/[cmucl]/src/compiler/array-tran.lisp
ViewVC logotype

Contents of /src/compiler/array-tran.lisp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.40 - (show annotations)
Mon May 9 13:06:59 2005 UTC (8 years, 11 months ago) by rtoy
Branch: MAIN
CVS Tags: double-double-array-base, release-19b-pre1, release-19b-pre2, double-double-init-sparc-2, double-double-base, double-double-init-sparc, double-double-init-ppc, release-19c, release-19c-base, double-double-init-%make-sparc, snapshot-2005-07, double-double-reader-checkpoint-1, double-double-init-checkpoint-1, double-double-reader-base, release-19b-base, double-double-init-x86, snapshot-2005-11, snapshot-2005-10, snapshot-2005-12, release-19c-pre1, snapshot-2005-06, snapshot-2005-09, snapshot-2005-08, snapshot-2006-02, snapshot-2006-03, snapshot-2006-01, snapshot-2006-06, snapshot-2006-04, snapshot-2006-05
Branch point for: release-19b-branch, double-double-reader-branch, double-double-array-branch, double-double-branch, release-19c-branch
Changes since 1.39: +2 -2 lines
Use array-dimension instead of length when creating the result array,
in case the source array has a fill pointer.
1 ;;; -*- Package: C; Log: C.Log -*-
2 ;;;
3 ;;; **********************************************************************
4 ;;; This code was written as part of the CMU Common Lisp project at
5 ;;; Carnegie Mellon University, and has been placed in the public domain.
6 ;;;
7 (ext:file-comment
8 "$Header: /tiger/var/lib/cvsroots/cmucl/src/compiler/array-tran.lisp,v 1.40 2005/05/09 13:06:59 rtoy Exp $")
9 ;;;
10 ;;; **********************************************************************
11 ;;;
12 ;;; This file contains array specific optimizers and transforms.
13 ;;;
14 ;;; Extracted from srctran and extended by William Lott.
15 ;;;
16 (in-package "C")
17
18
19 ;;;; Derive-Type Optimizers
20
21 ;;; ASSERT-ARRAY-RANK -- internal
22 ;;;
23 ;;; Array operations that use a specific number of indices implicitly assert
24 ;;; that the array is of that rank.
25 ;;;
26 (defun assert-array-rank (array rank)
27 (assert-continuation-type
28 array
29 (specifier-type `(array * ,(make-list rank :initial-element '*)))))
30
31 ;;; EXTRACT-ELEMENT-TYPE -- internal
32 ;;;
33 ;;; Array access functions return an object from the array, hence it's
34 ;;; type will be asserted to be array element type.
35 ;;;
36 (defun extract-element-type (array)
37 (let ((type (continuation-type array)))
38 (if (array-type-p type)
39 (array-type-element-type type)
40 *universal-type*)))
41
42 ;;; EXTRACT-UPGRADED-ELEMENT-TYPE -- internal
43 ;;;
44 ;;; Array access functions return an object from the array, hence it's
45 ;;; type is going to be the array upgraded element type.
46 ;;;
47 (defun extract-upgraded-element-type (array)
48 (let ((type (continuation-type array)))
49 (if (array-type-p type)
50 (array-type-specialized-element-type type)
51 *universal-type*)))
52
53 ;;; ASSERT-NEW-VALUE-TYPE -- internal
54 ;;;
55 ;;; The ``new-value'' for array setters must fit in the array, and the
56 ;;; return type is going to be the same as the new-value for setf functions.
57 ;;;
58 (defun assert-new-value-type (new-value array)
59 (let ((type (continuation-type array)))
60 (when (array-type-p type)
61 (assert-continuation-optional-type new-value
62 (array-type-specialized-element-type type))))
63 (continuation-type new-value))
64
65 ;;; Unsupplied-Or-NIL -- Internal
66 ;;;
67 ;;; Return true if Arg is NIL, or is a constant-continuation whose value is
68 ;;; NIL, false otherwise.
69 ;;;
70 (defun unsupplied-or-nil (arg)
71 (declare (type (or continuation null) arg))
72 (or (not arg)
73 (and (constant-continuation-p arg)
74 (not (continuation-value arg)))))
75
76
77 ;;; ARRAY-IN-BOUNDS-P -- derive-type optimizer.
