/[cmucl]/src/compiler/ir1opt.lisp
ViewVC logotype

Contents of /src/compiler/ir1opt.lisp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.65 - (show annotations)
Mon Oct 31 04:27:28 1994 UTC (19 years, 5 months ago) by ram
Branch: MAIN
CVS Tags: RELEASE_18a
Branch point for: RELENG_18
Changes since 1.64: +1 -3 lines
Fix headed boilerplate.
1 ;;; -*- Package: C; Log: C.Log -*-
2 ;;;
3 ;;; **********************************************************************
4 ;;; This code was written as part of the CMU Common Lisp project at
5 ;;; Carnegie Mellon University, and has been placed in the public domain.
6 ;;;
7 (ext:file-comment
8 "$Header: /tiger/var/lib/cvsroots/cmucl/src/compiler/ir1opt.lisp,v 1.65 1994/10/31 04:27:28 ram Exp $")
9 ;;;
10 ;;; **********************************************************************
11 ;;;
12 ;;; This file implements the IR1 optimization phase of the compiler. IR1
13 ;;; optimization is a grab-bag of optimizations that don't make major changes
14 ;;; to the block-level control flow and don't use flow analysis. These
15 ;;; optimizations can mostly be classified as "meta-evaluation", but there is a
16 ;;; sizable top-down component as well.
17 ;;;
18 ;;; Written by Rob MacLachlan
19 ;;;
20 (in-package :c)
21
22
23 ;;;; Interface for obtaining results of constant folding:
24
25 ;;; Constant-Continuation-P -- Interface
26 ;;;
27 ;;; Return true if the sole use of Cont is a reference to a constant leaf.
28 ;;;
29 (proclaim '(function constant-continuation-p (continuation) boolean))
30 (defun constant-continuation-p (cont)
31 (let ((use (continuation-use cont)))
32 (and (ref-p use)
33 (constant-p (ref-leaf use)))))
34
35
36 ;;; Continuation-Value -- Interface
37 ;;;
38 ;;; Return the constant value for a continuation whose only use is a
39 ;;; constant node.
40 ;;;
41 (proclaim '(function continuation-value (continuation) t))
42 (defun continuation-value (cont)
43 (assert (constant-continuation-p cont))
44 (constant-value (ref-leaf (continuation-use cont))))
45
46
47 ;;;; Interface for obtaining results of type inference:
48
49 ;;; CONTINUATION-PROVEN-TYPE -- Interface
50 ;;;
51 ;;; Return a (possibly values) type that describes what we have proven about
52 ;;; the type of Cont without taking any type assertions into consideration.
53 ;;; This is just the union of the NODE-DERIVED-TYPE of all the uses. Most
54 ;;; often people use CONTINUATION-DERIVED-TYPE or CONTINUATION-TYPE instead of
55 ;;; using this function directly.
56 ;;;
57 (defun continuation-proven-type (cont)
58 (declare (type continuation cont))
59 (ecase (continuation-kind cont)
60 ((:block-start :deleted-block-start)
61 (let ((uses (block-start-uses (continuation-block cont))))
62 (if uses
63 (do ((res (node-derived-type (first uses))
64 (values-type-union (node-derived-type (first current))
65 res))
66 (current (rest uses) (rest current)))
67 ((null current) res))
68 *empty-type*)))
69 (:inside-block
70 (node-derived-type (continuation-use cont)))))
71
72
73 ;;; Continuation-Derived-Type -- Interface
74 ;;;
75 ;;; Our best guess for the type of this continuation's value. Note that
76 ;;; this may be Values or Function type, which cannot be passed as an argument
77 ;;; to the normal type operations. See Continuation-Type. This may be called
78 ;;; on deleted continuations, always returning *.
79 ;;;
80 ;;; What we do is call CONTINUATION-PROVEN-TYPE and check whether the result
81 ;;; is a subtype of the assertion. If so, return the proven type and set
82 ;;; TYPE-CHECK to nil. Otherwise, return the intersection of the asserted and
83 ;;; proven types, and set TYPE-CHECK T. If TYPE-CHECK already has a non-null
84 ;;; value, then preserve it. Only in the somewhat unusual circumstance of
85 ;;; a newly discovered assertion will we change TYPE-CHECK from NIL to T.
86 ;;;
87 ;;; The result value is cached in the Continuation-%Derived-Type. If the
88 ;;; slot is true, just return that value, otherwise recompute and stash the
89 ;;; value there.
90 ;;;
91 (proclaim '(inline continuation-derived-type))
92 (defun continuation-derived-type (cont)
93 (declare (type continuation cont))
94 (or (continuation-%derived-type cont)
95 (%continuation-derived-type cont)))
96 ;;;
97 (defun %continuation-derived-type (cont)
98 (declare (type continuation cont))
99 (let ((proven (continuation-proven-type cont))
100 (asserted (continuation-asserted-type cont)))
101 (cond ((values-subtypep proven asserted)
102 (setf (continuation-%type-check cont) nil)
103 (setf (continuation-%derived-type cont) proven))
104 (t
105 (unless (or (continuation-%type-check cont)
106 (not (continuation-dest cont))
107 (eq asserted *universal-type*))
108 (setf (continuation-%type-check cont) t))
109
110 (setf (continuation-%derived-type cont)
111 (values-type-intersection asserted proven))))))
112
113
114 ;;; CONTINUATION-TYPE-CHECK -- Interface
115 ;;;
116 ;;; Call CONTINUATION-DERIVED-TYPE to make sure the slot is up to date, then
117 ;;; return it.
118 ;;;
119 (proclaim '(inline continuation-type-check))
120 (defun continuation-type-check (cont)
121 (declare (type continuation cont))
122 (continuation-derived-type cont)
123 (continuation-%type-check cont))
124
125
126 ;;; Continuation-Type -- Interface
127 ;;;
128 ;;; Return the derived type for Cont's first value. This is guaranteed not
129 ;;; to be a Values or Function type.
130 ;;;
131 (proclaim '(function continuation-type (continuation) ctype))
132 (defun continuation-type (cont)
133 (single-value-type (continuation-derived-type cont)))
134
135
136 ;;;; Interface routines used by optimizers:
137
138 ;;; Reoptimize-Continuation -- Interface
139 ;;;
140 ;;; This function is called by optimizers to indicate that something
141 ;;; interesting has happened to the value of Cont. Optimizers must make sure
142 ;;; that they don't call for reoptimization when nothing has happened, since
143 ;;; optimization will fail to terminate.
144 ;;;
145 ;;; We clear any cached type for the continuation and set the reoptimize
146 ;;; flags on everything in sight, unless the continuation is deleted (in which
147 ;;; case we do nothing.)
148 ;;;
149 ;;; Since this can get called curing IR1 conversion, we have to be careful
150 ;;; not to fly into space when the Dest's Prev is missing.
151 ;;;
152 (defun reoptimize-continuation (cont)
153 (declare (type continuation cont))
154 (unless (member (continuation-kind cont) '(:deleted :unused))
155 (setf (continuation-%derived-type cont) nil)
156 (let ((dest (continuation-dest cont)))
157 (when dest
158 (setf (continuation-reoptimize cont) t)
159 (setf (node-reoptimize dest) t)
160 (let ((prev (node-prev dest)))
161 (when prev
162 (let* ((block (continuation-block prev))
163 (component (block-component block)))
164 (when (typep dest 'cif)
165 (setf (block-test-modified block) t))
166 (setf (block-reoptimize block) t)
167 (setf (component-reoptimize component) t))))))
168 (do-uses (node cont)
169 (setf (block-type-check (node-block node)) t)))
170 (undefined-value))
171
172
173 ;;; Derive-Node-Type -- Interface
174 ;;;
175 ;;; Annotate Node to indicate that its result has been proven to be typep to
176 ;;; RType. After IR1 conversion has happened, this is the only correct way to
177 ;;; supply information discovered about a node's type. If you fuck with the
178 ;;; Node-Derived-Type directly, then information may be lost and reoptimization
179 ;;; may not happen.
180 ;;;
181 ;;; What we do is intersect Rtype with Node's Derived-Type. If the
182 ;;; intersection is different from the old type, then we do a
183 ;;; Reoptimize-Continuation on the Node-Cont.
184 ;;;
185 (defun derive-node-type (node rtype)
186 (declare (type node node) (type ctype rtype))
187 (let ((node-type (node-derived-type node)))
188 (unless (eq node-type rtype)
189 (let ((int (values-type-intersection node-type rtype)))
190 (when (type/= node-type int)
191 (when (and *check-consistency*
192 (eq int *empty-type*)
193 (not (eq rtype *empty-type*)))
194 (let ((*compiler-error-context* node))
195 (compiler-warning
196 "New inferred type ~S conflicts with old type:~
197 ~% ~S~%*** Bug?"
