/[cmucl]/src/compiler/array-tran.lisp
ViewVC logotype

Contents of /src/compiler/array-tran.lisp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.24 - (show annotations)
Fri Feb 13 16:09:48 1998 UTC (16 years, 2 months ago) by dtc
Branch: MAIN
Changes since 1.23: +4 -3 lines
ANSI CL compat. changes:
o Add an optional environment argument to constantp; ignored by CMUCL.
o Add the :element-type keyword to make-string.
1 ;;; -*- Package: C; Log: C.Log -*-
2 ;;;
3 ;;; **********************************************************************
4 ;;; This code was written as part of the CMU Common Lisp project at
5 ;;; Carnegie Mellon University, and has been placed in the public domain.
6 ;;;
7 (ext:file-comment
8 "$Header: /tiger/var/lib/cvsroots/cmucl/src/compiler/array-tran.lisp,v 1.24 1998/02/13 16:09:48 dtc Exp $")
9 ;;;
10 ;;; **********************************************************************
11 ;;;
12 ;;; This file contains array specific optimizers and transforms.
13 ;;;
14 ;;; Extracted from srctran and extended by William Lott.
15 ;;;
16 (in-package "C")
17
18
19 ;;;; Derive-Type Optimizers
20
21 ;;; ASSERT-ARRAY-RANK -- internal
22 ;;;
23 ;;; Array operations that use a specific number of indices implicitly assert
24 ;;; that the array is of that rank.
25 ;;;
26 (defun assert-array-rank (array rank)
27 (assert-continuation-type
28 array
29 (specifier-type `(array * ,(make-list rank :initial-element '*)))))
30
31 ;;; EXTRACT-ELEMENT-TYPE -- internal
32 ;;;
33 ;;; Array access functions return an object from the array, hence it's
34 ;;; type will be asserted to be array element type.
35 ;;;
36 (defun extract-element-type (array)
37 (let ((type (continuation-type array)))
38 (if (array-type-p type)
39 (array-type-element-type type)
40 *universal-type*)))
41
42 ;;; EXTRACT-UPGRADED-ELEMENT-TYPE -- internal
43 ;;;
44 ;;; Array access functions return an object from the array, hence it's
45 ;;; type is going to be the array upgraded element type.
46 ;;;
47 (defun extract-upgraded-element-type (array)
48 (let ((type (continuation-type array)))
49 (if (array-type-p type)
50 (array-type-specialized-element-type type)
51 *universal-type*)))
52
53 ;;; ASSERT-NEW-VALUE-TYPE -- internal
54 ;;;
55 ;;; The ``new-value'' for array setters must fit in the array, and the
56 ;;; return type is going to be the same as the new-value for setf functions.
57 ;;;
58 (defun assert-new-value-type (new-value array)
59 (let ((type (continuation-type array)))
60 (when (array-type-p type)
61 (assert-continuation-type new-value (array-type-element-type type))))
62 (continuation-type new-value))
63
64 ;;; Unsupplied-Or-NIL -- Internal
65 ;;;
66 ;;; Return true if Arg is NIL, or is a constant-continuation whose value is
67 ;;; NIL, false otherwise.
68 ;;;
69 (defun unsupplied-or-nil (arg)
70 (declare (type (or continuation null) arg))
71 (or (not arg)
72 (and (constant-continuation-p arg)
73 (not (continuation-value arg)))))
74
75
76 ;;; ARRAY-IN-BOUNDS-P -- derive-type optimizer.
77 ;;;
78 (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
79 (assert-array-rank array (length indices))
80 *universal-type*)
81
82 ;;; AREF -- derive-type optimizer.
83 ;;;
84 (defoptimizer (aref derive-type) ((array &rest indices) node)
85 (assert-array-rank array (length indices))
86 ;; If the node continuation has a single use then assert its type.
87 (let ((cont (node-cont node)))
88 (unless (rest (find-uses cont))
89 (assert-continuation-type cont (extract-element-type array))))
90 (extract-upgraded-element-type array))
91
92 ;;; %ASET -- derive-type optimizer.
93 ;;;
94 (defoptimizer (%aset derive-type) ((array &rest stuff))
95 (assert-array-rank array (1- (length stuff)))
96 (assert-new-value-type (car (last stuff)) array))
97
98 ;;; DATA-VECTOR-REF -- derive-type optimizer.
99 ;;;
100 (defoptimizer (data-vector-ref derive-type) ((array index))
101 (extract-upgraded-element-type array))
102
103 ;;; DATA-VECTOR-SET -- derive-type optimizer.
104 ;;;
105 (defoptimizer (data-vector-set derive-type) ((array index new-value))
106 (assert-new-value-type new-value array))
107
108 ;;; %WITH-ARRAY-DATA -- derive-type optimizer.
109 ;;;
110 ;;; Figure out the type of the data vector if we know the argument element
111 ;;; type.