78 ;;;
79 (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
80 (assert-array-rank array (length indices))
81 *universal-type*)
82
83 ;;; AREF -- derive-type optimizer.
84 ;;;
85 (defoptimizer (aref derive-type) ((array &rest indices) node)
86 (assert-array-rank array (length indices))
87 ;; If the node continuation has a single use then assert its type.
88 ;;
89 ;; Let's not do this. As reported by Lynn Quam on cmucl-imp on
90 ;; 2004-03-30, the compiler generates bogus code for
91 ;;
92 ;; (defun foo (f d)
93 ;; (declare (type (simple-array single-float (*)) f)
94 ;; (type (simple-array double-float (*)) d))
95 ;; (setf (aref f 0) (aref d 0)))
96 ;;
97 ;; and doesn't even warn about the type mismatch. This might be a
98 ;; symptom of other compiler bugs, but removing this at least gives
99 ;; us back the warning. I (RLT) do not know what impact removing
100 ;; this has on other user code.
101 #+(or)
102 (let ((cont (node-cont node)))
103 (when (= (length (find-uses cont)) 1)
104 (assert-continuation-type cont (extract-upgraded-element-type array))))
105 (extract-upgraded-element-type array))
106
107 ;;; %ASET -- derive-type optimizer.
108 ;;;
109 (defoptimizer (%aset derive-type) ((array &rest stuff))
110 (assert-array-rank array (1- (length stuff)))
111 (assert-new-value-type (car (last stuff)) array)
112 ;; Without the following, this function
113 ;;
114 ;; (defun fn-492 (r p1)
115 ;; (declare (optimize speed (safety 1))
116 ;; (type (simple-array (signed-byte 8) nil) r) (type (integer * 22050378) p1))
117 ;; (setf (aref r) (lognand (the (integer 19464371) p1) 2257))
118 ;; (values))
119 ;; (defun tst-492 ()
120 ;; (let ((r (make-array nil :element-type '(signed-byte 8))))
121 ;; (fn-492 r 19469591)
122 ;; (aref r)))
123 ;;
124 ;; causes the compiler to delete (values) as unreachable and in so
125 ;; doing, deletes the return, so we just run off the end. I (rtoy)
126 ;; think this is caused by some confusion in type-derivation. The
127 ;; derived result of the lognand is bigger than a (signed-byte 8).
128 ;;
129 ;; I think doing this also causes some loss, because we return the
130 ;; element-type of the array, even though the result of the aset is
131 ;; the new value. Well, almost. The element type is returned only
132 ;; if the array continuation is really an array type. Otherwise, we
133 ;; do return the type of the new value.
134 ;;
135 ;; FIXME: This needs something better, but I (rtoy) am not smart
136 ;; enough to know what to do about it.
137 (let ((atype (continuation-type array)))
138 (if (array-type-p atype)
139 (array-type-specialized-element-type atype)
140 (continuation-type (car (last stuff))))))
141
142 ;;; DATA-VECTOR-REF -- derive-type optimizer.
143 ;;;
144 (defoptimizer (data-vector-ref derive-type) ((array index))
145 (extract-upgraded-element-type array))
146
147 ;;; DATA-VECTOR-SET -- derive-type optimizer.
148 ;;;
149 (defoptimizer (data-vector-set derive-type) ((array index new-value))
150 (assert-new-value-type new-value array))
151
152 ;;; %WITH-ARRAY-DATA -- derive-type optimizer.
153 ;;;
154 ;;; Figure out the type of the data vector if we know the argument element
155 ;;; type.
156 ;;;
157 (defoptimizer (%with-array-data derive-type) ((array start end))
158 (let ((atype (continuation-type array)))
159 (when (array-type-p atype)
160 (values-specifier-type
161 `(values (simple-array ,(type-specifier
162 (array-type-element-type atype))
163 (*))
164 index index index)))))
165
166
167 ;;; ARRAY-ROW-MAJOR-INDEX -- derive-type optimizer.
