind) list, then we just do a DEFUN with the
542 symbol as its name, and don't do anything with the definition. This is
543 useful for creating optimizers to be passed by name to DEFKNOWN.
544
545 If supplied, Node-Var is bound to the combination node being optimized. If
546 additional Vars are supplied, then they are used as the rest of the optimizer
547 function's lambda-list. LTN-ANNOTATE methods are passed an additional POLICY
548 argument, and IR2-CONVERT methods are passed an additional IR2-BLOCK
549 argument."
550
551 (let ((name (if (symbolp what) what
552 (symbolicate (first what) "-" (second what) "-OPTIMIZER"))))
553
554 (let ((n-args (gensym)))
555 `(progn
556 (defun ,name (,n-node ,@vars)
557 (let ((,n-args (basic-combination-args ,n-node)))
558 ,(parse-deftransform lambda-list body n-args
559 `(return-from ,name nil))))
560 ,@(when (consp what)
561 `((setf (,(symbolicate "FUNCTION-INFO-" (second what))
562 (function-info-or-lose ',(first what)))
563 #',name)))))))
564
565
566 ;;;; IR groveling macros:
567
568 ;;; Do-Blocks, Do-Blocks-Backwards -- Interface
569 ;;;
570 (defmacro do-blocks ((block-var component &optional ends result) &body body)
571 "Do-Blocks (Block-Var Component [Ends] [Result-Form]) {Declaration}* {Form}*
572 Iterate over the blocks in a component, binding Block-Var to each block in
573 turn. The value of Ends determines whether to iterate over dummy head and
574 tail blocks:
575 NIL -- Skip Head and Tail (the default)
576 :Head -- Do head but skip tail
577 :Tail -- Do tail but skip head
578 :Both -- Do both head and tail
579
580 If supplied, Result-Form is the value to return."
581 (unless (member ends '(nil :head :tail :both))
582 (error "Losing Ends value: ~S." ends))
583 (let ((n-component (gensym))
584 (n-tail (gensym)))
585 `(let* ((,n-component ,component)
586 (,n-tail ,(if (member ends '(:both :tail))
587 nil
588 `(component-tail ,n-component))))
589 (do ((,block-var ,(if (member ends '(:both :head))
590 `(component-head ,n-component)
591 `(block-next (component-head ,n-component)))
592 (block-next ,block-var)))
593 ((eq ,block-var ,n-tail) ,result)
594 ,@body))))
595 ;;;
596 (defmacro do-blocks-backwards ((block-var component &optional ends result) &body body)
597 "Do-Blocks-Backwards (Block-Var Component [Ends] [Result-Form]) {Declaration}* {Form}*
598 Like Do-Blocks, only iterate over the blocks in reverse order."
599 (unless (member ends '(nil :head :tail :both))
600 (error "Losing Ends value: ~S." ends))
601 (let ((n-component (gensym))
602 (n-head (gensym)))
603 `(let* ((,n-component ,component)
604 (,n-head ,(if (member ends '(:both :head))
605 nil
606 `(component-head ,n-component))))
607 (do ((,block-var ,(if (member ends '(:both :tail))
608 `(component-tail ,n-component)
609 `(block-prev (component-tail ,n-component)))
610 (block-prev ,block-var)))
611 ((eq ,block-var ,n-head) ,result)
612 ,@body))))
613
614
615 ;;; Do-Uses -- Interface
616 ;;;
617 ;;; Could change it not to replicate the code someday perhaps...
618 ;;;
619 (defmacro do-uses ((node-var continuation &optional result) &body body)
620 "Do-Uses (Node-Var Continuation [Result]) {Declaration}* {Form}*
621 Iterate over the uses of Continuation, binding Node to each one succesively."
622 (once-only ((n-cont continuation))
623 `(ecase (continuation-kind ,n-cont)
624 (:unused)
625 (:inside-block
626 (block nil
627 (let ((,node-var (continuation-use ,n-cont)))
628 ,@body
629 ,result)))
630 ((:block-start :deleted-block-start)
631 (dolist (,node-var (block-start-uses (continuation-block ,n-cont))
632 ,result)
633 ,@body)))))
634
635
636 ;;; Do-Nodes, Do-Nodes-Backwards -- Interface
637 ;;;
638 ;;; In the forward case, we terminate on Last-Cont so that we don't have to
639 ;;; worry about our termination condition being changed when new code is added
640 ;;; during the iteration. In the backward case, we do NODE-PREV before
641 ;;; evaluating the body so that we can keep going when the current node is
642 ;;; deleted.
