/[cmucl]/src/compiler/locall.lisp
ViewVC logotype

Contents of /src/compiler/locall.lisp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.50 - (hide annotations)
Thu Sep 7 12:16:23 2000 UTC (13 years, 7 months ago) by dtc
Branch: MAIN
Changes since 1.49: +2 -3 lines
When merging lets, ensure that the converted function is removed from
the lambda-calls even when there is a recursive call to the function.
1 wlott 1.1 ;;; -*- Package: C; Log: C.Log -*-
2     ;;;
3     ;;; **********************************************************************
4 ram 1.15 ;;; This code was written as part of the CMU Common Lisp project at
5     ;;; Carnegie Mellon University, and has been placed in the public domain.
6     ;;;
7     (ext:file-comment
8 dtc 1.50 "$Header: /tiger/var/lib/cvsroots/cmucl/src/compiler/locall.lisp,v 1.50 2000/09/07 12:16:23 dtc Exp $")
9 ram 1.15 ;;;
10 wlott 1.1 ;;; **********************************************************************
11     ;;;
12     ;;; This file implements local call analysis. A local call is a function
13     ;;; call between functions being compiled at the same time. If we can tell at
14 ram 1.9 ;;; compile time that such a call is legal, then we change the combination
15     ;;; to call the correct lambda, mark it as local, and add this link to our call
16     ;;; graph. Once a call is local, it is then eligible for let conversion, which
17     ;;; places the body of the function inline.
18 wlott 1.1 ;;;
19     ;;; We cannot always do a local call even when we do have the function being
20 ram 1.35 ;;; called. Calls that cannot be shown to have legal arg counts are not
21     ;;; converted.
22 wlott 1.1 ;;;
23     ;;; Written by Rob MacLachlan
24     ;;;
25 ram 1.31 (in-package :c)
26 wlott 1.1
27    
28 ram 1.11 ;;; Propagate-To-Args -- Interface
29 wlott 1.1 ;;;
30     ;;; This function propagates information from the variables in the function
31 ram 1.11 ;;; Fun to the actual arguments in Call. This is also called by the VALUES IR1
32     ;;; optimizer when it sleazily converts MV-BINDs to LETs.
33 wlott 1.1 ;;;
34     ;;; We flush all arguments to Call that correspond to unreferenced variables
35     ;;; in Fun. We leave NILs in the Combination-Args so that the remaining args
36     ;;; still match up with their vars.
37     ;;;
38     ;;; We also apply the declared variable type assertion to the argument
39     ;;; continuations.
40     ;;;
41     (defun propagate-to-args (call fun)
42     (declare (type combination call) (type clambda fun))
43     (do ((args (basic-combination-args call) (cdr args))
44     (vars (lambda-vars fun) (cdr vars)))
45     ((null args))
46     (let ((arg (car args))
47     (var (car vars)))
48     (cond ((leaf-refs var)
49 dtc 1.49 (assert-continuation-optional-type arg (leaf-type var)))
50 wlott 1.1 (t
51     (flush-dest arg)
52     (setf (car args) nil)))))
53    
54     (undefined-value))
55    
56    
57 ram 1.31 ;;; Merge-Tail-Sets -- Interface
58     ;;;
59     ;;; This function handles merging the tail sets if Call is potentially
60     ;;; tail-recursive, and is a call to a function with a different TAIL-SET than
61     ;;; Call's Fun. This must be called whenever we alter IR1 so as to place a
62     ;;; local call in what might be a TR context. Note that any call which returns
63     ;;; its value to a RETURN is considered potentially TR, since any implicit
64     ;;; MV-PROG1 might be optimized away.
65     ;;;
66     ;;; We destructively modify the set for the calling function to represent both,
67     ;;; and then change all the functions in callee's set to reference the first.
68     ;;; If we do merge, we reoptimize the RETURN-RESULT continuation to cause
69     ;;; IR1-OPTIMIZE-RETURN to recompute the tail set type.
70     ;;;
71 ram 1.33 (defun merge-tail-sets (call &optional (new-fun (combination-lambda call)))
72     (declare (type basic-combination call) (type clambda new-fun))
73 ram 1.31 (let ((return (continuation-dest (node-cont call))))
74     (when (return-p return)
75     (let ((call-set (lambda-tail-set (node-home-lambda call)))
76 ram 1.33 (fun-set (lambda-tail-set new-fun)))
77 ram 1.31 (unless (eq call-set fun-set)
78     (let ((funs (tail-set-functions fun-set)))
79     (dolist (fun funs)
80     (setf (lambda-tail-set fun) call-set))
81     (setf (tail-set-functions call-set)
82     (nconc (tail-set-functions call-set) funs)))
83     (reoptimize-continuation (return-result return))
84     t)))))
85    
86    
87 wlott 1.1 ;;; Convert-Call -- Internal
88     ;;;
89 ram 1.31 ;;; Convert a combination into a local call. We PROPAGATE-TO-ARGS, set the
90 wlott 1.1 ;;; combination kind to :Local, add Fun to the Calls of the function that the
91 ram 1.33 ;;; call is in, call MERGE-TAIL-SETS, then replace the function in the Ref node
92     ;;; with the new function.
93 wlott 1.1 ;;;
94 ram 1.33 ;;; We change the Ref last, since changing the reference can trigger let
95 wlott 1.1 ;;; conversion of the new function, but will only do so if the call is local.
96 ram 1.33 ;;; Note that the replacement may trigger let conversion or other changes in
97     ;;; IR1. We must call MERGE-TAIL-SETS with NEW-FUN before the substitution,
98     ;;; since after the substitution (and let conversion), the call may no longer
99     ;;; be recognizable as tail-recursive.
100 wlott 1.1 ;;;
101     (defun convert-call (ref call fun)
102     (declare (type ref ref) (type combination call) (type clambda fun))
103     (propagate-to-args call fun)
104     (setf (basic-combination-kind call) :local)
105 ram 1.6 (pushnew fun (lambda-calls (node-home-lambda call)))
106 ram 1.33 (merge-tail-sets call fun)
107 wlott 1.1 (change-ref-leaf ref fun)
108     (undefined-value))
109    
110    
111     ;;;; External entry point creation:
112    
113     ;;; Make-XEP-Lambda -- Internal
114     ;;;
115     ;;; Return a Lambda form that can be used as the definition of the XEP for
116     ;;; Fun.
117     ;;;
118     ;;; If Fun is a lambda, then we check the number of arguments (conditional
119     ;;; on policy) and call Fun with all the arguments.