168 ;;;
169 (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
170 (assert-array-rank array (length indices))
171 *universal-type*)
172
173 ;;; ROW-MAJOR-AREF -- derive-type optimizer.
174 ;;;
175 (defoptimizer (row-major-aref derive-type) ((array index))
176 (extract-upgraded-element-type array))
177
178 ;;; %SET-ROW-MAJOR-AREF -- derive-type optimizer.
179 ;;;
180 (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
181 (assert-new-value-type new-value array))
182
183 ;;; MAKE-ARRAY -- derive-type optimizer.
184 ;;;
185 (defoptimizer (make-array derive-type)
186 ((dims &key initial-element element-type initial-contents
187 adjustable fill-pointer displaced-index-offset displaced-to))
188 (let ((simple (and (unsupplied-or-nil adjustable)
189 (unsupplied-or-nil displaced-to)
190 (unsupplied-or-nil fill-pointer))))
191 (specifier-type
192 `(,(if simple 'simple-array 'array)
193 ,(cond ((not element-type) 't)
194 ((constant-continuation-p element-type)
195 (continuation-value element-type))
196 (t
197 '*))
198 ,(cond ((not simple)
199 '*)
200 ((constant-continuation-p dims)
201 (let ((val (continuation-value dims)))
202 (if (listp val) val (list val))))
203 ((csubtypep (continuation-type dims)
204 (specifier-type 'integer))
205 '(*))
206 (t
207 '*))))))
208
209
210 ;;;; Constructors.
211
212 ;;; VECTOR -- source-transform.
213 ;;;
214 ;;; Convert VECTOR into a make-array followed by setfs of all the elements.
215 ;;;
216 (def-source-transform vector (&rest elements)
217 (if (byte-compiling)
218 (values nil t)
219 (let ((len (length elements))
220 (n -1))
221 (once-only ((n-vec `(make-array ,len)))
222 `(progn
223 ,@(mapcar #'(lambda (el)
224 (once-only ((n-val el))
225 `(locally (declare (optimize (safety 0)))
226 (setf (svref ,n-vec ,(incf n))
227 ,n-val))))
228 elements)
229 ,n-vec)))))
230
231
232 ;;; MAKE-STRING -- source-transform.
233 ;;;
234 ;;; Just convert it into a make-array.
235 ;;;
236 (deftransform make-string ((length &key (element-type 'base-char)
237 (initial-element #\NULL)))
238 `(make-array (the (values index &rest t) length)
239 :element-type element-type
240 :initial-element initial-element))
241
242 (defconstant array-info
243 '((base-char #\NULL 8 vm:simple-string-type)
244 (single-float 0.0f0 32 vm:simple-array-single-float-type)
245 (double-float 0.0d0 64 vm:simple-array-double-float-type)
246 #+long-float (long-float 0.0l0 #+x86 96 #+sparc 128
247 vm:simple-array-long-float-type)
248 (bit 0 1 vm:simple-bit-vector-type)
249 ((unsigned-byte 2) 0 2 vm:simple-array-unsigned-byte-2-type)
250 ((unsigned-byte 4) 0 4 vm:simple-array-unsigned-byte-4-type)
251 ((unsigned-byte 8) 0 8 vm:simple-array-unsigned-byte-8-type)
252 ((unsigned-byte 16) 0 16 vm:simple-array-unsigned-byte-16-type)
253 ((unsigned-byte 32) 0 32 vm:simple-array-unsigned-byte-32-type)
254 ((signed-byte 8) 0 8 vm:simple-array-signed-byte-8-type)
255 ((signed-byte 16) 0 16 vm:simple-array-signed-byte-16-type)
256 ((signed-byte 30) 0 32 vm:simple-array-signed-byte-30-type)
257 ((signed-byte 32) 0 32 vm:simple-array-signed-byte-32-type)
258 ((complex single-float) #C(0.0f0 0.0f0) 64
259 vm:simple-array-complex-single-float-type)
260 ((complex double-float) #C(0.0d0 0.0d0) 128
261 vm:simple-array-complex-double-float-type)
262 #+long-float
263 ((complex long-float) #C(0.0l0 0.0l0) #+x86 192 #+sparc 256
264 vm:simple-array-complex-long-float-type)
265 (t 0 32 vm:simple-vector-type)))
266
267 ;;; MAKE-ARRAY -- source-transform.