643 ;;;
644 (defmacro do-nodes ((node-var cont-var block &optional result) &body body)
645 "Do-Nodes (Node-Var Cont-Var Block [Result]) {Declaration}* {Form}*
646 Iterate over the nodes in Block, binding Node-Var to the each node and
647 Cont-Var to the node's Cont."
648 (let ((n-block (gensym))
649 (n-last-cont (gensym)))
650 `(let* ((,n-block ,block)
651 (,n-last-cont (node-cont (block-last ,n-block))))
652 (do* ((,node-var (continuation-next (block-start ,n-block))
653 (continuation-next ,cont-var))
654 (,cont-var (node-cont ,node-var) (node-cont ,node-var)))
655 (())
656 ,@body
657 (when (eq ,cont-var ,n-last-cont)
658 (return ,result))))))
659 ;;;
660 (defmacro do-nodes-backwards ((node-var cont-var block &optional result)
661 &body body)
662 "Do-Nodes-Backwards (Node-Var Cont-Var Block [Result]) {Declaration}* {Form}*
663 Like Do-Nodes, only iterates in reverse order."
664 (let ((n-block (gensym))
665 (n-start (gensym))
666 (n-last (gensym))
667 (n-next (gensym)))
668 `(let* ((,n-block ,block)
669 (,n-start (block-start ,n-block))
670 (,n-last (block-last ,n-block)))
671 (do* ((,cont-var (node-cont ,n-last) ,n-next)
672 (,node-var ,n-last (continuation-use ,cont-var))
673 (,n-next (node-prev ,node-var) (node-prev ,node-var)))
674 (())
675 ,@body
676 (when (eq ,n-next ,n-start)
677 (return ,result))))))
678
679
680 ;;; With-IR1-Environment -- Interface
681 ;;;
682 ;;; The lexical environment is presumably already null...
683 ;;;
684 (defmacro with-ir1-environment (node &rest forms)
685 "With-IR1-Environment Node Form*
686 Bind the IR1 context variables so that IR1 conversion can be done after the
687 main conversion pass has finished."
688 (let ((n-node (gensym)))
689 `(let* ((,n-node ,node)
690 (*current-component* (block-component (node-block ,n-node)))
691 (*lexical-environment* (node-lexenv ,n-node))
692 (*current-path* (node-source-path ,n-node)))
693 ,@forms)))
694
695
696 ;;; WITH-IR1-NAMESPACE -- Interface
697 ;;;
698 ;;; Bind the hashtables used for keeping track of global variables,
699 ;;; functions, &c.
700 ;;;
701 (defmacro with-ir1-namespace (&body forms)
702 `(let ((*free-variables* (make-hash-table :test #'eq))
703 (*free-functions* (make-hash-table :test #'equal))
704 (*constants* (make-hash-table :test #'equal))
705 (*source-paths* (make-hash-table :test #'eq))
706 (*failed-optimizations* (make-hash-table :test #'eq)))
707 ,@forms))
708
709
710 ;;; LEXENV-FIND -- Interface
711 ;;;
712 (defmacro lexenv-find (name slot &key test)
713 "LEXENV-FIND Name Slot {Key Value}*
714 Look up Name in the lexical environment namespace designated by Slot,
715 returning the <value, T>, or <NIL, NIL> if no entry. The :TEST keyword
716 may be used to determine the name equality predicate."
717 (once-only ((n-res `(assoc ,name (,(symbolicate "LEXENV-" slot)
718 *lexical-environment*)
719 ,@(when test `(:test ,test)))))
720 `(if ,n-res
721 (values (cdr ,n-res) t)
722 (values nil nil))))
723
724
725 ;;;; The Defprinter macro:
726
727 (defvar *defprint-pretty* nil
728 "If true, defprinter print functions print each slot on a separate line.")
729
730
731 ;;; Defprinter-Prin1, Defprinter-Princ -- Internal
732 ;;;
733 ;;; These functions are called by the expansion of the Defprinter
734 ;;; macro to do the actual printing.
735 ;;;
736 (proclaim '(ftype (function (symbol t stream (or null fixnum)) void)
737 defprinter-prin1 defprinter-princ))
738 (defun defprinter-prin1 (name value stream indent)
739 (if *defprint-pretty*
740 (format stream "~&~VT ~A:~%~VT ~S" indent name indent value)
741 (format stream " ~A= ~S" name value)))
742 ;;;
743 (defun defprinter-princ (name value stream indent)
744 (if *defprint-pretty*
745 (format stream "~&~VT ~A:~%~VT ~A" indent name indent value)
746 (format stream " ~A= ~A" name value)))
747
748 ;;; Start-Defprinter, Finish-Defprinter -- Internal
749 ;;;
750 ;;; Start and finish the the printing of a defprinter function.