120     ;;;
121     ;;; If Fun is an Optional-Dispatch, then we dispatch off of the number of
122     ;;; supplied arguments by doing do an = test for each entry-point, calling the
123     ;;; entry with the appropriate prefix of the passed arguments.
124     ;;;
125     ;;; If there is a more arg, then there are a couple of optimizations that we
126     ;;; make (more for space than anything else):
127     ;;; -- If Min-Args is 0, then we make the more entry a T clause, since no
128     ;;; argument count error is possible.
129     ;;; -- We can omit the = clause for the last entry-point, allowing the case of
130     ;;; 0 more args to fall through to the more entry.
131     ;;;
132     ;;; We don't bother to policy conditionalize wrong arg errors in optional
133     ;;; dispatches, since the additional overhead is negligible compared to the
134     ;;; other hair going down.
135     ;;;
136     ;;; Note that if policy indicates it, argument type declarations in Fun will
137     ;;; be verified. Since nothing is known about the type of the XEP arg vars,
138     ;;; type checks will be emitted when the XEP's arg vars are passed to the
139     ;;; actual function.
140     ;;;
141     (defun make-xep-lambda (fun)
142     (declare (type functional fun))
143     (etypecase fun
144     (clambda
145     (let ((nargs (length (lambda-vars fun)))
146     (n-supplied (gensym)))
147     (collect ((temps))
148     (dotimes (i nargs)
149     (temps (gensym)))
150     `(lambda (,n-supplied ,@(temps))
151 wlott 1.40 (declare (type index ,n-supplied))
152 ram 1.35 ,(if (policy nil (zerop safety))
153 wlott 1.1 `(declare (ignore ,n-supplied))
154     `(%verify-argument-count ,n-supplied ,nargs))
155     (%funcall ,fun ,@(temps))))))
156     (optional-dispatch
157     (let* ((min (optional-dispatch-min-args fun))
158     (max (optional-dispatch-max-args fun))
159     (more (optional-dispatch-more-entry fun))
160     (n-supplied (gensym)))
161     (collect ((temps)
162     (entries))
163     (dotimes (i max)
164     (temps (gensym)))
165    
166     (do ((eps (optional-dispatch-entry-points fun) (rest eps))
167     (n min (1+ n)))
168     ((null eps))
169     (entries `((= ,n-supplied ,n)
170     (%funcall ,(first eps) ,@(subseq (temps) 0 n)))))
171    
172     `(lambda (,n-supplied ,@(temps))
173 wlott 1.40 (declare (type index ,n-supplied))
174 wlott 1.1 (cond
175     ,@(if more (butlast (entries)) (entries))
176     ,@(when more
177     `((,(if (zerop min) 't `(>= ,n-supplied ,max))
178     ,(let ((n-context (gensym))
179     (n-count (gensym)))
180     `(multiple-value-bind
181     (,n-context ,n-count)
182     (%more-arg-context ,n-supplied ,max)
183     (%funcall ,more ,@(temps) ,n-context ,n-count))))))
184     (t
185     (%argument-count-error ,n-supplied)))))))))
186    
187    
188     ;;; Make-External-Entry-Point -- Internal
189     ;;;
190     ;;; Make an external entry point (XEP) for Fun and return it. We convert
191     ;;; the result of Make-XEP-Lambda in the correct environment, then associate
192     ;;; this lambda with Fun as its XEP. After the conversion, we iterate over the
193     ;;; function's associated lambdas, redoing local call analysis so that the XEP
194 ram 1.18 ;;; calls will get converted. We also bind *lexical-environment* to change the
195     ;;; compilation policy over to the interface policy.
196 wlott 1.1 ;;;
197     ;;; We set Reanalyze and Reoptimize in the component, just in case we
198     ;;; discover an XEP after the initial local call analyze pass.
199     ;;;
200     (defun make-external-entry-point (fun)
201     (declare (type functional fun))
202     (assert (not (functional-entry-function fun)))
203     (with-ir1-environment (lambda-bind (main-entry fun))
204 ram 1.18 (let* ((*lexical-environment*
205     (make-lexenv :cookie
206     (make-interface-cookie *lexical-environment*)))
207     (res (ir1-convert-lambda (make-xep-lambda fun))))
208 wlott 1.1 (setf (functional-kind res) :external)
209 ram 1.12 (setf (leaf-ever-used res) t)
210 wlott 1.1 (setf (functional-entry-function res) fun)
211     (setf (functional-entry-function fun) res)
212     (setf (component-reanalyze *current-component*) t)
213     (setf (component-reoptimize *current-component*) t)
214     (etypecase fun
215     (clambda (local-call-analyze-1 fun))
216     (optional-dispatch
217     (dolist (ep (optional-dispatch-entry-points fun))
218     (local-call-analyze-1 ep))
219     (when (optional-dispatch-more-entry fun)
220     (local-call-analyze-1 (optional-dispatch-more-entry fun)))))
221     res)))
222    
223    
224     ;;; Reference-Entry-Point -- Internal
225     ;;;
226     ;;; Notice a Ref that is not in a local-call context. If the Ref is already
227     ;;; to an XEP, then do nothing, otherwise change it to the XEP, making an XEP
228     ;;; if necessary.
229     ;;;
230     ;;; If Ref is to a special :Cleanup or :Escape function, then we treat it as
231     ;;; though it was not an XEP reference (i.e. leave it alone.)
232     ;;;
233     (defun reference-entry-point (ref)
234     (declare (type ref ref))
235     (let ((fun (ref-leaf ref)))
236     (unless (or (external-entry-point-p fun)
237     (member (functional-kind fun) '(:escape :cleanup)))
238     (change-ref-leaf ref (or (functional-entry-function fun)
239     (make-external-entry-point fun))))))
240    
241 ram 1.35
242 wlott 1.1
243     ;;; Local-Call-Analyze-1 -- Interface
244     ;;;
245     ;;; Attempt to convert all references to Fun to local calls. The reference
246 ram 1.35 ;;; must be the function for a call, and the function continuation must be used
247     ;;; only once, since otherwise we cannot be sure what function is to be called.
248     ;;; The call continuation would be multiply used if there is hairy stuff such
249     ;;; as conditionals in the expression that computes the function.
250 wlott 1.1 ;;;
251     ;;; If we cannot convert a reference, then we mark the referenced function
252 ram 1.35 ;;; as an entry-point, creating a new XEP if necessary. We don't try to
253     ;;; convert calls that are in error (:ERROR kind.)