268 ;;;
269 ;;; The integer type restriction on the length assures that it will be a
270 ;;; vector. The lack of adjustable, fill-pointer, and displaced-to keywords
271 ;;; assures that it will be simple.
272 ;;;
273 (deftransform make-array ((length &key initial-element element-type)
274 (integer &rest *))
275 (let* ((eltype (cond ((not element-type) t)
276 ((not (constant-continuation-p element-type))
277 (give-up "Element-Type is not constant."))
278 (t
279 (continuation-value element-type))))
280 (len (if (constant-continuation-p length)
281 (continuation-value length)
282 '*))
283 (spec `(simple-array ,eltype (,len)))
284 (eltype-type (specifier-type eltype)))
285 (multiple-value-bind
286 (default-initial-element element-size typecode)
287 (dolist (info array-info
288 (give-up "Cannot open-code creation of ~S" spec))
289 (when (csubtypep eltype-type (specifier-type (car info)))
290 (return (values-list (cdr info)))))
291 (let* ((nwords-form
292 (if (>= element-size vm:word-bits)
293 `(* length ,(/ element-size vm:word-bits))
294 (let ((elements-per-word (/ 32 element-size)))
295 `(truncate (+ length
296 ,(if (eq 'vm:simple-string-type typecode)
297 elements-per-word
298 (1- elements-per-word)))
299 ,elements-per-word))))
300 (constructor
301 `(truly-the ,spec
302 (allocate-vector ,typecode length ,nwords-form))))
303 (values
304 (cond ((and default-initial-element
305 (or (null initial-element)
306 (and (constant-continuation-p initial-element)
307 (eql (continuation-value initial-element)
308 default-initial-element))))
309 (unless (csubtypep (ctype-of default-initial-element)
310 eltype-type)
311 (compiler-note "Default initial element ~s is not a ~s."
312 default-initial-element eltype))
313 constructor)
314 (t
315 `(truly-the ,spec (fill ,constructor initial-element))))
316 '((declare (type index length))))))))
317
318 ;;; MAKE-ARRAY -- transform.
319 ;;;
320 ;;; The list type restriction does not assure that the result will be a
321 ;;; multi-dimensional array. But the lack of
322 ;;;
323 (deftransform make-array ((dims &key initial-element element-type)
324 (list &rest *))
325 (unless (or (null element-type) (constant-continuation-p element-type))
326 (give-up "Element-type not constant; cannot open code array creation"))
327 (unless (constant-continuation-p dims)
328 (give-up "Dimension list not constant; cannot open code array creation"))
329 (let ((dims (continuation-value dims)))
330 (unless (every #'integerp dims)
331 (give-up "Dimension list contains something other than an integer: ~S"
332 dims))
333 (if (= (length dims) 1)
334 `(make-array ',(car dims)
335 ,@(when initial-element
336 '(:initial-element initial-element))
337 ,@(when element-type
338 '(:element-type element-type)))
339 (let* ((total-size (reduce #'* dims))
340 (rank (length dims))
341 (spec `(simple-array
342 ,(cond ((null element-type) t)
343 ((constant-continuation-p element-type)
344 (continuation-value element-type))
345 (t '*))
346 ,(make-list rank :initial-element '*))))
347 `(let ((header (make-array-header vm:simple-array-type ,rank)))
348 (setf (%array-fill-pointer header) ,total-size)
349 (setf (%array-fill-pointer-p header) nil)
350 (setf (%array-available-elements header) ,total-size)
351 (setf (%array-data-vector header)
352 (make-array ,total-size
353 ,@(when element-type
354 '(:element-type element-type))
355 ,@(when initial-element
356 '(:initial-element initial-element))))
357 (setf (%array-displaced-p header) nil)
358 ,@(let ((axis -1))
359 (mapcar #'(lambda (dim)
360 `(setf (%array-dimension header ,(incf axis))
361 ,dim))
362 dims))
363 (truly-the ,spec header))))))
364
365
366 ;;;; Random properties of arrays.