751 ;;;
752 (defun start-defprinter (name stream indent object)
753 (declare (symbol name) (stream stream) (type (or index null) indent))
754 (declare (ignore indent))
755 (format stream "#<~S ~X" name (system:%primitive make-fixnum object)))
756 ;;;
757 (defun finish-defprinter (name stream indent)
758 (declare (symbol name) (stream stream) (type (or index null) indent))
759 (declare (ignore name))
760 (if (and *defprint-pretty* indent)
761 (format stream ">~%~VT" indent)
762 (format stream ">")))
763
764 (defmacro defprinter (name &rest slots)
765 "Defprinter Name Slot-Desc*
766 Define some kind of reasonable defstruct structure-print function. Name
767 is the name of the structure. We define a function %PRINT-name which
768 prints the slots in the structure in the way described by the Slot-Descs.
769 Each Slot-Desc can be a slot name, indicating that the slot should simply
770 be printed. A Slot-Desc may also be a list of a slot name and other stuff.
771 The other stuff is composed of keywords followed by expressions. The
772 expressions are evaluated with the variable which is the slot name bound
773 to the value of the slot. These keywords are defined:
774
775 :PRIN1 Print the value of the expression instead of the slot value.
776 :PRINC Like :PRIN1, only princ the value
777 :TEST Only print something if the test is true.
778
779 If no printing thing is specified then the slot value is printed as PRIN1.
780
781 The structure being printed is bound to Structure and the stream is bound to
782 Stream."
783
784 (let ((n-indent (gensym)))
785 (flet ((sref (slot) `(,(symbolicate name "-" slot) structure)))
786 (collect ((prints))
787 (dolist (slot slots)
788 (if (atom slot)
789 (prints `(defprinter-prin1 ',slot ,(sref slot) stream ,n-indent))
790 (let ((sname (first slot))
791 (test t))
792 (collect ((stuff))
793 (do ((option (rest slot) (cddr option)))
794 ((null option)
795 (prints
796 `(let ((,sname ,(sref sname)))
797 (when ,test
798 ,@(or (stuff)
799 `((defprinter-prin1 ',sname ,sname
800 stream ,n-indent)))))))
801 (case (first option)
802 (:prin1
803 (stuff `(defprinter-prin1 ',sname ,(second option)
804 stream ,n-indent)))
805 (:princ
806 (stuff `(defprinter-princ ',sname ,(second option)
807 stream ,n-indent)))
808 (:test (setq test (second option)))
809 (t
810 (error "Losing Defprinter option: ~S." (first option)))))))))
811
812 `(defun ,(symbolicate "%PRINT-" name) (structure stream depth)
813 (let ((,n-indent (lisp::charpos stream)))
814 (start-defprinter ',name stream ,n-indent structure)
815 (let ((*print-level* (if *print-level* (- *print-level* depth 1))))
816 (unless (and *print-level* (<= *print-level* 0))
817 ,@(prints))
818 (finish-defprinter ',name stream ,n-indent)
819 nil)))))))
820
821
822 ;;;; Boolean attribute utilities:
823 ;;;
824 ;;; We need to maintain various sets of boolean attributes for known
825 ;;; functions and VOPs. To save space and allow for quick set operations, we
826 ;;; represent them as bits in a fixnum.
827 ;;;
828
829 (deftype attributes () 'fixnum)
830
831 (eval-when (compile load eval)
832 ;;; Compute-Attribute-Mask -- Internal
833 ;;;
834 ;;; Given a list of attribute names and an alist that translates them to
835 ;;; masks, return the OR of the masks.
836 ;;;
837 (defun compute-attribute-mask (names alist)
838 (collect ((res 0 logior))
839 (dolist (name names)
840 (let ((mask (cdr (assoc name alist))))
841 (unless mask
842 (error "Unknown attribute name: ~S." name))
843 (res mask)))
844 (res)))
845
846 ); Eval-When (Compile Load Eval)
847
848 ;;; Def-Boolean-Attribute -- Interface
849 ;;;
850 ;;; Parse the specification and generate some accessor macros.
851 ;;;
852 (defmacro def-boolean-attribute (name &rest attribute-names)
853 "Def-Boolean-Attribute Name Attribute-Name*
854 Define a new class of boolean attributes, with the attributes havin the
855 specified Attribute-Names. Name is the name of the class, which is used to
856 generate some macros to manipulate sets of the attributes:
857
858 NAME-attributep attributes attribute-name*
859 Return true if one of the named attributes is present, false otherwise.
860 When set with SETF, updates the place Attributes setting or clearing the
861 specified attributes.