198 (type-specifier rtype) (type-specifier node-type))))
199 (setf (node-derived-type node) int)
200 (reoptimize-continuation (node-cont node))))))
201 (undefined-value))
202
203 (declaim (start-block assert-continuation-type assert-call-type))
204
205 ;;; Assert-Continuation-Type -- Interface
206 ;;;
207 ;;; Similar to Derive-Node-Type, but asserts that it is an error for Cont's
208 ;;; value not to be typep to Type. If we improve the assertion, we set
209 ;;; TYPE-CHECK and TYPE-ASSERTED to guarantee that the new assertion will be
210 ;;; checked.
211 ;;;
212 (defun assert-continuation-type (cont type)
213 (declare (type continuation cont) (type ctype type))
214 (let ((cont-type (continuation-asserted-type cont)))
215 (unless (eq cont-type type)
216 (let ((int (values-type-intersection cont-type type)))
217 (when (type/= cont-type int)
218 (setf (continuation-asserted-type cont) int)
219 (do-uses (node cont)
220 (setf (block-attributep (block-flags (node-block node))
221 type-check type-asserted)
222 t))
223 (reoptimize-continuation cont)))))
224 (undefined-value))
225
226
227 ;;; Assert-Call-Type -- Interface
228 ;;;
229 ;;; Assert that Call is to a function of the specified Type. It is assumed
230 ;;; that the call is legal and has only constants in the keyword positions.
231 ;;;
232 (defun assert-call-type (call type)
233 (declare (type combination call) (type function-type type))
234 (derive-node-type call (function-type-returns type))
235 (let ((args (combination-args call)))
236 (dolist (req (function-type-required type))
237 (when (null args) (return-from assert-call-type))
238 (let ((arg (pop args)))
239 (assert-continuation-type arg req)))
240 (dolist (opt (function-type-optional type))
241 (when (null args) (return-from assert-call-type))
242 (let ((arg (pop args)))
243 (assert-continuation-type arg opt)))
244
245 (let ((rest (function-type-rest type)))
246 (when rest
247 (dolist (arg args)
248 (assert-continuation-type arg rest))))
249
250 (dolist (key (function-type-keywords type))
251 (let ((name (key-info-name key)))
252 (do ((arg args (cddr arg)))
253 ((null arg))
254 (when (eq (continuation-value (first arg)) name)
255 (assert-continuation-type
256 (second arg) (key-info-type key)))))))
257 (undefined-value))
258
259
260 ;;;; IR1-OPTIMIZE:
261
262 (declaim (start-block ir1-optimize))
263
264 ;;; IR1-Optimize -- Interface
265 ;;;
266 ;;; Do one forward pass over Component, deleting unreachable blocks and
267 ;;; doing IR1 optimizations. We can ignore all blocks that don't have the
268 ;;; Reoptimize flag set. If Component-Reoptimize is true when we are done,
269 ;;; then another iteration would be beneficial.
270 ;;;
271 ;;; We delete blocks when there is either no predecessor or the block is in
272 ;;; a lambda that has been deleted. These blocks would eventually be deleted
273 ;;; by DFO recomputation, but doing it here immediately makes the effect
274 ;;; avaliable to IR1 optimization.
275 ;;;
276 (defun ir1-optimize (component)
277 (declare (type component component))
278 (setf (component-reoptimize component) nil)
279 (do-blocks (block component)
280 (cond
281 ((or (block-delete-p block)
282 (null (block-pred block))
283 (eq (functional-kind (block-home-lambda block)) :deleted))
284 (delete-block block))
285 (t
286 (loop
287 (let ((succ (block-succ block)))
288 (unless (and succ (null (rest succ)))
289 (return)))
290
291 (let ((last (block-last block)))
292 (typecase last
293 (cif
294 (flush-dest (if-test last))
295 (when (unlink-node last) (return)))
296 (exit
297 (when (maybe-delete-exit last) (return)))))
298
299 (unless (join-successor-if-possible block)
300 (return)))
301
302 (when (and (block-reoptimize block) (block-component block))
303 (assert (not (block-delete-p block)))
304 (ir1-optimize-block block))
305
306 (when (and (block-flush-p block) (block-component block))
307 (assert (not (block-delete-p block)))
308 (flush-dead-code block)))))
309
310 (undefined-value))
311
312
313 ;;; IR1-Optimize-Block -- Internal
314 ;;;
315 ;;; Loop over the nodes in Block, looking for stuff that needs to be
316 ;;; optimized. We dispatch off of the type of each node with its reoptimize
317 ;;; flag set:
318 ;;; -- With a combination, we call Propagate-Function-Change whenever the
319 ;;; function changes, and call IR1-Optimize-Combination if any argument
320 ;;; changes.
321 ;;; -- With an Exit, we derive the node's type from the Value's type. We don't
322 ;;; propagate Cont's assertion to the Value, since if we did, this would
323 ;;; move the checking of Cont's assertion to the exit. This wouldn't work
324 ;;; with Catch and UWP, where the Exit node is just a placeholder for the
325 ;;; actual unknown exit.
326 ;;;
327 ;;; Note that we clear the node & block reoptimize flags *before* doing the
328 ;;; optimization. This ensures that the node or block will be reoptimized if
329 ;;; necessary. We leave the NODE-OPTIMIZE flag set going into
330 ;;; IR1-OPTIMIZE-RETURN, since it wants to clear the flag itself.
331 ;;;
332 (defun ir1-optimize-block (block)
333 (declare (type cblock block))
334 (setf (block-reoptimize block) nil)
335 (do-nodes (node cont block :restart-p t)
336 (when (node-reoptimize node)
337 (setf (node-reoptimize node) nil)
338 (typecase node
339 (ref)
340 (combination
341 (ir1-optimize-combination node))
342 (cif
343 (ir1-optimize-if node))
344 (creturn
345 (setf (node-reoptimize node) t)
346 (ir1-optimize-return node))
347 (mv-combination
348 (ir1-optimize-mv-combination node))
349 (exit
350 (let ((value (exit-value node)))
351 (when value
352 (derive-node-type node (continuation-derived-type value)))))
353 (cset
354 (ir1-optimize-set node)))))
355 (undefined-value))
356
357
358 ;;; Join-Successor-If-Possible -- Internal
359 ;;;
360 ;;; We cannot combine with a successor block if:
361 ;;; 1] The successor has more than one predecessor.
362 ;;; 2] The last node's Cont is also used somewhere else.
363 ;;; 3] The successor is the current block (infinite loop).
364 ;;; 4] The next block has a different cleanup, and thus we may want to insert
365 ;;; cleanup code between the two blocks at some point.
366 ;;; 5] The next block has a different home lambda, and thus the control
367 ;;; transfer is a non-local exit.
368 ;;;
369 ;;; If we succeed, we return true, otherwise false.
370 ;;;
371 ;;; Joining is easy when the successor's Start continuation is the same from
372 ;;; our Last's Cont. If they differ, then we can still join when the last
373 ;;; continuation has no next and the next continuation has no uses. In this
374 ;;; case, we replace the next continuation with the last before joining the
375 ;;; blocks.
376 ;;;
377 (defun join-successor-if-possible (block)
378 (declare (type cblock block))
379 (let ((next (first (block-succ block))))
380 (when (block-start next)
381 (let* ((last (block-last block))
382 (last-cont (node-cont last))
383 (next-cont (block-start next)))
384 (cond ((or (rest (block-pred next))
385 (not (eq (continuation-use last-cont) last))
386 (eq next block)
387 (not (eq (block-end-cleanup block)
388 (block-start-cleanup next)))
389 (not (eq (block-home-lambda block)
390 (block-home-lambda next))))
391 nil)
392 ((eq last-cont next-cont)
393 (join-blocks block next)
394 t)
395 ((and (null (block-start-uses next))
396 (eq (continuation-kind last-cont) :inside-block))
397 (let ((next-node (continuation-next next-cont)))
398 ;;
399 ;; If next-cont does have a dest, it must be unreachable,
400 ;; since there are no uses. DELETE-CONTINUATION will mark the
401 ;; dest block as delete-p [and also this block, unless it is
402 ;; no longer backward reachable from the dest block.]
403 (delete-continuation next-cont)
404 (setf (node-prev next-node) last-cont)
405 (setf (continuation-next last-cont) next-node)
406 (setf (block-start next) last-cont)
407 (join-blocks block next))
408 t)
409 (t
410 nil))))))
411
412
413 ;;; Join-Blocks -- Internal
414 ;;;
415 ;;; Join together two blocks which have the same ending/starting
416 ;;; continuation. The code in Block2 is moved into Block1 and Block2 is
417 ;;; deleted from the DFO. We combine the optimize flags for the two blocks so
418 ;;; that any indicated optimization gets done.