367
368 ;;; Transforms for various random array properties. If the property is know
369 ;;; at compile time because of a type spec, use that constant value.
370
371 ;;; ARRAY-RANK -- transform.
372 ;;;
373 ;;; If we can tell the rank from the type info, use it instead.
374 ;;;
375 (deftransform array-rank ((array))
376 (let ((array-type (continuation-type array)))
377 (unless (array-type-p array-type)
378 (give-up))
379 (let ((dims (array-type-dimensions array-type)))
380 (if (not (listp dims))
381 (give-up "Array rank not known at compile time: ~S" dims)
382 (length dims)))))
383
384 ;;; ARRAY-DIMENSION -- transform.
385 ;;;
386 ;;; If we know the dimensions at compile time, just use it. Otherwise, if
387 ;;; we can tell that the axis is in bounds, convert to %array-dimension
388 ;;; (which just indirects the array header) or length (if it's simple and a
389 ;;; vector).
390 ;;;
391 (deftransform array-dimension ((array axis)
392 (array index))
393 (unless (constant-continuation-p axis)
394 (give-up "Axis not constant."))
395 (let ((array-type (continuation-type array))
396 (axis (continuation-value axis)))
397 (unless (array-type-p array-type)
398 (give-up))
399 (let ((dims (array-type-dimensions array-type)))
400 (unless (listp dims)
401 (give-up
402 "Array dimensions unknown, must call array-dimension at runtime."))
403 (unless (> (length dims) axis)
404 (abort-transform "Array has dimensions ~S, ~D is too large."
405 dims axis))
406 (let ((dim (nth axis dims)))
407 (cond ((integerp dim)
408 dim)
409 ((= (length dims) 1)
410 (ecase (array-type-complexp array-type)
411 ((t)
412 '(%array-dimension array 0))
413 ((nil)
414 '(length array))
415 ((:maybe *)
416 (give-up "Can't tell if array is simple."))))
417 (t
418 '(%array-dimension array axis)))))))
419
420 ;;; LENGTH -- transform.
421 ;;;
422 ;;; If the length has been declared and it's simple, just return it.
423 ;;;
424 (deftransform length ((vector)
425 ((simple-array * (*))))
426 (let ((type (continuation-type vector)))
427 (unless (array-type-p type)
428 (give-up))
429 (let ((dims (array-type-dimensions type)))
430 (unless (and (listp dims) (integerp (car dims)))
431 (give-up "Vector length unknown, must call length at runtime."))
432 (car dims))))
433
434 ;;; LENGTH -- transform.
435 ;;;
436 ;;; All vectors can get their length by using vector-length. If it's simple,
437 ;;; it will extract the length slot from the vector. It it's complex, it will
438 ;;; extract the fill pointer slot from the array header.
439 ;;;
440 (deftransform length ((vector) (vector))
441 '(vector-length vector))
442
443
444 ;;; If a simple array with known dimensions, then vector-length is a
445 ;;; compile-time constant.
446 ;;;
447 (deftransform vector-length ((vector) ((simple-array * (*))))
448 (let ((vtype (continuation-type vector)))
449 (if (array-type-p vtype)
450 (let ((dim (first (array-type-dimensions vtype))))
451 (when (eq dim '*) (give-up))
452 dim)
453 (give-up))))
454
455
456 ;;; ARRAY-TOTAL-SIZE -- transform.
457 ;;;
458 ;;; Again, if we can tell the results from the type, just use it. Otherwise,
459 ;;; if we know the rank, convert into a computation based on array-dimension.
460 ;;; We can wrap a truly-the index around the multiplications because we know
461 ;;; that the total size must be an index.
462 ;;;
463 (deftransform array-total-size ((array)
464 (array))
465 (let ((array-type (continuation-type array)))
466 (unless (array-type-p array-type)
467 (give-up))
468 (let ((dims (array-type-dimensions array-type)))
469 (unless (listp dims)
470 (give-up "Can't tell the rank at compile time."))
471 (if (member '* dims)
472 (do ((form 1 `(truly-the index
473 (* (array-dimension array ,i) ,form)))
474 (i 0 (1+ i)))
475 ((= i (length dims)) form))
476 (reduce #'* dims)))))
477
478 ;;; ARRAY-HAS-FILL-POINTER-P -- transform.