254 wlott 1.1 ;;;
255     ;;; This is broken off from Local-Call-Analyze so that people can force
256     ;;; analysis of newly introduced calls. Note that we don't do let conversion
257     ;;; here.
258     ;;;
259     (defun local-call-analyze-1 (fun)
260     (declare (type functional fun))
261 ram 1.35 (let ((refs (leaf-refs fun))
262     (first-time t))
263 ram 1.3 (dolist (ref refs)
264     (let* ((cont (node-cont ref))
265     (dest (continuation-dest cont)))
266     (cond ((and (basic-combination-p dest)
267     (eq (basic-combination-fun dest) cont)
268 ram 1.35 (eq (continuation-use cont) ref))
269    
270     (convert-call-if-possible ref dest)
271 ram 1.3
272     (unless (eq (basic-combination-kind dest) :local)
273     (reference-entry-point ref)))
274     (t
275 ram 1.35 (reference-entry-point ref))))
276     (setq first-time nil)))
277 wlott 1.1
278     (undefined-value))
279    
280    
281     ;;; Local-Call-Analyze -- Interface
282     ;;;
283     ;;; We examine all New-Functions in component, attempting to convert calls
284     ;;; into local calls when it is legal. We also attempt to convert each lambda
285     ;;; to a let. Let conversion is also triggered by deletion of a function
286     ;;; reference, but functions that start out eligible for conversion must be
287     ;;; noticed sometime.
288     ;;;
289     ;;; Note that there is a lot of action going on behind the scenes here,
290     ;;; triggered by reference deletion. In particular, the Component-Lambdas are
291     ;;; being hacked to remove newly deleted and let converted lambdas, so it is
292     ;;; important that the lambda is added to the Component-Lambdas when it is.
293 ram 1.37 ;;; Also, the COMPONENT-NEW-FUNCTIONS may contain all sorts of drivel, since it
294 ram 1.35 ;;; is not updated when we delete functions, etc. Only COMPONENT-LAMBDAS is
295     ;;; updated.
296 wlott 1.1 ;;;
297 ram 1.37 ;;; COMPONENT-REANALYZE-FUNCTIONS is treated similarly to NEW-FUNCTIONS, but we
298     ;;; don't add lambdas to the LAMBDAS.
299     ;;;
300 wlott 1.1 (defun local-call-analyze (component)
301     (declare (type component component))
302     (loop
303 ram 1.37 (let* ((new (pop (component-new-functions component)))
304     (fun (or new (pop (component-reanalyze-functions component)))))
305     (unless fun (return))
306     (let ((kind (functional-kind fun)))
307     (cond ((member kind '(:deleted :let :mv-let :assignment)))
308     ((and (null (leaf-refs fun)) (eq kind nil)
309     (not (functional-entry-function fun)))
310     (delete-functional fun))
311     (t
312     (when (and new (lambda-p fun))
313     (push fun (component-lambdas component)))
314     (local-call-analyze-1 fun)
315     (when (lambda-p fun)
316     (maybe-let-convert fun)))))))
317 ram 1.17
318 wlott 1.1 (undefined-value))
319    
320    
321 ram 1.35 ;;; MAYBE-EXPAND-LOCAL-INLINE -- Internal
322     ;;;
323     ;;; If policy is auspicious, Call is not in an XEP, and we don't seem to be
324     ;;; in an infinite recursive loop, then change the reference to reference a
325     ;;; fresh copy. We return whichever function we decide to reference.
326     ;;;
327     (defun maybe-expand-local-inline (fun ref call)
328     (if (and (policy call (>= speed space) (>= speed cspeed))
329     (not (eq (functional-kind (node-home-lambda call)) :external))
330 ram 1.43 (not *converting-for-interpreter*)
331 ram 1.35 (inline-expansion-ok call))
332     (with-ir1-environment call
333     (let* ((*lexical-environment* (functional-lexenv fun))
334 ram 1.36 (won nil)
335     (res (catch 'local-call-lossage
336     (prog1
337     (ir1-convert-lambda (functional-inline-expansion fun))
338     (setq won t)))))
339     (cond (won
340     (change-ref-leaf ref res)
341     res)
342     (t
343     (let ((*compiler-error-context* call))
344     (compiler-note "Couldn't inline expand because expansion ~
345     calls this let-converted local function:~
346     ~% ~S"
347     (leaf-name res)))
348     fun))))
349 ram 1.35 fun))
350    
351    
352 wlott 1.1 ;;; Convert-Call-If-Possible -- Interface
353     ;;;
354 ram 1.45 ;;; Dispatch to the appropriate function to attempt to convert a call. Ref
355     ;;; most be a reference to a FUNCTIONAL. This is called in IR1 optimize as
356     ;;; well as in local call analysis. If the call is is already :Local, we do
357     ;;; nothing. If the call is already scheduled for deletion, also do nothing
358     ;;; (in addition to saving time, this also avoids some problems with optimizing
359     ;;; collections of functions that are partially deleted.)
360 wlott 1.1 ;;;
361 ram 1.35 ;;; This is called both before and after FIND-INITIAL-DFO runs. When called
362     ;;; on a :INITIAL component, we don't care whether the caller and callee are in
363     ;;; the same component. Afterward, we must stick with whatever component
364     ;;; division we have chosen.
365     ;;;
366     ;;; Before attempting to convert a call, we see if the function is supposed
367     ;;; to be inline expanded. Call conversion proceeds as before after any
368     ;;; expansion.
369     ;;;
370 wlott 1.1 ;;; We bind *Compiler-Error-Context* to the node for the call so that
371     ;;; warnings will get the right context.