419 ;;;
420 (defun join-blocks (block1 block2)
421 (declare (type cblock block1 block2))
422 (let* ((last (block-last block2))
423 (last-cont (node-cont last))
424 (succ (block-succ block2))
425 (start2 (block-start block2)))
426 (do ((cont start2 (node-cont (continuation-next cont))))
427 ((eq cont last-cont)
428 (when (eq (continuation-kind last-cont) :inside-block)
429 (setf (continuation-block last-cont) block1)))
430 (setf (continuation-block cont) block1))
431
432 (unlink-blocks block1 block2)
433 (dolist (block succ)
434 (unlink-blocks block2 block)
435 (link-blocks block1 block))
436
437 (setf (block-last block1) last)
438 (setf (continuation-kind start2) :inside-block))
439
440 (setf (block-flags block1)
441 (attributes-union (block-flags block1)
442 (block-flags block2)
443 (block-attributes type-asserted test-modified)))
444
445 (let ((next (block-next block2))
446 (prev (block-prev block2)))
447 (setf (block-next prev) next)
448 (setf (block-prev next) prev))
449
450 (undefined-value))
451
452 ;;; Flush-Dead-Code -- Internal
453 ;;;
454 ;;; Delete any nodes in Block whose value is unused and have no
455 ;;; side-effects. We can delete sets of lexical variables when the set
456 ;;; variable has no references.
457 ;;;
458 ;;; [### For now, don't delete potentially flushable calls when they have the
459 ;;; Call attribute. Someday we should look at the funcitonal args to determine
460 ;;; if they have any side-effects.]
461 ;;;
462 (defun flush-dead-code (block)
463 (declare (type cblock block))
464 (do-nodes-backwards (node cont block)
465 (unless (continuation-dest cont)
466 (typecase node
467 (ref
468 (delete-ref node)
469 (unlink-node node))
470 (combination
471 (let ((info (combination-kind node)))
472 (when (function-info-p info)
473 (let ((attr (function-info-attributes info)))
474 (when (and (ir1-attributep attr flushable)
475 (not (ir1-attributep attr call)))
476 (flush-dest (combination-fun node))
477 (dolist (arg (combination-args node))
478 (flush-dest arg))
479 (unlink-node node))))))
480 (mv-combination
481 (when (eq (basic-combination-kind node) :local)
482 (let ((fun (combination-lambda node)))
483 (when (dolist (var (lambda-vars fun) t)
484 (when (or (leaf-refs var)
485 (lambda-var-sets var))
486 (return nil)))
487 (flush-dest (first (basic-combination-args node)))
488 (delete-let fun)))))
489 (exit
490 (let ((value (exit-value node)))
491 (when value
492 (flush-dest value)
493 (setf (exit-value node) nil))))
494 (cset
495 (let ((var (set-var node)))
496 (when (and (lambda-var-p var)
497 (null (leaf-refs var)))
498 (flush-dest (set-value node))
499 (setf (basic-var-sets var)
500 (delete node (basic-var-sets var)))
501 (unlink-node node)))))))
502
503 (setf (block-flush-p block) nil)
504 (undefined-value))
505
506 (declaim (end-block))
507
508
509 ;;;; Local call return type propagation:
510
511 ;;; Find-Result-Type -- Internal
512 ;;;
513 ;;; This function is called on RETURN nodes that have their REOPTIMIZE flag
514 ;;; set. It iterates over the uses of the RESULT, looking for interesting
515 ;;; stuff to update the TAIL-SET. If a use isn't a local call, then we union
516 ;;; its type together with the types of other such uses. We assign to the
517 ;;; RETURN-RESULT-TYPE the intersection of this type with the RESULT's asserted
518 ;;; type. We can make this intersection now (potentially before type checking)
519 ;;; because this assertion on the result will eventually be checked (if
520 ;;; appropriate.)
521 ;;;
522 ;;; We call MAYBE-CONVERT-TAIL-LOCAL-CALL on each local non-MV combination,
523 ;;; which may change the succesor of the call to be the called function, and if
524 ;;; so, checks if the call can become an assignment. If we convert to an
525 ;;; assignment, we abort, since the RETURN has been deleted.
526 ;;;
527 (defun find-result-type (node)
528 (declare (type creturn node))
529 (let ((result (return-result node)))
530 (collect ((use-union *empty-type* values-type-union))
531 (do-uses (use result)
532 (cond ((and (basic-combination-p use)
533 (eq (basic-combination-kind use) :local))
534 (assert (eq (lambda-tail-set (node-home-lambda use))
535 (lambda-tail-set (combination-lambda use))))
536 (when (combination-p use)
537 (when (nth-value 1 (maybe-convert-tail-local-call use))
538 (return-from find-result-type (undefined-value)))))
539 (t
540 (use-union (node-derived-type use)))))
541 (let ((int (values-type-intersection
542 (continuation-asserted-type result)
543 (use-union))))
544 (setf (return-result-type node) int))))
545 (undefined-value))
546
547
548 ;;; IR1-Optimize-Return -- Internal
549 ;;;
550 ;;; Do stuff to realize that something has changed about the value delivered
551 ;;; to a return node. Since we consider the return values of all functions in
552 ;;; the tail set to be equivalent, this amounts to bringing the entire tail set
553 ;;; up to date. We iterate over the returns for all the functions in the tail
554 ;;; set, reanalyzing them all (not treating Node specially.)
555 ;;;
556 ;;; When we are done, we check if the new type is different from the old
557 ;;; TAIL-SET-TYPE. If so, we set the type and also reoptimize all the
558 ;;; continuations for references to functions in the tail set. This will
559 ;;; cause IR1-OPTIMIZE-COMBINATION to derive the new type as the results of the
560 ;;; calls.
561 ;;;
562 (defun ir1-optimize-return (node)
563 (declare (type creturn node))
564 (let* ((tails (lambda-tail-set (return-lambda node)))
565 (funs (tail-set-functions tails)))
566 (collect ((res *empty-type* values-type-union))
567 (dolist (fun funs)
568 (let ((return (lambda-return fun)))
569 (when return
570 (when (node-reoptimize return)
571 (setf (node-reoptimize return) nil)
572 (find-result-type return))
573 (res (return-result-type return)))))
574
575 (when (type/= (res) (tail-set-type tails))
576 (setf (tail-set-type tails) (res))
577 (dolist (fun (tail-set-functions tails))
578 (dolist (ref (leaf-refs fun))
579 (reoptimize-continuation (node-cont ref)))))))
580
581 (undefined-value))
582
583
584 ;;; IF optimization:
585
586 (declaim (start-block ir1-optimize-if))
587
588 ;;; IR1-Optimize-If -- Internal
589 ;;;
590 ;;; If the test has multiple uses, replicate the node when possible. Also
591 ;;; check if the predicate is known to be true or false, deleting the IF node
592 ;;; in favor of the appropriate branch when this is the case.
593 ;;;
594 (defun ir1-optimize-if (node)
595 (declare (type cif node))
596 (let ((test (if-test node))
597 (block (node-block node)))
598
599 (when (and (eq (block-start block) test)
600 (eq (continuation-next test) node)
601 (rest (block-start-uses block)))
602 (do-uses (use test)
603 (when (immediately-used-p test use)
604 (convert-if-if use node)
605 (when (continuation-use test) (return)))))
606
607 (let* ((type (continuation-type test))
608 (victim
609 (cond ((constant-continuation-p test)
610 (if (continuation-value test)
611 (if-alternative node)
612 (if-consequent node)))
613 ((not (types-intersect type *null-type*))
614 (if-alternative node))
615 ((type= type *null-type*)
616 (if-consequent node)))))
617 (when victim
618 (flush-dest test)
619 (when (rest (block-succ block))
620 (unlink-blocks block victim))
621 (setf (component-reanalyze (block-component (node-block node))) t)
622 (unlink-node node))))
623 (undefined-value))
624
625
626 ;;; Convert-If-If -- Internal
627 ;;;
628 ;;; Create a new copy of an IF Node that tests the value of the node Use.
629 ;;; The test must have >1 use, and must be immediately used by Use. Node must
630 ;;; be the only node in its block (implying that block-start = if-test).
631 ;;;
632 ;;; This optimization has an effect semantically similar to the
633 ;;; source-to-source transformation:
634 ;;; (IF (IF A B C) D E) ==>
635 ;;; (IF A (IF B D E) (IF C D E))
636 ;;;
637 ;;; We clobber the NODE-SOURCE-PATH of both the original and the new node so
638 ;;; that dead code deletion notes will definitely not consider either node to
639 ;;; be part of the original source. One node might become unreachable,
640 ;;; resulting in a spurious note.