479 ;;;
480 ;;; Only complex vectors have fill pointers.
481 ;;;
482 (deftransform array-has-fill-pointer-p ((array))
483 (let ((array-type (continuation-type array)))
484 (unless (array-type-p array-type)
485 (give-up))
486 (let ((dims (array-type-dimensions array-type)))
487 (if (and (listp dims) (not (= (length dims) 1)))
488 nil
489 (ecase (array-type-complexp array-type)
490 ((t)
491 t)
492 ((nil)
493 nil)
494 (:maybe
495 (give-up "Array type ambiguous; must call ~
496 array-has-fill-pointer-p at runtime.")))))))
497
498 ;;; %CHECK-BOUND -- transform.
499 ;;;
500 ;;; Primitive used to verify indicies into arrays. If we can tell at
501 ;;; compile-time or we are generating unsafe code, don't bother with the VOP.
502 ;;;
503 (deftransform %check-bound ((array dimension index))
504 (unless (constant-continuation-p dimension)
505 (give-up))
506 (let ((dim (continuation-value dimension)))
507 `(the (integer 0 (,dim)) index)))
508 ;;;
509 (deftransform %check-bound ((array dimension index) * *
510 :policy (and (> speed safety) (= safety 0)))
511 'index)
512
513
514 ;;; WITH-ROW-MAJOR-INDEX -- internal.
515 ;;;
516 ;;; Handy macro for computing the row-major index given a set of indices. We
517 ;;; wrap each index with a call to %check-bound to assure that everything
518 ;;; works out correctly. We can wrap all the interior arith with truly-the
519 ;;; index because we know the the resultant row-major index must be an index.
520 ;;;
521 (eval-when (compile eval)
522 ;;;
523 (defmacro with-row-major-index ((array indices index &optional new-value)
524 &rest body)
525 `(let (n-indices dims)
526 (dotimes (i (length ,indices))
527 (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
528 (push (make-symbol (format nil "DIM-~D" i)) dims))
529 (setf n-indices (nreverse n-indices))
530 (setf dims (nreverse dims))
531 `(lambda (,',array ,@n-indices ,@',(when new-value (list new-value)))
532 (let* (,@(let ((,index -1))
533 (mapcar #'(lambda (name)
534 `(,name (array-dimension ,',array
535 ,(incf ,index))))
536 dims))
537 (,',index
538 ,(if (null dims)
539 0
540 (do* ((dims dims (cdr dims))
541 (indices n-indices (cdr indices))
542 (last-dim nil (car dims))
543 (form `(%check-bound ,',array
544 ,(car dims)
545 ,(car indices))
546 `(truly-the index
547 (+ (truly-the index
548 (* ,form
549 ,last-dim))
550 (%check-bound
551 ,',array
552 ,(car dims)
553 ,(car indices))))))
554 ((null (cdr dims)) form)))))
555 ,',@body))))
556 ;;;
557 ); eval-when
558
559 ;;; ARRAY-ROW-MAJOR-INDEX -- transform.
560 ;;;
561 ;;; Just return the index after computing it.
562 ;;;
563 (deftransform array-row-major-index ((array &rest indices))
564 (with-row-major-index (array indices index)
565 index))
566
567
568
569 ;;;; Array accessors:
570
571 ;;; SVREF, %SVSET, SCHAR, %SCHARSET, CHAR,
572 ;;; %CHARSET, SBIT, %SBITSET, BIT, %BITSET
573 ;;; -- source transforms.
574 ;;;
575 ;;; We convert all typed array accessors into aref and %aset with type
576 ;;; assertions on the array.