372     ;;;
373 ram 1.35 ;;;
374 wlott 1.1 (defun convert-call-if-possible (ref call)
375     (declare (type ref ref) (type basic-combination call))
376 ram 1.35 (let* ((block (node-block call))
377     (component (block-component block))
378     (original-fun (ref-leaf ref)))
379 ram 1.45 (assert (functional-p original-fun))
380 ram 1.35 (unless (or (member (basic-combination-kind call) '(:local :error))
381     (block-delete-p block)
382     (eq (functional-kind (block-home-lambda block)) :deleted)
383 ram 1.45 (member (functional-kind original-fun)
384     '(:top-level-xep :deleted))
385 ram 1.35 (not (or (eq (component-kind component) :initial)
386     (eq (block-component
387     (node-block
388     (lambda-bind (main-entry original-fun))))
389     component))))
390     (let ((fun (if (external-entry-point-p original-fun)
391     (functional-entry-function original-fun)
392     original-fun))
393     (*compiler-error-context* call))
394    
395     (when (and (eq (functional-inlinep fun) :inline)
396     (rest (leaf-refs original-fun)))
397     (setq fun (maybe-expand-local-inline fun ref call)))
398    
399     (assert (member (functional-kind fun)
400     '(nil :escape :cleanup :optional)))
401     (cond ((mv-combination-p call)
402     (convert-mv-call ref call fun))
403     ((lambda-p fun)
404     (convert-lambda-call ref call fun))
405     (t
406     (convert-hairy-call ref call fun))))))
407    
408 wlott 1.1 (undefined-value))
409    
410    
411     ;;; Convert-MV-Call -- Internal
412     ;;;
413     ;;; Attempt to convert a multiple-value call. The only interesting case is
414     ;;; a call to a function that Looks-Like-An-MV-Bind, has exactly one reference
415     ;;; and no XEP, and is called with one values continuation.
416     ;;;
417     ;;; We change the call to be to the last optional entry point and change the
418     ;;; call to be local. Due to our preconditions, the call should eventually be
419     ;;; converted to a let, but we can't do that now, since there may be stray
420     ;;; references to the e-p lambda due to optional defaulting code.
421     ;;;
422     ;;; We also use variable types for the called function to construct an
423     ;;; assertion for the values continuation.
424     ;;;
425 ram 1.34 ;;; See CONVERT-CALL for additional notes on MERGE-TAIL-SETS, etc.
426     ;;;
427 wlott 1.1 (defun convert-mv-call (ref call fun)
428     (declare (type ref ref) (type mv-combination call) (type functional fun))
429     (when (and (looks-like-an-mv-bind fun)
430     (not (functional-entry-function fun))
431     (= (length (leaf-refs fun)) 1)
432     (= (length (basic-combination-args call)) 1))
433     (let ((ep (car (last (optional-dispatch-entry-points fun)))))
434     (setf (basic-combination-kind call) :local)
435 ram 1.6 (pushnew ep (lambda-calls (node-home-lambda call)))
436 ram 1.34 (merge-tail-sets call ep)
437 ram 1.22 (change-ref-leaf ref ep)
438 ram 1.31
439 wlott 1.1 (assert-continuation-type
440     (first (basic-combination-args call))
441     (make-values-type :optional (mapcar #'leaf-type (lambda-vars ep))
442     :rest *universal-type*))))
443     (undefined-value))
444    
445    
446     ;;; Convert-Lambda-Call -- Internal
447     ;;;
448     ;;; Attempt to convert a call to a lambda. If the number of args is wrong,
449 ram 1.35 ;;; we give a warning and mark the call as :ERROR to remove it from future
450 wlott 1.1 ;;; consideration. If the argcount is O.K. then we just convert it.
451     ;;;
452     (defun convert-lambda-call (ref call fun)
453 ram 1.9 (declare (type ref ref) (type combination call) (type clambda fun))
454 wlott 1.1 (let ((nargs (length (lambda-vars fun)))
455     (call-args (length (combination-args call))))
456     (cond ((= call-args nargs)
457     (convert-call ref call fun))
458     (t
459     (compiler-warning
460     "Function called with ~R argument~:P, but wants exactly ~R."
461     call-args nargs)
462 ram 1.35 (setf (basic-combination-kind call) :error)))))
463 wlott 1.1
464    
465    
466     ;;;; Optional, more and keyword calls:
467    
468     ;;; Convert-Hairy-Call -- Internal
469     ;;;
470     ;;; Similar to Convert-Lambda-Call, but deals with Optional-Dispatches. If
471     ;;; only fixed args are supplied, then convert a call to the correct entry
472     ;;; point. If keyword args are supplied, then dispatch to a subfunction. We
473     ;;; don't convert calls to functions that have a more (or rest) arg.
474     ;;;
475     (defun convert-hairy-call (ref call fun)
476     (declare (type ref ref) (type combination call)
477     (type optional-dispatch fun))
478     (let ((min-args (optional-dispatch-min-args fun))
479     (max-args (optional-dispatch-max-args fun))
480     (call-args (length (combination-args call))))
481     (cond ((< call-args min-args)
482     (compiler-warning "Function called with ~R argument~:P, but wants at least ~R."
483     call-args min-args)
484 ram 1.35 (setf (basic-combination-kind call) :error))
485 wlott 1.1 ((<= call-args max-args)
486     (convert-call ref call
487     (elt (optional-dispatch-entry-points fun)
488     (- call-args min-args))))
489 ram 1.13 ((optional-dispatch-more-entry fun)
490     (convert-more-call ref call fun))
491     (t
492 wlott 1.1 (compiler-warning "Function called with ~R argument~:P, but wants at most ~R."
493     call-args max-args)
494 ram 1.35 (setf (basic-combination-kind call) :error))))
495 wlott 1.1 (undefined-value))
496    
497    
498     ;;; Convert-Hairy-Fun-Entry -- Internal
499     ;;;
500     ;;; This function is used to convert a call to an entry point when complex
501     ;;; transformations need to be done on the original arguments. Entry is the
502     ;;; entry point function that we are calling. Vars is a list of variable names
503     ;;; which are bound to the oringinal call arguments. Ignores is the subset of
504     ;;; Vars which are ignored. Args is the list of arguments to the entry point
505     ;;; function.
506     ;;;
507     ;;; In order to avoid gruesome graph grovelling, we introduce a new function
508     ;;; that rearranges the arguments and calls the entry point. We analyze the
509     ;;; new function and the entry point immediately so that everything gets
510     ;;; converted during the single pass.
511     ;;;
512     (defun convert-hairy-fun-entry (ref call entry vars ignores args)
513 ram 1.9 (declare (list vars ignores args) (type ref ref) (type combination call)
514     (type clambda entry))
515 wlott 1.1 (let ((new-fun
516     (with-ir1-environment call
517     (ir1-convert-lambda
518     `(lambda ,vars
519 ram 1.13 (declare (ignorable . ,ignores))
520 ram 1.6 (%funcall ,entry . ,args))))))
521 wlott 1.1 (convert-call ref call new-fun)
522     (dolist (ref (leaf-refs entry))
523     (convert-call-if-possible ref (continuation-dest (node-cont ref))))))
524    
525    
526 ram 1.13 ;;; Convert-More-Call -- Internal
527 wlott 1.1 ;;;
528 ram 1.13 ;;; Use Convert-Hairy-Fun-Entry to convert a more-arg call to a known
529     ;;; function into a local call to the Main-Entry.