112 ;;;
113 (defoptimizer (%with-array-data derive-type) ((array start end))
114 (let ((atype (continuation-type array)))
115 (when (array-type-p atype)
116 (values-specifier-type
117 `(values (simple-array ,(type-specifier
118 (array-type-element-type atype))
119 (*))
120 index index index)))))
121
122
123 ;;; ARRAY-ROW-MAJOR-INDEX -- derive-type optimizer.
124 ;;;
125 (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
126 (assert-array-rank array (length indices))
127 *universal-type*)
128
129 ;;; ROW-MAJOR-AREF -- derive-type optimizer.
130 ;;;
131 (defoptimizer (row-major-aref derive-type) ((array index))
132 (extract-upgraded-element-type array))
133
134 ;;; %SET-ROW-MAJOR-AREF -- derive-type optimizer.
135 ;;;
136 (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
137 (assert-new-value-type new-value array))
138
139 ;;; MAKE-ARRAY -- derive-type optimizer.
140 ;;;
141 (defoptimizer (make-array derive-type)
142 ((dims &key initial-element element-type initial-contents
143 adjustable fill-pointer displaced-index-offset displaced-to))
144 (let ((simple (and (unsupplied-or-nil adjustable)
145 (unsupplied-or-nil displaced-to)
146 (unsupplied-or-nil fill-pointer))))
147 (specifier-type
148 `(,(if simple 'simple-array 'array)
149 ,(cond ((not element-type) 't)
150 ((constant-continuation-p element-type)
151 (continuation-value element-type))
152 (t
153 '*))
154 ,(cond ((not simple)
155 '*)
156 ((constant-continuation-p dims)
157 (let ((val (continuation-value dims)))
158 (if (listp val) val (list val))))
159 ((csubtypep (continuation-type dims)
160 (specifier-type 'integer))
161 '(*))
162 (t
163 '*))))))
164
165
166 ;;;; Constructors.
167
168 ;;; VECTOR -- source-transform.
169 ;;;
170 ;;; Convert VECTOR into a make-array followed by setfs of all the elements.
171 ;;;
172 (def-source-transform vector (&rest elements)
173 (if (byte-compiling)
174 (values nil t)
175 (let ((len (length elements))
176 (n -1))
177 (once-only ((n-vec `(make-array ,len)))
178 `(progn
179 ,@(mapcar #'(lambda (el)
180 (once-only ((n-val el))
181 `(locally (declare (optimize (safety 0)))
182 (setf (svref ,n-vec ,(incf n))
183 ,n-val))))
184 elements)
185 ,n-vec)))))
186
187
188 ;;; MAKE-STRING -- source-transform.
189 ;;;
190 ;;; Just convert it into a make-array.
191 ;;;
192 (def-source-transform make-string (length &key (element-type ''base-char)
193 (initial-element #\NULL))
194 (if (byte-compiling)
195 (values nil t)
196 `(make-array (the index ,length)
197 :element-type ,element-type
198 :initial-element ,initial-element)))
199
200 (defconstant array-info
201 '((base-char #\NULL 8 vm:simple-string-type)
202 (single-float 0.0s0 32 vm:simple-array-single-float-type)
203 (double-float 0.0d0 64 vm:simple-array-double-float-type)
204 (bit 0 1 vm:simple-bit-vector-type)
205 ((unsigned-byte 2) 0 2 vm:simple-array-unsigned-byte-2-type)
206 ((unsigned-byte 4) 0 4 vm:simple-array-unsigned-byte-4-type)
207 ((unsigned-byte 8) 0 8 vm:simple-array-unsigned-byte-8-type)
208 ((unsigned-byte 16) 0 16 vm:simple-array-unsigned-byte-16-type)
209 ((unsigned-byte 32) 0 32 vm:simple-array-unsigned-byte-32-type)
210 #+signed-array ((signed-byte 8) 0 8 vm:simple-array-signed-byte-8-type)
211 #+signed-array ((signed-byte 16) 0 16 vm:simple-array-signed-byte-16-type)
212 #+signed-array ((signed-byte 30) 0 32 vm:simple-array-signed-byte-30-type)
213 #+signed-array ((signed-byte 32) 0 32 vm:simple-array-signed-byte-32-type)
214 #+complex-float ((complex single-float) #C(0.0s0 0.0s0) 64
215 vm:simple-array-complex-single-float-type)
216 #+complex-float ((complex double-float) #C(0.0d0 0.0d0) 128
217 vm:simple-array-complex-double-float-type)
218 (t 0 32 vm:simple-vector-type)))
219
220 ;;; MAKE-ARRAY -- source-transform.
221 ;;;
222 ;;; The integer type restriction on the length assures that it will be a
223 ;;; vector. The lack of adjustable, fill-pointer, and displaced-to keywords
224 ;;; assures that it will be simple.
225 ;;;
226 (deftransform make-array ((length &key initial-element element-type)
227 (integer &rest *))
228 (let* ((eltype (cond ((not element-type) t)
229 ((not (constant-continuation-p element-type))
230 (give-up "Element-Type is not constant."))