577 ;;;
578 (macrolet ((frob (reffer setter type)
579 `(progn
580 (def-source-transform ,reffer (a &rest i)
581 (if (byte-compiling)
582 (values nil t)
583 `(aref (the ,',type ,a) ,@i)))
584 (def-source-transform ,setter (a &rest i)
585 (if (byte-compiling)
586 (values nil t)
587 `(%aset (the ,',type ,a) ,@i))))))
588 (frob sbit %sbitset (simple-array bit))
589 (frob bit %bitset (array bit)))
590
591 (macrolet ((frob (reffer setter type)
592 `(progn
593 (def-source-transform ,reffer (a i)
594 (if (byte-compiling)
595 (values nil t)
596 `(aref (the ,',type ,a) ,i)))
597 (def-source-transform ,setter (a i v)
598 (if (byte-compiling)
599 (values nil t)
600 `(%aset (the ,',type ,a) ,i ,v))))))
601 (frob svref %svset simple-vector)
602 (frob schar %scharset simple-string)
603 (frob char %charset string))
604
605 ;;; AREF, %ASET -- transform.
606 ;;;
607 ;;; Convert into a data-vector-ref (or set) with the set of indices replaced
608 ;;; with the an expression for the row major index.
609 ;;;
610 (deftransform aref ((array &rest indices))
611 (with-row-major-index (array indices index)
612 (data-vector-ref array index)))
613 ;;;
614 (deftransform %aset ((array &rest stuff))
615 (let ((indices (butlast stuff)))
616 (with-row-major-index (array indices index new-value)
617 (data-vector-set array index new-value))))
618
619 ;;; ROW-MAJOR-AREF, %SET-ROW-MAJOR-AREF -- transform.
620 ;;;
621 ;;; Just convert into a data-vector-ref (or set) after checking that the
622 ;;; index is inside the array total size.
623 ;;;
624 (deftransform row-major-aref ((array index))
625 `(data-vector-ref array (%check-bound array (array-total-size array) index)))
626 ;;;
627 (deftransform %set-row-major-aref ((array index new-value))
628 `(data-vector-set array
629 (%check-bound array (array-total-size array) index)
630 new-value))
631
632
633 ;;;; Bit-vector array operation canonicalization:
634 ;;;
635 ;;; We convert all bit-vector operations to have the result array specified.
636 ;;; This allows any result allocation to be open-coded, and eliminates the need
637 ;;; for any VM-dependent transforms to handle these cases.
638
639 (dolist (fun '(bit-and bit-ior bit-xor bit-eqv bit-nand bit-nor bit-andc1
640 bit-andc2 bit-orc1 bit-orc2))
641 ;;
642 ;; Make a result array if result is NIL or unsupplied.
643 (deftransform fun ((bit-array-1 bit-array-2 &optional result-bit-array)
644 '(bit-vector bit-vector &optional null) '*
645 :eval-name t :policy (>= speed space))
646 `(,fun bit-array-1 bit-array-2
647 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
648 ;;
649 ;; If result its T, make it the first arg.
650 (deftransform fun ((bit-array-1 bit-array-2 result-bit-array)
651 '(bit-vector bit-vector (member t)) '*
652 :eval-name t)
653 `(,fun bit-array-1 bit-array-2 bit-array-1)))
654
655 ;;; Similar for BIT-NOT, but there is only one arg...
656 ;;;
657 (deftransform bit-not ((bit-array-1 &optional result-bit-array)
658 (bit-vector &optional null) *
659 :policy (>= speed space))
660 '(bit-not bit-array-1
661 (make-array (length bit-array-1) :element-type 'bit)))
662 ;;;
663 (deftransform bit-not ((bit-array-1 result-bit-array)
664 (bit-vector (constant-argument t)))
665 '(bit-not bit-array-1 bit-array-1))
666
667
668 ;;; ARRAY-HEADER-P -- transform.
669 ;;;
670 ;;; Pick off some constant cases.
671 ;;;
672 (deftransform array-header-p ((array) (array))
673 (let ((type (continuation-type array)))
674 (declare (optimize (safety 3)))
675 (unless (array-type-p type)
676 (give-up))
677 (let ((dims (array-type-dimensions type)))
678 (cond ((csubtypep type (specifier-type '(simple-array * (*))))
679 ;; No array header.
680 nil)
681 ((and (listp dims) (> (length dims) 1))
682 ;; Multi-dimensional array, will have a header.
683 t)
684 (t
685 (give-up))))))

  ViewVC Help
Powered by ViewVC 1.1.5