530 wlott 1.1 ;;;
531     ;;; First we verify that all keywords are constant and legal. If there
532     ;;; aren't, then we warn the user and don't attempt to convert the call.
533     ;;;
534     ;;; We massage the supplied keyword arguments into the order expected by the
535     ;;; main entry. This is done by binding all the arguments to the keyword call
536     ;;; to variables in the introduced lambda, then passing these values variables
537     ;;; in the correct order when calling the main entry. Unused arguments
538     ;;; (such as the keywords themselves) are discarded simply by not passing them
539     ;;; along.
540     ;;;
541 ram 1.13 ;;; If there is a rest arg, then we bundle up the args and pass them to
542     ;;; LIST.
543     ;;;
544     (defun convert-more-call (ref call fun)
545 wlott 1.1 (declare (type ref ref) (type combination call) (type optional-dispatch fun))
546     (let* ((max (optional-dispatch-max-args fun))
547     (arglist (optional-dispatch-arglist fun))
548     (args (combination-args call))
549 ram 1.13 (more (nthcdr max args))
550 ram 1.11 (flame (policy call (or (> speed brevity) (> space brevity))))
551 wlott 1.1 (loser nil))
552     (collect ((temps)
553 ram 1.13 (more-temps)
554 wlott 1.1 (ignores)
555     (supplied)
556     (key-vars))
557    
558     (dolist (var arglist)
559     (let ((info (lambda-var-arg-info var)))
560     (when info
561     (ecase (arg-info-kind info)
562     (:keyword
563     (key-vars var))
564 wlott 1.42 ((:rest :optional))
565     ((:more-context :more-count)
566     (compiler-warning "Can't local-call functions with &MORE args.")
567     (setf (basic-combination-kind call) :error)
568     (return-from convert-more-call))))))
569 wlott 1.1
570     (dotimes (i max)
571 ram 1.13 (temps (gensym "FIXED-ARG-TEMP-")))
572 wlott 1.1
573 ram 1.13 (dotimes (i (length more))
574     (more-temps (gensym "MORE-ARG-TEMP-")))
575 wlott 1.1
576 ram 1.13 (when (optional-dispatch-keyp fun)
577     (when (oddp (length more))
578     (compiler-warning "Function called with odd number of ~
579     arguments in keyword portion.")
580 ram 1.35
581     (setf (basic-combination-kind call) :error)
582 ram 1.13 (return-from convert-more-call))
583    
584     (do ((key more (cddr key))
585     (temp (more-temps) (cddr temp)))
586     ((null key))
587     (let ((cont (first key)))
588     (unless (constant-continuation-p cont)
589     (when flame
590     (compiler-note "Non-constant keyword in keyword call."))
591 ram 1.35 (setf (basic-combination-kind call) :error)
592 ram 1.13 (return-from convert-more-call))
593    
594     (let ((name (continuation-value cont))
595     (dummy (first temp))
596     (val (second temp)))
597     (dolist (var (key-vars)
598     (progn
599     (ignores dummy val)
600     (setq loser name)))
601     (let ((info (lambda-var-arg-info var)))
602     (when (eq (arg-info-keyword info) name)
603 wlott 1.1 (ignores dummy)
604 ram 1.14 (supplied (cons var val))
605     (return)))))))
606 ram 1.13
607     (when (and loser (not (optional-dispatch-allowp fun)))
608     (compiler-warning "Function called with unknown argument keyword ~S."
609     loser)
610 ram 1.35 (setf (basic-combination-kind call) :error)
611 ram 1.13 (return-from convert-more-call)))
612 wlott 1.1
613     (collect ((call-args))
614     (do ((var arglist (cdr var))
615     (temp (temps) (cdr temp)))
616     (())
617     (let ((info (lambda-var-arg-info (car var))))
618     (if info
619 ram 1.13 (ecase (arg-info-kind info)
620 wlott 1.1 (:optional
621     (call-args (car temp))
622     (when (arg-info-supplied-p info)
623     (call-args t)))
624 ram 1.13 (:rest
625     (call-args `(list ,@(more-temps)))
626     (return))
627     (:keyword
628 wlott 1.1 (return)))
629     (call-args (car temp)))))
630    
631     (dolist (var (key-vars))
632     (let ((info (lambda-var-arg-info var))
633     (temp (cdr (assoc var (supplied)))))
634     (if temp
635     (call-args temp)
636     (call-args (arg-info-default info)))
637     (when (arg-info-supplied-p info)
638     (call-args (not (null temp))))))
639    
640     (convert-hairy-fun-entry ref call (optional-dispatch-main-entry fun)
641 ram 1.13 (append (temps) (more-temps))
642     (ignores) (call-args)))))
643 wlott 1.1
644     (undefined-value))
645    
646    
647     ;;;; Let conversion:
648     ;;;
649     ;;; Converting to a let has differing significance to various parts of the
650     ;;; compiler:
651 dtc 1.47 ;;; -- The body of a Let is spliced in immediately after the corresponding
652 wlott 1.1 ;;; combination node, making the control transfer explicit and allowing lets
653     ;;; to mashed together into a single block. The value of the let is
654     ;;; delivered directly to the original continuation for the call,
655     ;;; eliminating the need to propagate information from the dummy result
656     ;;; continuation.
657     ;;; -- As far as IR1 optimization is concerned, it is interesting in that there
658     ;;; is only one expression that the variable can be bound to, and this is
659     ;;; easily substitited for.
660     ;;; -- Lets are interesting to environment analysis and the back end because in
661     ;;; most ways a let can be considered to be "the same function" as its home
662     ;;; function.
663     ;;; -- Let conversion has dynamic scope implications, since control transfers
664     ;;; within the same environment are local. In a local control transfer,
665     ;;; cleanup code must be emitted to remove dynamic bindings that are no
666     ;;; longer in effect.
667    
668    
669 ram 1.23 ;;; Insert-Let-Body -- Internal
670     ;;;
671     ;;; Set up the control transfer to the called lambda. We split the call
672     ;;; block immediately after the call, and link the head of Fun to the call
673     ;;; block. The successor block after splitting (where we return to) is
674     ;;; returned.
675     ;;;
676     ;;; If the lambda is is a different component than the call, then we call
677     ;;; JOIN-COMPONENTS. This only happens in block compilation before
678     ;;; FIND-INITIAL-DFO.