641 ;;;
642 (defun convert-if-if (use node)
643 (declare (type node use) (type cif node))
644 (with-ir1-environment node
645 (let* ((block (node-block node))
646 (test (if-test node))
647 (cblock (if-consequent node))
648 (ablock (if-alternative node))
649 (use-block (node-block use))
650 (dummy-cont (make-continuation))
651 (new-cont (make-continuation))
652 (new-node (make-if :test new-cont
653 :consequent cblock :alternative ablock))
654 (new-block (continuation-starts-block new-cont)))
655 (prev-link new-node new-cont)
656 (setf (continuation-dest new-cont) new-node)
657 (add-continuation-use new-node dummy-cont)
658 (setf (block-last new-block) new-node)
659
660 (unlink-blocks use-block block)
661 (delete-continuation-use use)
662 (add-continuation-use use new-cont)
663 (link-blocks use-block new-block)
664
665 (link-blocks new-block cblock)
666 (link-blocks new-block ablock)
667
668 (push "<IF Duplication>" (node-source-path node))
669 (push "<IF Duplication>" (node-source-path new-node))
670
671 (reoptimize-continuation test)
672 (reoptimize-continuation new-cont)
673 (setf (component-reanalyze *current-component*) t)))
674 (undefined-value))
675
676 (declaim (end-block))
677
678
679 ;;;; Exit IR1 optimization:
680
681 ;;; Maybe-Delete-Exit -- Interface
682 ;;;
683 ;;; This function attempts to delete an exit node, returning true if it
684 ;;; deletes the block as a consequence:
685 ;;; -- If the exit is degenerate (has no Entry), then we don't do anything,
686 ;;; since there is nothing to be done.
687 ;;; -- If the exit node and its Entry have the same home lambda then we know
688 ;;; the exit is local, and can delete the exit. We change uses of the
689 ;;; Exit-Value to be uses of the original continuation, then unlink the
690 ;;; node. If the exit is to a TR context, then we must do MERGE-TAIL-SETS
691 ;;; on any local calls which delivered their value to this exit.
692 ;;; -- If there is no value (as in a GO), then we skip the value semantics.
693 ;;;
694 ;;; This function is also called by environment analysis, since it wants all
695 ;;; exits to be optimized even if normal optimization was omitted.
696 ;;;
697 (defun maybe-delete-exit (node)
698 (declare (type exit node))
699 (let ((value (exit-value node))
700 (entry (exit-entry node))
701 (cont (node-cont node)))
702 (when (and entry
703 (eq (node-home-lambda node) (node-home-lambda entry)))
704 (setf (entry-exits entry) (delete node (entry-exits entry)))
705 (prog1
706 (unlink-node node)
707 (when value
708 (collect ((merges))
709 (when (return-p (continuation-dest cont))
710 (do-uses (use value)
711 (when (and (basic-combination-p use)
712 (eq (basic-combination-kind use) :local))
713 (merges use))))
714 (substitute-continuation-uses cont value)
715 (dolist (merge (merges))
716 (merge-tail-sets merge))))))))
717
718
719 ;;;; Combination IR1 optimization:
720
721 (declaim (start-block ir1-optimize-combination maybe-terminate-block
722 validate-call-type))
723
724 ;;; Ir1-Optimize-Combination -- Internal
725 ;;;
726 ;;; Do IR1 optimizations on a Combination node.
727 ;;;
728 (proclaim '(function ir1-optimize-combination (combination) void))
729 (defun ir1-optimize-combination (node)
730 (when (continuation-reoptimize (basic-combination-fun node))
731 (propagate-function-change node))
732 (let ((args (basic-combination-args node))
733 (kind (basic-combination-kind node)))
734 (case kind
735 (:local
736 (let ((fun (combination-lambda node)))
737 (if (eq (functional-kind fun) :let)
738 (propagate-let-args node fun)
739 (propagate-local-call-args node fun))))
740 ((:full :error)
741 (dolist (arg args)
742 (when arg
743 (setf (continuation-reoptimize arg) nil))))
744 (t
745 (dolist (arg args)
746 (when arg
747 (setf (continuation-reoptimize arg) nil)))
748
749 (let ((attr (function-info-attributes kind)))
750 (when (and (ir1-attributep attr foldable)
751 (not (ir1-attributep attr call))
752 (every #'constant-continuation-p args)
753 (continuation-dest (node-cont node)))
754 (constant-fold-call node)
755 (return-from ir1-optimize-combination)))
756
757 (let ((fun (function-info-derive-type kind)))
758 (when fun
759 (let ((res (funcall fun node)))
760 (when res
761 (derive-node-type node res)
762 (maybe-terminate-block node nil)))))
763
764 (let ((fun (function-info-optimizer kind)))
765 (unless (and fun (funcall fun node))
766 (dolist (x (function-info-transforms kind))
767 (unless (ir1-transform node x)
768 (return))))))))
769
770 (undefined-value))
771
772
773 ;;; MAYBE-TERMINATE-BLOCK -- Interface
774 ;;;
775 ;;; If Call is to a function that doesn't return (type NIL), then terminate
776 ;;; the block there, and link it to the component tail. We also change the
777 ;;; call's CONT to be a dummy continuation to prevent the use from confusing
778 ;;; things.
779 ;;;
780 ;;; Except when called during IR1, we delete the continuation if it has no
781 ;;; other uses. (If it does have other uses, we reoptimize.)
782 ;;;
783 ;;; Termination on the basis of a continuation type assertion is inhibited
784 ;;; when:
785 ;;; -- The continuation is deleted (hence the assertion is spurious), or
786 ;;; -- We are in IR1 conversion (where THE assertions are subject to
787 ;;; weakening.)
788 ;;;
789 (defun maybe-terminate-block (call ir1-p)
790 (declare (type basic-combination call))
791 (let* ((block (node-block call))
792 (cont (node-cont call))
793 (tail (component-tail (block-component block)))
794 (succ (first (block-succ block))))
795 (unless (or (and (eq call (block-last block)) (eq succ tail))
796 (block-delete-p block)
797 *converting-for-interpreter*)
798 (when (or (and (eq (continuation-asserted-type cont) *empty-type*)
799 (not (or ir1-p (eq (continuation-kind cont) :deleted))))
800 (eq (node-derived-type call) *empty-type*))
801 (cond (ir1-p
802 (delete-continuation-use call)
803 (cond
804 ((block-last block)
805 (assert (and (eq (block-last block) call)
806 (eq (continuation-kind cont) :block-start))))
807 (t
808 (setf (block-last block) call)
809 (link-blocks block (continuation-starts-block cont)))))
810 (t
811 (node-ends-block call)
812 (delete-continuation-use call)
813 (if (eq (continuation-kind cont) :unused)
814 (delete-continuation cont)
815 (reoptimize-continuation cont))))
816
817 (unlink-blocks block (first (block-succ block)))
818 (setf (component-reanalyze (block-component block)) t)
819 (assert (not (block-succ block)))
820 (link-blocks block tail)
821 (add-continuation-use call (make-continuation))
822 t))))
823
824
825 ;;; Recognize-Known-Call -- Interface
826 ;;;
827 ;;; Called both by IR1 conversion and IR1 optimization when they have
828 ;;; verified the type signature for the call, and are wondering if something
829 ;;; should be done to special-case the call. If Call is a call to a global
830 ;;; function, then see if it defined or known:
831 ;;; -- If a DEFINED-FUNCTION should be inline expanded, then convert the
832 ;;; expansion and change the call to call it. Expansion is enabled if
833 ;;; :INLINE or if space=0. If the FUNCTIONAL slot is true, we never expand,
834 ;;; since this function has already been converted. Local call analysis
835 ;;; will duplicate the definition if necessary. We claim that the parent
836 ;;; form is LABELS for context declarations, since we don't want it to be
837 ;;; considered a real global function.
838 ;;; -- In addition to a direct check for the function name in the table, we
839 ;;; also must check for slot accessors. If the function is a slot accessor,
840 ;;; then we set the combination kind to the function info of %Slot-Setter or
841 ;;; %Slot-Accessor, as appropriate.
842 ;;; -- If it is a known function, mark it as such by setting the Kind.
843 ;;;
844 ;;; We return the leaf referenced (NIL if not a leaf) and the function-info
845 ;;; assigned.