862
863 NAME-attributes attribute-name*
864 Return a set of the named attributes."
865
866 (let ((const-name (symbolicate name "-ATTRIBUTE-TRANSLATIONS"))
867 (test-name (symbolicate name "-ATTRIBUTEP")))
868 (collect ((alist))
869 (do ((mask 1 (ash mask 1))
870 (names attribute-names (cdr names)))
871 ((null names))
872 (alist (cons (car names) mask)))
873
874 `(progn
875 (eval-when (compile load eval)
876 (defconstant ,const-name ',(alist)))
877
878 (defmacro ,test-name (attributes &rest attribute-names)
879 "Automagically generated boolean attribute test function. See
880 Def-Boolean-Attribute."
881 `(logtest ,(compute-attribute-mask attribute-names ,const-name)
882 (the attributes ,attributes)))
883
884 (define-setf-method ,test-name (place &rest attributes
885 &environment env)
886
887 "Automagically generated boolean attribute setter. See
888 Def-Boolean-Attribute."
889 (multiple-value-bind (temps values stores set get)
890 (lisp::foo-get-setf-method place env)
891 (let ((newval (gensym))
892 (n-place (gensym))
893 (mask (compute-attribute-mask attributes ,const-name)))
894 (values `(,@temps ,n-place)
895 `(,@values ,get)
896 `(,newval)
897 `(let ((,(first stores)
898 (if ,newval
899 (logior ,n-place ,mask)
900 (logand ,n-place ,(lognot mask)))))
901 ,set
902 ,newval)
903 `(,',test-name ,n-place ,@attributes)))))
904
905 (defmacro ,(symbolicate name "-ATTRIBUTES") (&rest attribute-names)
906 "Automagically generated boolean attribute creation function. See
907 Def-Boolean-Attribute."
908 (compute-attribute-mask attribute-names ,const-name))))))
909
910
911 ;;; Attributes-Union, Attributes-Intersection, Attributes= -- Interface
912 ;;;
913 ;;; And now for some gratuitous pseudo-abstraction...
914 ;;;
915 (defmacro attributes-union (&rest attributes)
916 "Returns the union of all the sets of boolean attributes which are its
917 arguments."
918 `(the attributes
919 (logior ,@(mapcar #'(lambda (x) `(the attributes ,x)) attributes))))
920 ;;;
921 (defmacro attributes-intersection (&rest attributes)
922 "Returns the intersection of all the sets of boolean attributes which are its
923 arguments."
924 `(the attributes
925 (logand ,@(mapcar #'(lambda (x) `(the attributes ,x)) attributes))))
926 ;;;
927 (proclaim '(inline attributes=))
928 (proclaim '(function attributes= (attributes attributes) boolean))
929 (defun attributes= (attr1 attr2)
930 "Returns true if the attributes present in Attr1 are indentical to those in
931 Attr2."
932 (eql attr1 attr2))
933
934
935 ;;;; The Event statistics/trace utility:
936
937 (eval-when (#-new-compiler compile load eval)
938
939 (defstruct event-info
940 ;;
941 ;; The name of this event.
942 (name nil :type symbol)
943 ;;
944 ;; The string rescribing this event.
945 (description nil :type string)
946 ;;
947 ;; The name of the variable we stash this in.
948 (var nil :type symbol)
949 ;;
950 ;; The number of times this event has happened.
951 (count 0 :type fixnum)
952 ;;
953 ;; The level of significance of this event.
954 (level nil :type unsigned-byte)
955 ;;
956 ;; If true, a function that gets called with the node that the event happened
957 ;; to.
958 (action nil :type (or function null)))
959
960
961 ;;; A hashtable from event names to event-info structures.
962 ;;;
963 (defvar *event-info* (make-hash-table :test #'eq))
964
965
966 ;;; Event-Info-Or-Lose -- Internal
967 ;;;
968 ;;; Return the event info for Name or die trying.
969 ;;;
970 (proclaim '(function event-info-or-lose (t) event-info))
971 (defun event-info-or-lose (name)
972 (let ((res (gethash name *event-info*)))
973 (unless res
974 (error "~S is not the name of an event." name))
975 res))
976
977 ); Eval-When (Compile Load Eval)
978
979
980 ;;; Event-Count, Event-Action, Event-Level -- Interface
981 ;;;
982 (proclaim '(function event-count (symbol) fixnum))
983 (defun event-count (name)
984 "Return the number of times that Event has happened."