679     ;;;
680     (defun insert-let-body (fun call)
681     (declare (type clambda fun) (type basic-combination call))
682     (let* ((call-block (node-block call))
683     (bind-block (node-block (lambda-bind fun)))
684     (component (block-component call-block)))
685     (let ((fun-component (block-component bind-block)))
686     (unless (eq fun-component component)
687     (assert (eq (component-kind component) :initial))
688     (join-components component fun-component)))
689    
690     (let ((*current-component* component))
691     (node-ends-block call))
692     (assert (= (length (block-succ call-block)) 1))
693     (let ((next-block (first (block-succ call-block))))
694     (unlink-blocks call-block next-block)
695     (link-blocks call-block bind-block)
696     next-block)))
697    
698    
699 ram 1.6 ;;; Merge-Lets -- Internal
700 wlott 1.1 ;;;
701     ;;; Handle the environment semantics of let conversion. We add the lambda
702 ram 1.23 ;;; and its lets to lets for the Call's home function. We merge the calls for
703 ram 1.6 ;;; Fun with the calls for the home function, removing Fun in the process. We
704     ;;; also merge the Entries.
705 wlott 1.1 ;;;
706 ram 1.23 ;;; We also unlink the function head from the component head and set
707     ;;; Component-Reanalyze to true to indicate that the DFO should be recomputed.
708     ;;;
709 ram 1.6 (defun merge-lets (fun call)
710 wlott 1.1 (declare (type clambda fun) (type basic-combination call))
711 ram 1.23 (let ((component (block-component (node-block call))))
712     (unlink-blocks (component-head component) (node-block (lambda-bind fun)))
713     (setf (component-lambdas component)
714     (delete fun (component-lambdas component)))
715     (setf (component-reanalyze component) t))
716     (setf (lambda-call-lexenv fun) (node-lexenv call))
717     (let ((tails (lambda-tail-set fun)))
718     (setf (tail-set-functions tails)
719     (delete fun (tail-set-functions tails))))
720     (setf (lambda-tail-set fun) nil)
721     (let* ((home (node-home-lambda call))
722 ram 1.3 (home-env (lambda-environment home)))
723 wlott 1.1 (push fun (lambda-lets home))
724     (setf (lambda-home fun) home)
725 ram 1.3 (setf (lambda-environment fun) home-env)
726 wlott 1.1
727 ram 1.6 (let ((lets (lambda-lets fun)))
728 wlott 1.1 (dolist (let lets)
729 ram 1.3 (setf (lambda-home let) home)
730     (setf (lambda-environment let) home-env))
731 wlott 1.1
732     (setf (lambda-lets home) (nconc lets (lambda-lets home)))
733     (setf (lambda-lets fun) ()))
734    
735     (setf (lambda-calls home)
736 dtc 1.50 (delete fun (nunion (lambda-calls fun) (lambda-calls home))))
737 wlott 1.1 (setf (lambda-calls fun) ())
738    
739     (setf (lambda-entries home)
740     (nconc (lambda-entries fun) (lambda-entries home)))
741     (setf (lambda-entries fun) ()))
742     (undefined-value))
743    
744    
745     ;;; Move-Return-Uses -- Internal
746     ;;;
747 ram 1.23 ;;; Handle the value semantics of let conversion. Delete Fun's return node,
748     ;;; and change the control flow to transfer to Next-Block instead. Move all
749     ;;; the uses of the result continuation to Call's Cont.
750 wlott 1.1 ;;;
751     ;;; If the actual continuation is only used by the let call, then we
752     ;;; intersect the type assertion on the dummy continuation with the assertion
753     ;;; for the actual continuation; in all other cases assertions on the dummy
754     ;;; continuation are lost.
755     ;;;
756 ram 1.7 ;;; We also intersect the derived type of the call with the derived type of
757     ;;; all the dummy continuation's uses. This serves mainly to propagate
758     ;;; TRULY-THE through lets.
759     ;;;
760 ram 1.23 (defun move-return-uses (fun call next-block)
761     (declare (type clambda fun) (type basic-combination call)
762     (type cblock next-block))
763     (let* ((return (lambda-return fun))
764     (return-block (node-block return)))
765     (unlink-blocks return-block
766     (component-tail (block-component return-block)))
767     (link-blocks return-block next-block)
768     (unlink-node return)
769     (delete-return return)
770     (let ((result (return-result return))
771     (cont (node-cont call))
772     (call-type (node-derived-type call)))
773     (when (eq (continuation-use cont) call)
774     (assert-continuation-type cont (continuation-asserted-type result)))
775     (unless (eq call-type *wild-type*)
776     (do-uses (use result)
777     (derive-node-type use call-type)))
778     (substitute-continuation-uses cont result)))
779     (undefined-value))
780 wlott 1.1
781    
782 ram 1.23
783     ;;; MOVE-LET-CALL-CONT -- Internal
784     ;;;
785     ;;; Change all Cont for all the calls to Fun to be the start continuation
786     ;;; for the bind node. This allows the blocks to be joined if the caller count
787     ;;; ever goes to one.
788     ;;;
789     (defun move-let-call-cont (fun)
790     (declare (type clambda fun))
791     (let ((new-cont (node-prev (lambda-bind fun))))
792     (dolist (ref (leaf-refs fun))
793     (let ((dest (continuation-dest (node-cont ref))))
794     (delete-continuation-use dest)
795     (add-continuation-use dest new-cont))))
796 wlott 1.1 (undefined-value))
797    
798    
799 ram 1.25 ;;; Unconvert-Tail-Calls -- Internal
800     ;;;
801     ;;; We are converting Fun to be a let when the call is in a non-tail
802     ;;; position. Any previously tail calls in Fun are no longer tail calls, and
803     ;;; must be restored to normal calls which transfer to Next-Block (Fun's
804 ram 1.31 ;;; return point.) We can't do this by DO-USES on the RETURN-RESULT, because
805     ;;; the return might have been deleted (if all calls were TR.)
806 ram 1.25 ;;;
807 ram 1.30 ;;; The called function might be an assignment in the case where we are
808     ;;; currently converting that function. In steady-state, assignments never
809     ;;; appear in the lambda-calls.