846 ;;;
847 (defun recognize-known-call (call ir1-p)
848 (declare (type combination call))
849 (let* ((ref (continuation-use (basic-combination-fun call)))
850 (leaf (when (ref-p ref) (ref-leaf ref)))
851 (inlinep (if (and (defined-function-p leaf)
852 (not (byte-compiling)))
853 (defined-function-inlinep leaf)
854 :no-chance)))
855 (cond
856 ((eq inlinep :notinline) (values nil nil))
857 ((not (and (global-var-p leaf)
858 (eq (global-var-kind leaf) :global-function)))
859 (values leaf nil))
860 ((and (ecase inlinep
861 (:inline t)
862 (:no-chance nil)
863 ((nil :maybe-inline) (policy call (zerop space))))
864 (defined-function-inline-expansion leaf)
865 (let ((fun (defined-function-functional leaf)))
866 (or (not fun)
867 (and (eq inlinep :inline) (functional-kind fun))))
868 (inline-expansion-ok call))
869 (flet ((frob ()
870 (let ((res (ir1-convert-lambda-for-defun
871 (defined-function-inline-expansion leaf)
872 leaf t
873 #'ir1-convert-inline-lambda
874 'labels)))
875 (setf (defined-function-functional leaf) res)
876 (change-ref-leaf ref res))))
877 (if ir1-p
878 (frob)
879 (with-ir1-environment call
880 (frob)
881 (local-call-analyze *current-component*))))
882
883 (values (ref-leaf (continuation-use (basic-combination-fun call)))
884 nil))
885 (t
886 (let* ((name (leaf-name leaf))
887 (info (if (dylan-function-var-p leaf)
888 (dylan-function-var-function-info leaf)
889 (info function info
890 (if (slot-accessor-p leaf)
891 (if (consp name)
892 '%slot-setter
893 '%slot-accessor)
894 name)))))
895 (if info
896 (values leaf (setf (basic-combination-kind call) info))
897 (values leaf nil)))))))
898
899
900 ;;; VALIDATE-CALL-TYPE -- Internal
901 ;;;
902 ;;; Check if Call satisfies Type. If so, apply the type to the call, and do
903 ;;; MAYBE-TERMINATE-BLOCK and return the values of RECOGNIZE-KNOWN-CALL. If an
904 ;;; error, set the combination kind and return NIL, NIL. If the type is just
905 ;;; FUNCTION, then skip the syntax check, arg/result type processing, but still
906 ;;; call RECOGNIZE-KNOWN-CALL, since the call might be to a known lambda, and
907 ;;; that checking is done by local call analysis.
908 ;;;
909 (defun validate-call-type (call type ir1-p)
910 (declare (type combination call) (type ctype type))
911 (cond ((not (function-type-p type))
912 (assert (multiple-value-bind
913 (val win)
914 (csubtypep type (specifier-type 'function))
915 (or val (not win))))
916 (recognize-known-call call ir1-p))
917 ((valid-function-use call type
918 :argument-test #'always-subtypep
919 :result-test #'always-subtypep
920 :error-function #'compiler-warning
921 :warning-function #'compiler-note)
922 (assert-call-type call type)
923 (maybe-terminate-block call ir1-p)
924 (recognize-known-call call ir1-p))
925 (t
926 (setf (combination-kind call) :error)
927 (values nil nil))))
928
929
930 ;;; Propagate-Function-Change -- Internal
931 ;;;
932 ;;; Called by Ir1-Optimize when the function for a call has changed.
933 ;;; If the call is local, we try to let-convert it, and derive the result type.
934 ;;; If it is a :FULL call, we validate it against the type, which recognizes
935 ;;; known calls, does inline expansion, etc. If a call to a predicate in a
936 ;;; non-conditional position or to a function with a source transform, then we
937 ;;; reconvert the form to give IR1 another chance.
938 ;;;
939 (defun propagate-function-change (call)
940 (declare (type combination call))
941 (let ((*compiler-error-context* call)
942 (fun-cont (basic-combination-fun call)))
943 (setf (continuation-reoptimize fun-cont) nil)
944 (case (combination-kind call)
945 (:local
946 (let ((fun (combination-lambda call)))
947 (maybe-let-convert fun)
948 (unless (member (functional-kind fun) '(:let :assignment :deleted))
949 (derive-node-type call (tail-set-type (lambda-tail-set fun))))))
950 (:full
951 (multiple-value-bind
952 (leaf info)
953 (validate-call-type call (continuation-type fun-cont) nil)
954 (cond ((functional-p leaf)
955 (convert-call-if-possible
956 (continuation-use (basic-combination-fun call))
957 call))
958 ((not leaf))
959 ((or (info function source-transform (leaf-name leaf))
960 (and info
961 (ir1-attributep (function-info-attributes info)
962 predicate)
963 (let ((dest (continuation-dest (node-cont call))))
964 (and dest (not (if-p dest))))))
965 (let ((name (leaf-name leaf)))
966 (when (symbolp name)
967 (let ((dums (loop repeat (length (combination-args call))
968 collect (gensym))))
969 (transform-call call
970 `(lambda ,dums
971 (,name ,@dums))))))))))))
972 (undefined-value))
973
974
975 ;;;; Known function optimization:
976
977
978 ;;; RECORD-OPTIMIZATION-FAILURE -- Internal
979 ;;;
980 ;;; Add a failed optimization note to FAILED-OPTIMZATIONS for Node, Fun
981 ;;; and Args. If there is already a note for Node and Transform, replace it,
982 ;;; otherwise add a new one.
983 ;;;
984 (defun record-optimization-failure (node transform args)
985 (declare (type combination node) (type transform transform)
986 (type (or function-type list) args))
987 (let* ((table (component-failed-optimizations *compile-component*))
988 (found (assoc transform (gethash node table))))
989 (if found
990 (setf (cdr found) args)
991 (push (cons transform args) (gethash node table))))
992 (undefined-value))
993
994
995 ;;; IR1-Transform -- Internal
996 ;;;
997 ;;; Attempt to transform Node using Function, subject to the call type
998 ;;; constraint Type. If we are inhibited from doing the transform for some
999 ;;; reason and Flame is true, then we make a note of the message in
1000 ;;; FAILED-OPTIMIZATIONS for IR1 finalize to pick up. We return true if
1001 ;;; the transform failed, and thus further transformation should be
1002 ;;; attempted. We return false if either the transform suceeded or was
1003 ;;; aborted.
1004 ;;;
1005 (defun ir1-transform (node transform)
1006 (declare (type combination node) (type transform transform))
1007 (let* ((type (transform-type transform))
1008 (fun (transform-function transform))
1009 (constrained (function-type-p type))
1010 (table (component-failed-optimizations *compile-component*))
1011 (flame
1012 (if (transform-important transform)
1013 (policy node (>= speed brevity))
1014 (policy node (> speed brevity))))
1015 (*compiler-error-context* node))
1016 (cond ((let ((when (transform-when transform)))
1017 (not (or (eq when :both)
1018 (eq when (if *byte-compiling* :byte :native)))))
1019 t)
1020 ((or (not constrained)
1021 (valid-function-use node type :strict-result t))
1022 (multiple-value-bind
1023 (severity args)
1024 (catch 'give-up
1025 (transform-call node (funcall fun node))
1026 (values :none nil))
1027 (ecase severity
1028 (:none
1029 (remhash node table)
1030 nil)
1031 (:aborted
1032 (setf (combination-kind node) :error)
1033 (when args
1034 (apply #'compiler-warning args))
1035 (remhash node table)
1036 nil)
1037 (:failure
1038 (if args
1039 (when flame
1040 (record-optimization-failure node transform args))
1041 (setf (gethash node table)
1042 (remove transform (gethash node table) :key #'car)))
1043 t))))
1044 ((and flame
1045 (valid-function-use node type
1046 :argument-test #'types-intersect
1047 :result-test #'values-types-intersect))
1048 (record-optimization-failure node transform type)
1049 t)
1050 (t
1051 t))))
1052
1053 (declaim (end-block))
1054
1055 ;;; GIVE-UP, ABORT-TRANSFORM -- Interface
1056 ;;;
1057 ;;; Just throw the severity and args...
1058 ;;;
1059 (proclaim '(function give-up (&rest t) nil))
1060 (defun give-up (&rest args)
1061 "This function is used to throw out of an IR1 transform, aborting this
1062 attempt to transform the call, but admitting the possibility that this or
1063 some other transform will later suceed. If arguments are supplied, they are
1064 format arguments for an efficiency note."
1065 (throw 'give-up (values :failure args)))
1066 ;;;
1067 (defun abort-transform (&rest args)
1068 "This function is used to throw out of an IR1 transform and force a normal
1069 call to the function at run time. No further optimizations will be
1070 attempted."