985 (event-info-count (event-info-or-lose name)))
986 ;;;
987 (proclaim '(function event-action (symbol) (or function null)))
988 (defun event-action (name)
989 "Return the function that is called when Event happens. If this is null,
990 there is no action. The function is passed the node to which the event
991 happened, or NIL if there is no relevant node. This may be set with SETF."
992 (event-info-action (event-info-or-lose name)))
993 ;;;
994 (proclaim '(function %set-event-action (symbol (or function null)) (or function null)))
995 (defun %set-event-action (name new-value)
996 (setf (event-info-action (event-info-or-lose name))
997 new-value))
998 ;;;
999 (defsetf event-action %set-event-action)
1000 ;;;
1001 (proclaim '(function event-level (symbol) unsigned-byte))
1002 (defun event-level (name)
1003 "Return the non-negative integer which represents the level of significance
1004 of the event Name. This is used to determine whether to print a message when
1005 the event happens. This may be set with SETF."
1006 (event-info-level (event-info-or-lose name)))
1007 ;;;
1008 (proclaim '(function %set-event-level (symbol unsigned-byte) unsigned-byte))
1009 (defun %set-event-level (name new-value)
1010 (setf (event-info-level (event-info-or-lose name))
1011 new-value))
1012 ;;;
1013 (defsetf event-level %set-event-level)
1014
1015
1016 ;;; Defevent -- Interface
1017 ;;;
1018 ;;; Make an event-info structure and stash it in a variable so we can get at
1019 ;;; it quickly.
1020 ;;;
1021 (defmacro defevent (name description &optional (level 0))
1022 "Defevent Name Description
1023 Define a new kind of event. Name is a symbol which names the event and
1024 Description is a string which describes the event. Level (default 0) is the
1025 level of significance associated with this event; it is used to determine
1026 whether to print a Note when the event happens."
1027 (let ((var-name (symbolicate "*" name "-EVENT-INFO*")))
1028 `(eval-when (compile load eval)
1029 (defvar ,var-name
1030 (make-event-info :name ',name :description ',description :var ',var-name
1031 :level ,level))
1032 (setf (gethash ',name *event-info*) ,var-name)
1033 ',name)))
1034
1035 (proclaim '(type unsigned-byte *event-note-threshold*))
1036 (defvar *event-note-threshold* 1
1037 "This variable is a non-negative integer specifying the lowest level of
1038 event that will print a Note when it occurs.")
1039
1040 ;;; Event -- Interface
1041 ;;;
1042 ;;; Increment the counter and do any action. Mumble about the event if
1043 ;;; policy indicates.
1044 ;;;
1045 (defmacro event (name &optional node)
1046 "Event Name Node
1047 Note that the event with the specified Name has happened. Node is evaluated
1048 to determine the node to which the event happened."
1049 `(%event ,(event-info-var (event-info-or-lose name)) ,node))
1050 ;;;
1051 (proclaim '(function %event (event-info (or node null))))
1052 (defun %event (info node)
1053 (incf (event-info-count info))
1054 (when (and (>= (event-info-level info) *event-note-threshold*)
1055 (if node
1056 (policy node (= brevity 0))
1057 (policy nil (= brevity 0))))
1058 (let ((*compiler-error-context* node))
1059 (compiler-note (event-info-description info))))
1060
1061 (let ((action (event-info-action info)))
1062 (when action (funcall action node))))
1063
1064
1065 ;;; Event-Statistics, Clear-Statistics -- Interface
1066 ;;;
1067 (proclaim '(function event-statistics (&optional unsigned-byte stream) void))
1068 (defun event-statistics (&optional (min-count 1) (stream *standard-output*))
1069 "Print a listing of events and their counts, sorted by the count. Events
1070 that happened fewer than Min-Count times will not be printed. Stream is the
1071 stream to write to."
1072 (collect ((info))
1073 (maphash #'(lambda (k v)
1074 (declare (ignore k))
1075 (when (>= (event-info-count v) min-count)
1076 (info v)))
1077 *event-info*)
1078 (dolist (event (sort (info) #'> :key #'event-info-count))
1079 (format stream "~6D: ~A~%" (event-info-count event)
1080 (event-info-description event)))
1081 (values)))
1082 ;;;
1083 (proclaim '(function clear-statistics () void))
1084 (defun clear-statistics ()
1085 (maphash #'(lambda (k v)
1086 (declare (ignore k))
1087 (setf (event-info-count v) 0))
1088 *event-info*)
1089 (values))
1090

  ViewVC Help
Powered by ViewVC 1.1.5