810     ;;;
811 ram 1.25 (defun unconvert-tail-calls (fun call next-block)
812     (dolist (called (lambda-calls fun))
813     (dolist (ref (leaf-refs called))
814     (let ((this-call (continuation-dest (node-cont ref))))
815     (when (and (node-tail-p this-call)
816     (eq (node-home-lambda this-call) fun))
817     (setf (node-tail-p this-call) nil)
818 ram 1.30 (ecase (functional-kind called)
819     ((nil :cleanup :optional)
820 ram 1.44 (let ((block (node-block this-call))
821     (cont (node-cont call)))
822     (ensure-block-start cont)
823 ram 1.30 (unlink-blocks block (first (block-succ block)))
824     (link-blocks block next-block)
825     (delete-continuation-use this-call)
826 ram 1.44 (add-continuation-use this-call cont)))
827 ram 1.41 (:deleted)
828 ram 1.30 (:assignment
829     (assert (eq called fun))))))))
830 ram 1.25 (undefined-value))
831    
832    
833 ram 1.23 ;;; MOVE-RETURN-STUFF -- Internal
834     ;;;
835     ;;; Deal with returning from a let or assignment that we are converting.
836     ;;; FUN is the function we are calling, CALL is a call to FUN, and NEXT-BLOCK
837     ;;; is the return point for a non-tail call, or NULL if call is a tail call.
838     ;;;
839 ram 1.26 ;;; If the call is not a tail call, then we must do UNCONVERT-TAIL-CALLS, since
840     ;;; a tail call is a call which returns its value out of the enclosing non-let
841     ;;; function. When call is non-TR, we must convert it back to an ordinary
842     ;;; local call, since the value must be delivered to the receiver of CALL's
843     ;;; value.
844     ;;;
845 ram 1.23 ;;; We do different things depending on whether the caller and callee have
846     ;;; returns left:
847 ram 1.26 ;;; -- If the callee has no return we just do MOVE-LET-CALL-CONT. Either the
848     ;;; function doesn't return, or all returns are via tail-recursive local
849     ;;; calls.
850 ram 1.23 ;;; -- If CALL is a non-tail call, or if both have returns, then we
851     ;;; delete the callee's return, move its uses to the call's result
852     ;;; continuation, and transfer control to the appropriate return point.
853     ;;; -- If the callee has a return, but the caller doesn't, then we move the
854 ram 1.25 ;;; return to the caller.
855 ram 1.23 ;;;
856     (defun move-return-stuff (fun call next-block)
857     (declare (type clambda fun) (type basic-combination call)
858     (type (or cblock null) next-block))
859 ram 1.25 (when next-block
860     (unconvert-tail-calls fun call next-block))
861 ram 1.23 (let* ((return (lambda-return fun))
862     (call-fun (node-home-lambda call))
863     (call-return (lambda-return call-fun)))
864 ram 1.25 (cond ((not return))
865     ((or next-block call-return)
866     (unless (block-delete-p (node-block return))
867     (move-return-uses fun call
868     (or next-block (node-block call-return)))))
869     (t
870     (assert (node-tail-p call))
871     (setf (lambda-return call-fun) return)
872     (setf (return-lambda return) call-fun))))
873     (move-let-call-cont fun)
874 ram 1.23 (undefined-value))
875    
876    
877 wlott 1.1 ;;; Let-Convert -- Internal
878     ;;;
879     ;;; Actually do let conversion. We call subfunctions to do most of the
880     ;;; work. We change the Call's cont to be the continuation heading the bind
881     ;;; block, and also do Reoptimize-Continuation on the args and Cont so that
882 ram 1.5 ;;; let-specific IR1 optimizations get a chance. We blow away any entry for
883     ;;; the function in *free-functions* so that nobody will create new reference
884     ;;; to it.
885 wlott 1.1 ;;;
886     (defun let-convert (fun call)
887     (declare (type clambda fun) (type basic-combination call))
888 ram 1.23 (let ((next-block (if (node-tail-p call)
889     nil
890     (insert-let-body fun call))))
891 ram 1.25 (move-return-stuff fun call next-block)
892 ram 1.38 (merge-lets fun call)))
893 ram 1.23
894 ram 1.38
895     ;;; REOPTIMIZE-CALL -- Internal
896     ;;;
897     ;;; Reoptimize all of Call's args and its result.
898     ;;;
899     (defun reoptimize-call (call)
900     (declare (type basic-combination call))
901 wlott 1.1 (dolist (arg (basic-combination-args call))
902     (when arg
903     (reoptimize-continuation arg)))
904     (reoptimize-continuation (node-cont call))
905     (undefined-value))
906    
907 ram 1.38 ;;; OK-INITIAL-CONVERT-P -- Internal
908     ;;;
909     ;;; We also don't convert calls to named functions which appear in the initial
910     ;;; component, delaying this until optimization. This minimizes the likelyhood
911     ;;; that we well let-convert a function which may have references added due to
912     ;;; later local inline expansion
913     ;;;
914     (defun ok-initial-convert-p (fun)
915     (not (and (leaf-name fun)
916     (eq (component-kind
917     (block-component
918     (node-block (lambda-bind fun))))
919     :initial))))
920 wlott 1.1
921 ram 1.38
922 wlott 1.1 ;;; Maybe-Let-Convert -- Interface
923     ;;;
924     ;;; This function is called when there is some reason to believe that
925     ;;; the lambda Fun might be converted into a let. This is done after local
926     ;;; call analysis, and also when a reference is deleted. We only convert to a
927     ;;; let when the function is a normal local function, has no XEP, and is
928     ;;; referenced in exactly one local call. Conversion is also inhibited if the
929 ram 1.23 ;;; only reference is in a block about to be deleted. We return true if we
930     ;;; converted.
931 wlott 1.1 ;;;
932     ;;; These rules may seem unnecessarily restrictive, since there are some
933     ;;; cases where we could do the return with a jump that don't satisfy these
934     ;;; requirements. The reason for doing things this way is that it makes the
935 ram 1.23 ;;; concept of a let much more useful at the level of IR1 semantics. The
936     ;;; :ASSIGNMENT function kind provides another way to optimize calls to
937     ;;; single-return/multiple call functions.
938 wlott 1.1 ;;;
939     ;;; We don't attempt to convert calls to functions that have an XEP, since
940     ;;; we might be embarrassed later when we want to convert a newly discovered
941 ram 1.38 ;;; local call. Also, see OK-INITIAL-CONVERT-P.