1071 (throw 'give-up (values :aborted args)))
1072
1073
1074 ;;; Transform-Call -- Internal
1075 ;;;
1076 ;;; Take the lambda-expression Res, IR1 convert it in the proper
1077 ;;; environment, and then install it as the function for the call Node. We do
1078 ;;; local call analysis so that the new function is integrated into the control
1079 ;;; flow.
1080 ;;;
1081 (defun transform-call (node res)
1082 (declare (type combination node) (list res))
1083 (with-ir1-environment node
1084 (let ((new-fun (ir1-convert-inline-lambda res))
1085 (ref (continuation-use (combination-fun node))))
1086 (change-ref-leaf ref new-fun)
1087 (setf (combination-kind node) :full)
1088 (local-call-analyze *current-component*)))
1089 (undefined-value))
1090
1091
1092 ;;; Constant-Fold-Call -- Internal
1093 ;;;
1094 ;;; Replace a call to a foldable function of constant arguments with the
1095 ;;; result of evaluating the form. We insert the resulting constant node after
1096 ;;; the call, stealing the call's continuation. We give the call a
1097 ;;; continuation with no Dest, which should cause it and its arguments to go
1098 ;;; away. If there is an error during the evaluation, we give a warning and
1099 ;;; leave the call alone, making the call a :ERROR call.
1100 ;;;
1101 ;;; If there is more than one value, then we transform the call into a
1102 ;;; values form.
1103 ;;;
1104 (defun constant-fold-call (call)
1105 (declare (type combination call))
1106 (let* ((args (mapcar #'continuation-value (combination-args call)))
1107 (ref (continuation-use (combination-fun call)))
1108 (fun (leaf-name (ref-leaf ref))))
1109
1110 (multiple-value-bind (values win)
1111 (careful-call fun args call "constant folding")
1112 (cond
1113 ((not win)
1114 (setf (combination-kind call) :error))
1115 ((= (length values) 1)
1116 (with-ir1-environment call
1117 (when (producing-fasl-file)
1118 (maybe-emit-make-load-forms (first values)))
1119 (let* ((leaf (find-constant (first values)))
1120 (node (make-ref (leaf-type leaf) leaf))
1121 (dummy (make-continuation))
1122 (cont (node-cont call))
1123 (block (node-block call))
1124 (next (continuation-next cont)))
1125 (push node (leaf-refs leaf))
1126 (setf (leaf-ever-used leaf) t)
1127
1128 (delete-continuation-use call)
1129 (add-continuation-use call dummy)
1130 (prev-link node dummy)
1131 (add-continuation-use node cont)
1132 (setf (continuation-next cont) next)
1133 (when (eq call (block-last block))
1134 (setf (block-last block) node))
1135 (reoptimize-continuation cont))))
1136 (t
1137 (let ((dummies (loop repeat (length args)
1138 collect (gensym))))
1139 (transform-call
1140 call
1141 `(lambda ,dummies
1142 (declare (ignore ,@dummies))
1143 (values ,@(mapcar #'(lambda (x) `',x) values)))))))))
1144
1145 (undefined-value))
1146
1147
1148 ;;;; Local call optimization:
1149
1150 (declaim (start-block ir1-optimize-set constant-reference-p delete-let
1151 propagate-let-args propagate-local-call-args
1152 propagate-to-refs propagate-from-sets
1153 ir1-optimize-mv-combination))
1154
1155 ;;; Propagate-To-Refs -- Internal
1156 ;;;
1157 ;;; Propagate Type to Leaf and its Refs, marking things changed. If the
1158 ;;; leaf type is a function type, then just leave it alone, since TYPE is never
1159 ;;; going to be more specific than that (and TYPE-INTERSECTION would choke.)
1160 ;;;
1161 (defun propagate-to-refs (leaf type)
1162 (declare (type leaf leaf) (type ctype type))
1163 (let ((var-type (leaf-type leaf)))
1164 (unless (function-type-p var-type)
1165 (let ((int (type-intersection var-type type)))
1166 (when (type/= int var-type)
1167 (setf (leaf-type leaf) int)
1168 (dolist (ref (leaf-refs leaf))
1169 (derive-node-type ref int))))
1170 (undefined-value))))
1171
1172
1173 ;;; PROPAGATE-FROM-SETS -- Internal
1174 ;;;
1175 ;;; Figure out the type of a LET variable that has sets. We compute the
1176 ;;; union of the initial value Type and the types of all the set values and to
1177 ;;; a PROPAGATE-TO-REFS with this type.
1178 ;;;
1179 (defun propagate-from-sets (var type)
1180 (collect ((res type type-union))
1181 (dolist (set (basic-var-sets var))
1182 (res (continuation-type (set-value set)))
1183 (setf (node-reoptimize set) nil))
1184 (propagate-to-refs var (res)))
1185 (undefined-value))
1186
1187
1188 ;;; IR1-OPTIMIZE-SET -- Internal
1189 ;;;
1190 ;;; If a let variable, find the initial value's type and do
1191 ;;; PROPAGATE-FROM-SETS. We also derive the VALUE's type as the node's type.
1192 ;;;
1193 (defun ir1-optimize-set (node)
1194 (declare (type cset node))
1195 (let ((var (set-var node)))
1196 (when (and (lambda-var-p var) (leaf-refs var))
1197 (let ((home (lambda-var-home var)))
1198 (when (eq (functional-kind home) :let)
1199 (let ((iv (let-var-initial-value var)))
1200 (setf (continuation-reoptimize iv) nil)
1201 (propagate-from-sets var (continuation-type iv)))))))
1202
1203 (derive-node-type node (continuation-type (set-value node)))
1204 (undefined-value))
1205
1206
1207 ;;; CONSTANT-REFERENCE-P -- Interface
1208 ;;;
1209 ;;; Return true if the value of Ref will always be the same (and is thus
1210 ;;; legal to substitute.)
1211 ;;;
1212 (defun constant-reference-p (ref)
1213 (declare (type ref ref))
1214 (let ((leaf (ref-leaf ref)))
1215 (typecase leaf
1216 ((or constant functional) t)
1217 (lambda-var
1218 (null (lambda-var-sets leaf)))
1219 (defined-function
1220 (not (eq (defined-function-inlinep leaf) :notinline)))
1221 (global-var
1222 (case (global-var-kind leaf)
1223 (:global-function t)
1224 (:constant t))))))
1225
1226
1227 ;;; SUBSTITUTE-SINGLE-USE-CONTINUATION -- Internal
1228 ;;;
1229 ;;; If we have a non-set let var with a single use, then (if possible)
1230 ;;; replace the variable reference's CONT with the arg continuation. This is
1231 ;;; inhibited when:
1232 ;;; -- CONT has other uses, or
1233 ;;; -- CONT receives multiple values, or
1234 ;;; -- the reference is in a different environment from the variable, or
1235 ;;; -- either continuation has a funky TYPE-CHECK annotation.
1236 ;;; -- the continuations have incompatible assertions, so the new asserted type
1237 ;;; would be NIL.
1238 ;;; -- the var's DEST has a different policy than the ARG's (think safety).
1239 ;;;
1240 ;;; We change the Ref to be a reference to NIL with unused value, and let it
1241 ;;; be flushed as dead code. A side-effect of this substitution is to delete
1242 ;;; the variable.
1243 ;;;
1244 (defun substitute-single-use-continuation (arg var)
1245 (declare (type continuation arg) (type lambda-var var))
1246 (let* ((ref (first (leaf-refs var)))
1247 (cont (node-cont ref))
1248 (cont-atype (continuation-asserted-type cont))
1249 (dest (continuation-dest cont)))
1250 (when (and (eq (continuation-use cont) ref)
1251 dest
1252 (not (typep dest '(or creturn exit mv-combination)))
1253 (eq (node-home-lambda ref)
1254 (lambda-home (lambda-var-home var)))
1255 (member (continuation-type-check arg) '(t nil))
1256 (member (continuation-type-check cont) '(t nil))
1257 (not (eq (values-type-intersection
1258 cont-atype
1259 (continuation-asserted-type arg))
1260 *empty-type*))
1261 (eq (lexenv-cookie (node-lexenv dest))
1262 (lexenv-cookie (node-lexenv (continuation-dest arg)))))
1263 (assert (member (continuation-kind arg)
1264 '(:block-start :deleted-block-start :inside-block)))
1265 (assert-continuation-type arg cont-atype)
1266 (setf (node-derived-type ref) *wild-type*)
1267 (change-ref-leaf ref (find-constant nil))
1268 (substitute-continuation arg cont)
1269 (reoptimize-continuation arg)
1270 t)))
1271
1272
1273 ;;; DELETE-LET -- Interface
1274 ;;;
1275 ;;; Delete a Let, removing the call and bind nodes, and warning about any
1276 ;;; unreferenced variables. Note that FLUSH-DEAD-CODE will come along right
1277 ;;; away and delete the REF and then the lambda, since we flush the FUN
1278 ;;; continuation.
1279 ;;;
1280 (defun delete-let (fun)
1281 (declare (type clambda fun))
1282 (assert (member (functional-kind fun) '(:let :mv-let)))
1283 (note-unreferenced-vars fun)
1284 (let ((call (let-combination fun)))
1285 (flush-dest (basic-combination-fun call))
1286 (unlink-node call)
1287 (unlink-node (lambda-bind fun))
1288 (setf (lambda-bind fun) nil))
1289 (undefined-value))
1290
1291
1292 ;;; Propagate-Let-Args -- Internal
1293 ;;;
1294 ;;; This function is called when one of the arguments to a LET changes. We
1295 ;;; look at each changed argument. If the corresponding variable is set, then
1296 ;;; we call PROPAGATE-FROM-SETS. Otherwise, we consider substituting for the
1297 ;;; variable, and also propagate derived-type information for the arg to all
1298 ;;; the Var's refs.
1299 ;;;
1300 ;;; Substitution is inhibited when the arg leaf's derived type isn't a
1301 ;;; subtype of the argument's asserted type. This prevents type checking from
1302 ;;; being defeated, and also ensures that the best representation for the
1303 ;;; variable can be used.
1304 ;;;
1305 ;;; Substitution of individual references is inhibited if the reference is
1306 ;;; in a different component from the home. This can only happen with closures
1307 ;;; over top-level lambda vars. In such cases, the references may have already
1308 ;;; been compiled, and thus can't be retroactively modified.
1309 ;;;
1310 ;;; If all of the variables are deleted (have no references) when we are
1311 ;;; done, then we delete the let.
1312 ;;;
1313 ;;; Note that we are responsible for clearing the Continuation-Reoptimize
1314 ;;; flags.
1315 ;;;
1316 (defun propagate-let-args (call fun)
1317 (declare (type combination call) (type clambda fun))
1318 (loop for arg in (combination-args call)
1319 and var in (lambda-vars fun) do
1320 (when (and arg (continuation-reoptimize arg))
1321 (setf (continuation-reoptimize arg) nil)
1322 (cond
1323 ((lambda-var-sets var)
1324 (propagate-from-sets var (continuation-type arg)))
1325 ((let ((use (continuation-use arg)))
1326 (when (ref-p use)
1327 (let ((leaf (ref-leaf use)))
1328 (when (and (constant-reference-p use)
1329 (values-subtypep (leaf-type leaf)
1330 (continuation-asserted-type arg)))
1331 (propagate-to-refs var (continuation-type arg))
1332 (let ((this-comp (block-component (node-block use))))
1333 (substitute-leaf-if
1334 #'(lambda (ref)
1335 (cond ((eq (block-component (node-block ref))
1336 this-comp)
1337 t)
1338 (t
1339 (assert (eq (functional-kind (lambda-home fun))
1340 :top-level))
1341 nil)))
1342 leaf var))
1343 t)))))
1344 ((and (null (rest (leaf-refs var)))
1345 (not *byte-compiling*)
1346 (substitute-single-use-continuation arg var)))
1347 (t
1348 (propagate-to-refs var (continuation-type arg))))))
1349
1350 (when (every #'null (combination-args call))
1351 (delete-let fun))
1352
1353 (undefined-value))
1354
1355
1356 ;;; Propagate-Local-Call-Args -- Internal
1357 ;;;
1358 ;;; This function is called when one of the args to a non-let local call
1359 ;;; changes. For each changed argument corresponding to an unset variable, we
1360 ;;; compute the union of the types across all calls and propagate this type
1361 ;;; information to the var's refs.
1362 ;;;
1363 ;;; If the function has an XEP, then we don't do anything, since we won't
1364 ;;; discover anything.
1365 ;;;
1366 ;;; We can clear the Continuation-Reoptimize flags for arguments in all calls
1367 ;;; corresponding to changed arguments in Call, since the only use in IR1
1368 ;;; optimization of the Reoptimize flag for local call args is right here.
1369 ;;;
1370 (defun propagate-local-call-args (call fun)
1371 (declare (type combination call) (type clambda fun))
1372
1373 (unless (or (functional-entry-function fun)
1374 (lambda-optional-dispatch fun))
1375 (let* ((vars (lambda-vars fun))
1376 (union (mapcar #'(lambda (arg var)
1377 (when (and arg
1378 (continuation-reoptimize arg)
1379 (null (basic-var-sets var)))
1380 (continuation-type arg)))
1381 (basic-combination-args call)
1382 vars))
1383 (this-ref (continuation-use (basic-combination-fun call))))
1384
1385 (dolist (arg (basic-combination-args call))
1386 (when arg
1387 (setf (continuation-reoptimize arg) nil)))
1388
1389 (dolist (ref (leaf-refs fun))
1390 (let ((dest (continuation-dest (node-cont ref))))
1391 (unless (or (eq ref this-ref) (not dest))
1392 (setq union
1393 (mapcar #'(lambda (this-arg old)
1394 (when old
1395 (setf (continuation-reoptimize this-arg) nil)
1396 (type-union (continuation-type this-arg) old)))
1397 (basic-combination-args dest)
1398 union)))))
1399
1400 (mapc #'(lambda (var type)
1401 (when type
1402 (propagate-to-refs var type)))
1403 vars union)))
1404
1405 (undefined-value))
1406
1407 (declaim (end-block))
1408
1409
1410 ;;;; Multiple values optimization:
1411
1412 ;;; IR1-OPTIMIZE-MV-COMBINATION -- Internal
1413 ;;;
1414 ;;; Do stuff to notice a change to a MV combination node. There are two
1415 ;;; main branches here:
1416 ;;; -- If the call is local, then it is already a MV let, or should become one.
1417 ;;; Note that although all :LOCAL MV calls must eventually be converted to
1418 ;;; :MV-LETs, there can be a window when the call is local, but has not
1419 ;;; been let converted yet. This is because the entry-point lambdas may
1420 ;;; have stray references (in other entry points) that have not been
1421 ;;; deleted yet.
1422 ;;; -- The call is full. This case is somewhat similar to the non-MV
1423 ;;; combination optimization: we propagate return type information and
1424 ;;; notice non-returning calls. We also have an optimization
1425 ;;; which tries to convert MV-CALLs into MV-binds.
1426 ;;;
1427 (defun ir1-optimize-mv-combination (node)
1428 (ecase (basic-combination-kind node)
1429 (:local
1430 (let ((fun-cont (basic-combination-fun node)))
1431 (when (continuation-reoptimize fun-cont)
1432 (setf (continuation-reoptimize fun-cont) nil)
1433 (maybe-let-convert (combination-lambda node))))
1434 (setf (continuation-reoptimize (first (basic-combination-args node))) nil)
1435 (when (eq (functional-kind (combination-lambda node)) :mv-let)
1436 (unless (convert-mv-bind-to-let node)
1437 (ir1-optimize-mv-bind node))))
1438 (:full
1439 (let* ((fun (basic-combination-fun node))
1440 (fun-changed (continuation-reoptimize fun))
1441 (args (basic-combination-args node)))
1442 (when fun-changed
1443 (setf (continuation-reoptimize fun) nil)
1444 (let ((type (continuation-type fun)))
1445 (when (function-type-p type)
1446 (derive-node-type node (function-type-returns type))))
1447 (maybe-terminate-block node nil)
1448 (let ((use (continuation-use fun)))
1449 (when (and (ref-p use) (functional-p (ref-leaf use)))
1450 (convert-call-if-possible use node)
1451 (when (eq (basic-combination-kind node) :local)
1452 (maybe-let-convert (ref-leaf use))))))
1453 (unless (or (eq (basic-combination-kind node) :local)
1454 (eq (continuation-function-name fun) '%throw))
1455 (ir1-optimize-mv-call node))
1456 (dolist (arg args)
1457 (setf (continuation-reoptimize arg) nil))))
1458 (:error))
1459 (undefined-value))
1460
1461
1462 ;;; IR1-OPTIMIZE-MV-BIND -- Internal
1463 ;;;
1464 ;;; Propagate derived type info from the values continuation to the vars.