942 wlott 1.1 ;;;
943     (defun maybe-let-convert (fun)
944     (declare (type clambda fun))
945     (let ((refs (leaf-refs fun)))
946     (when (and refs (null (rest refs))
947 ram 1.23 (member (functional-kind fun) '(nil :assignment))
948 wlott 1.1 (not (functional-entry-function fun)))
949     (let* ((ref-cont (node-cont (first refs)))
950     (dest (continuation-dest ref-cont)))
951 dtc 1.48 (when (and dest
952     (basic-combination-p dest)
953 wlott 1.1 (eq (basic-combination-fun dest) ref-cont)
954 ram 1.24 (eq (basic-combination-kind dest) :local)
955 ram 1.36 (not (block-delete-p (node-block dest)))
956 ram 1.38 (cond ((ok-initial-convert-p fun) t)
957     (t
958 ram 1.36 (reoptimize-continuation ref-cont)
959 ram 1.38 nil)))
960     (unless (eq (functional-kind fun) :assignment)
961     (let-convert fun dest))
962     (reoptimize-call dest)
963 wlott 1.1 (setf (functional-kind fun)
964 ram 1.23 (if (mv-combination-p dest) :mv-let :let))))
965     t)))
966    
967    
968     ;;;; Tail local calls and assignments:
969    
970     ;;; ONLY-HARMLESS-CLEANUPS -- Internal
971     ;;;
972     ;;; Return T if there are no cleanups between Block1 and Block2, or if they
973     ;;; definitely won't generate any cleanup code. Currently we recognize lexical
974     ;;; entry points that are only used locally (if at all).
975     ;;;
976     (defun only-harmless-cleanups (block1 block2)
977     (declare (type cblock block1 block2))
978     (or (eq block1 block2)
979     (let ((cleanup2 (block-start-cleanup block2)))
980     (do ((cleanup (block-end-cleanup block1)
981     (node-enclosing-cleanup (cleanup-mess-up cleanup))))
982     ((eq cleanup cleanup2) t)
983     (case (cleanup-kind cleanup)
984     ((:block :tagbody)
985     (unless (null (entry-exits (cleanup-mess-up cleanup)))
986     (return nil)))
987     (t (return nil)))))))
988    
989    
990     ;;; MAYBE-CONVERT-TAIL-LOCAL-CALL -- Interface
991     ;;;
992 ram 1.31 ;;; If a potentially TR local call really is TR, then convert it to jump
993     ;;; directly to the called function. We also call MAYBE-CONVERT-TO-ASSIGNMENT.
994 ram 1.39 ;;; The first value is true if we tail-convert. The second is the value of
995     ;;; M-C-T-A. We can switch the succesor (potentially deleting the RETURN node)
996     ;;; unless:
997 ram 1.31 ;;; -- The call has already been converted.
998     ;;; -- The call isn't TR (random implicit MV PROG1.)
999 ram 1.23 ;;; -- The call is in an XEP (thus we might decide to make it non-tail so that
1000     ;;; we can use known return inside the component.)
1001     ;;; -- There is a change in the cleanup between the call in the return, so we
1002     ;;; might need to introduce cleanup code.
1003     ;;;
1004     (defun maybe-convert-tail-local-call (call)
1005     (declare (type combination call))
1006     (let ((return (continuation-dest (node-cont call))))
1007     (assert (return-p return))
1008     (when (and (not (node-tail-p call))
1009 ram 1.31 (immediately-used-p (return-result return) call)
1010 ram 1.23 (not (eq (functional-kind (node-home-lambda call))
1011     :external))
1012     (only-harmless-cleanups (node-block call)
1013     (node-block return)))
1014     (node-ends-block call)
1015     (let ((block (node-block call))
1016     (fun (combination-lambda call)))
1017     (setf (node-tail-p call) t)
1018     (unlink-blocks block (first (block-succ block)))
1019     (link-blocks block (node-block (lambda-bind fun)))
1020     (values t (maybe-convert-to-assignment fun))))))
1021    
1022    
1023     ;;; MAYBE-CONVERT-TO-ASSIGNMENT -- Interface
1024     ;;;
1025     ;;; Called when we believe it might make sense to convert Fun to an
1026 ram 1.25 ;;; assignment. All this function really does is determine when a function
1027     ;;; with more than one call can still be combined with the calling function's
1028     ;;; environment. We can convert when:
1029 ram 1.23 ;;; -- The function is a normal, non-entry function, and
1030 ram 1.25 ;;; -- Except for one call, all calls must be tail recursive calls in the
1031     ;;; called function (i.e. are self-recursive tail calls)
1032 ram 1.38 ;;; -- OK-INITIAL-CONVERT-P is true.
1033 ram 1.23 ;;;
1034 ram 1.25 ;;; There may be one outside call, and it need not be tail-recursive. Since
1035     ;;; all tail local calls have already been converted to direct transfers, the
1036     ;;; only control semantics needed are to splice in the body at the non-tail
1037     ;;; call. If there is no non-tail call, then we need only merge the
1038     ;;; environments. Both cases are handled by LET-CONVERT.
1039     ;;;
1040     ;;; ### It would actually be possible to allow any number of outside calls as
1041     ;;; long as they all return to the same place (i.e. have the same conceptual
1042     ;;; continuation.) A special case of this would be when all of the outside
1043     ;;; calls are tail recursive.
1044 ram 1.23 ;;;
1045     (defun maybe-convert-to-assignment (fun)
1046     (declare (type clambda fun))
1047     (when (and (not (functional-kind fun))
1048     (not (functional-entry-function fun)))
1049     (let ((non-tail nil)
1050     (call-fun nil))
1051 ram 1.38 (when (and (dolist (ref (leaf-refs fun) t)
1052     (let ((dest (continuation-dest (node-cont ref))))
1053 dtc 1.48 (when (or (not dest)
1054     (block-delete-p (node-block dest)))
1055     (return nil))
1056 ram 1.38 (let ((home (node-home-lambda ref)))
1057     (unless (eq home fun)
1058     (when call-fun (return nil))
1059     (setq call-fun home))
1060     (unless (node-tail-p dest)
1061     (when (or non-tail (eq home fun)) (return nil))
1062     (setq non-tail dest)))))
1063     (ok-initial-convert-p fun))
1064 ram 1.30 (setf (functional-kind fun) :assignment)
1065 ram 1.23 (let-convert fun (or non-tail
1066     (continuation-dest
1067     (node-cont (first (leaf-refs fun))))))
1068 ram 1.38 (when non-tail (reoptimize-call non-tail))
1069 ram 1.23 t))))

  ViewVC Help
Powered by ViewVC 1.1.5