1465 ;;;
1466 (defun ir1-optimize-mv-bind (node)
1467 (declare (type mv-combination node))
1468 (let ((arg (first (basic-combination-args node)))
1469 (vars (lambda-vars (combination-lambda node))))
1470 (multiple-value-bind (types nvals)
1471 (values-types (continuation-derived-type arg))
1472 (unless (eq nvals :unknown)
1473 (mapc #'(lambda (var type)
1474 (if (basic-var-sets var)
1475 (propagate-from-sets var type)
1476 (propagate-to-refs var type)))
1477 vars
1478 (append types
1479 (make-list (max (- (length vars) nvals) 0)
1480 :initial-element *null-type*)))))
1481
1482 (setf (continuation-reoptimize arg) nil))
1483 (undefined-value))
1484
1485
1486 ;;; IR1-OPTIMIZE-MV-CALL -- Internal
1487 ;;;
1488 ;;; If possible, convert a general MV call to an MV-BIND. We can do this
1489 ;;; if:
1490 ;;; -- The call has only one argument, and
1491 ;;; -- The function has a known fixed number of arguments, or
1492 ;;; -- The argument yields a known fixed number of values.
1493 ;;;
1494 ;;; What we do is change the function in the MV-CALL to be a lambda that "looks
1495 ;;; like an MV bind", which allows IR1-OPTIMIZE-MV-COMBINATION to notice that
1496 ;;; this call can be converted (the next time around.) This new lambda just
1497 ;;; calls the actual function with the MV-BIND variables as arguments. Note
1498 ;;; that this new MV bind is not let-converted immediately, as there are going
1499 ;;; to be stray references from the entry-point functions until they get
1500 ;;; deleted.
1501 ;;;
1502 ;;; In order to avoid loss of argument count checking, we only do the
1503 ;;; transformation according to a known number of expected argument if safety
1504 ;;; is unimportant. We can always convert if we know the number of actual
1505 ;;; values, since the normal call that we build will still do any appropriate
1506 ;;; argument count checking.
1507 ;;;
1508 ;;; We only attempt the transformation if the called function is a constant
1509 ;;; reference. This allows us to just splice the leaf into the new function,
1510 ;;; instead of trying to somehow bind the function expression. The leaf must
1511 ;;; be constant because we are evaluating it again in a different place. This
1512 ;;; also has the effect of squelching multiple warnings when there is an
1513 ;;; argument count error.
1514 ;;;
1515 (defun ir1-optimize-mv-call (node)
1516 (let ((fun (basic-combination-fun node))
1517 (*compiler-error-context* node)
1518 (ref (continuation-use (basic-combination-fun node)))
1519 (args (basic-combination-args node)))
1520
1521 (unless (and (ref-p ref) (constant-reference-p ref)
1522 args (null (rest args)))
1523 (return-from ir1-optimize-mv-call))
1524
1525 (multiple-value-bind (min max)
1526 (function-type-nargs (continuation-type fun))
1527 (let ((total-nvals
1528 (multiple-value-bind
1529 (types nvals)
1530 (values-types (continuation-derived-type (first args)))
1531 (declare (ignore types))
1532 (if (eq nvals :unknown) nil nvals))))
1533
1534 (when total-nvals
1535 (when (and min (< total-nvals min))
1536 (compiler-warning
1537 "MULTIPLE-VALUE-CALL with ~R values when the function expects ~
1538 at least ~R."
1539 total-nvals min)
1540 (setf (basic-combination-kind node) :error)
1541 (return-from ir1-optimize-mv-call))
1542 (when (and max (> total-nvals max))
1543 (compiler-warning
1544 "MULTIPLE-VALUE-CALL with ~R values when the function expects ~
1545 at most ~R."
1546 total-nvals max)
1547 (setf (basic-combination-kind node) :error)
1548 (return-from ir1-optimize-mv-call)))
1549
1550 (let ((count (cond (total-nvals)
1551 ((and (policy node (zerop safety)) (eql min max))
1552 min)
1553 (t nil))))
1554 (when count
1555 (with-ir1-environment node
1556 (let* ((dums (loop repeat count collect (gensym)))
1557 (ignore (gensym))
1558 (fun (ir1-convert-lambda
1559 `(lambda (&optional ,@dums &rest ,ignore)
1560 (declare (ignore ,ignore))
1561 (funcall ,(ref-leaf ref) ,@dums)))))
1562 (change-ref-leaf ref fun)
1563 (assert (eq (basic-combination-kind node) :full))
1564 (local-call-analyze *current-component*)
1565 (assert (eq (basic-combination-kind node) :local)))))))))
1566 (undefined-value))
1567
1568
1569 ;;; CONVERT-MV-BIND-TO-LET -- Internal
1570 ;;;
1571 ;;; If we see:
1572 ;;; (multiple-value-bind (x y)
1573 ;;; (values xx yy)
1574 ;;; ...)
1575 ;;; Convert to:
1576 ;;; (let ((x xx)
1577 ;;; (y yy))
1578 ;;; ...)
1579 ;;;
1580 ;;; What we actually do is convert the VALUES combination into a normal let
1581 ;;; combination calling the original :MV-LET lambda. If there are extra args to
1582 ;;; VALUES, discard the corresponding continuations. If there are insufficient
1583 ;;; args, insert references to NIL.
1584 ;;;
1585 (defun convert-mv-bind-to-let (call)
1586 (declare (type mv-combination call))
1587 (let* ((arg (first (basic-combination-args call)))
1588 (use (continuation-use arg)))
1589 (when (and (combination-p use)
1590 (eq (continuation-function-name (combination-fun use))
1591 'values))
1592 (let* ((fun (combination-lambda call))
1593 (vars (lambda-vars fun))
1594 (vals (combination-args use))
1595 (nvars (length vars))
1596 (nvals (length vals)))
1597 (cond ((> nvals nvars)
1598 (mapc #'flush-dest (subseq vals nvars))
1599 (setq vals (subseq vals 0 nvars)))
1600 ((< nvals nvars)
1601 (with-ir1-environment use
1602 (let ((node-prev (node-prev use)))
1603 (setf (node-prev use) nil)
1604 (setf (continuation-next node-prev) nil)
1605 (collect ((res vals))
1606 (loop as cont = (make-continuation use)
1607 and prev = node-prev then cont
1608 repeat (- nvars nvals)
1609 do (reference-constant prev cont nil)
1610 (res cont))
1611 (setq vals (res)))
1612 (prev-link use (car (last vals)))))))
1613 (setf (combination-args use) vals)
1614 (flush-dest (combination-fun use))
1615 (let ((fun-cont (basic-combination-fun call)))
1616 (setf (continuation-dest fun-cont) use)
1617 (setf (combination-fun use) fun-cont))
1618 (setf (combination-kind use) :local)
1619 (setf (functional-kind fun) :let)
1620 (flush-dest (first (basic-combination-args call)))
1621 (unlink-node call)
1622 (when vals
1623 (reoptimize-continuation (first vals)))
1624 (propagate-to-args use fun))
1625 t)))
1626
1627
1628 ;;; VALUES-LIST IR1 optimizer -- Internal
1629 ;;;
1630 ;;; If we see:
1631 ;;; (values-list (list x y z))
1632 ;;;
1633 ;;; Convert to:
1634 ;;; (values x y z)
1635 ;;;
1636 ;;; In implementation, this is somewhat similar to CONVERT-MV-BIND-TO-LET. We
1637 ;;; grab the args of LIST and make them args of the VALUES-LIST call, flushing
1638 ;;; the old argument continuation (allowing the LIST to be flushed.)
1639 ;;;
1640 (defoptimizer (values-list optimizer) ((list) node)
1641 (let ((use (continuation-use list)))
1642 (when (and (combination-p use)
1643 (eq (continuation-function-name (combination-fun use))
1644 'list))
1645 (change-ref-leaf (continuation-use (combination-fun node))
1646 (find-free-function 'values "in a strange place"))
1647 (setf (combination-kind node) :full)
1648 (let ((args (combination-args use)))
1649 (dolist (arg args)
1650 (setf (continuation-dest arg) node))
1651 (setf (combination-args use) nil)
1652 (flush-dest list)
1653 (setf (combination-args node) args))
1654 t)))
1655
1656
1657 ;;; VALUES IR1 transform -- Internal
1658 ;;;
1659 ;;; If VALUES appears in a non-MV context, then effectively convert it to a
1660 ;;; PROG1. This allows the computation of the additional values to become dead
1661 ;;; code.
1662 ;;;
1663 (deftransform values ((&rest vals) * * :node node)
1664 (when (typep (continuation-dest (node-cont node))
1665 '(or creturn exit mv-combination))
1666 (give-up))
1667 (setf (node-derived-type node) *wild-type*)
1668 (if vals
1669 (let ((dummies (loop repeat (1- (length vals))
1670 collect (gensym))))
1671 `(lambda (val ,@dummies)
1672 (declare (ignore ,@dummies))
1673 val))
1674 'nil))

  ViewVC Help
Powered by ViewVC 1.1.5