231 (t
232 (continuation-value element-type))))
233 (len (if (constant-continuation-p length)
234 (continuation-value length)
235 '*))
236 (spec `(simple-array ,eltype (,len)))
237 (eltype-type (specifier-type eltype)))
238 (multiple-value-bind
239 (default-initial-element element-size typecode)
240 (dolist (info array-info
241 (give-up "Cannot open-code creation of ~S" spec))
242 (when (csubtypep eltype-type (specifier-type (car info)))
243 (return (values-list (cdr info)))))
244 (let* ((nwords-form
245 (if (>= element-size vm:word-bits)
246 `(* length ,(/ element-size vm:word-bits))
247 (let ((elements-per-word (/ 32 element-size)))
248 `(truncate (+ length
249 ,(if (eq 'vm:simple-string-type typecode)
250 elements-per-word
251 (1- elements-per-word)))
252 ,elements-per-word))))
253 (constructor
254 `(truly-the ,spec
255 (allocate-vector ,typecode length ,nwords-form))))
256 (values
257 (cond ((and default-initial-element
258 (or (null initial-element)
259 (and (constant-continuation-p initial-element)
260 (eql (continuation-value initial-element)
261 default-initial-element))))
262 (unless (csubtypep (ctype-of default-initial-element)
263 eltype-type)
264 (compiler-note "Default initial element ~s is not a ~s."
265 default-initial-element eltype))
266 constructor)
267 (t
268 `(truly-the ,spec (fill ,constructor initial-element))))
269 '((declare (type index length))))))))
270
271 ;;; MAKE-ARRAY -- transform.
272 ;;;
273 ;;; The list type restriction does not assure that the result will be a
274 ;;; multi-dimensional array. But the lack of
275 ;;;
276 (deftransform make-array ((dims &key initial-element element-type)
277 (list &rest *))
278 (unless (or (null element-type) (constant-continuation-p element-type))
279 (give-up "Element-type not constant; cannot open code array creation"))
280 (unless (constant-continuation-p dims)
281 (give-up "Dimension list not constant; cannot open code array creation"))
282 (let ((dims (continuation-value dims)))
283 (unless (every #'integerp dims)
284 (give-up "Dimension list contains something other than an integer: ~S"
285 dims))
286 (if (= (length dims) 1)
287 `(make-array ',(car dims)
288 ,@(when initial-element
289 '(:initial-element initial-element))
290 ,@(when element-type
291 '(:element-type element-type)))
292 (let* ((total-size (reduce #'* dims))
293 (rank (length dims))
294 (spec `(simple-array
295 ,(cond ((null element-type) t)
296 ((constant-continuation-p element-type)
297 (continuation-value element-type))
298 (t '*))
299 ,(make-list rank :initial-element '*))))
300 `(let ((header (make-array-header vm:simple-array-type ,rank)))
301 (setf (%array-fill-pointer header) ,total-size)
302 (setf (%array-fill-pointer-p header) nil)
303 (setf (%array-available-elements header) ,total-size)
304 (setf (%array-data-vector header)
305 (make-array ,total-size
306 ,@(when element-type
307 '(:element-type element-type))
308 ,@(when initial-element
309 '(:initial-element initial-element))))
310 (setf (%array-displaced-p header) nil)
311 ,@(let ((axis -1))
312 (mapcar #'(lambda (dim)
313 `(setf (%array-dimension header ,(incf axis))
314 ,dim))
315 dims))
316 (truly-the ,spec header))))))
317
318
319 ;;;; Random properties of arrays.
320
321 ;;; Transforms for various random array properties. If the property is know
322 ;;; at compile time because of a type spec, use that constant value.
323
324 ;;; ARRAY-RANK -- transform.
325 ;;;
326 ;;; If we can tell the rank from the type info, use it instead.
327 ;;;
328 (deftransform array-rank ((array))
329 (let ((array-type (continuation-type array)))
330 (unless (array-type-p array-type)
331 (give-up))
332 (let ((dims (array-type-dimensions array-type)))
333 (if (not (listp dims))
334 (give-up "Array rank not known at compile time: ~S" dims)
335 (length dims)))))
336
337 ;;; ARRAY-DIMENSION -- transform.
338 ;;;
339 ;;; If we know the dimensions at compile time, just use it. Otherwise, if
340 ;;; we can tell that the axis is in bounds, convert to %array-dimension
341 ;;; (which just indirects the array header) or length (if it's simple and a
342 ;;; vector).
343 ;;;
344 (deftransform array-dimension ((array axis)
345 (array index))
346 (unless (constant-continuation-p axis)
347 (give-up "Axis not constant."))
348 (let ((array-type (continuation-type array))
349 (axis (continuation-value axis)))
350 (unless (array-type-p array-type)
351 (give-up))
352 (let ((dims (array-type-dimensions array-type)))
353 (unless (listp dims)
354 (give-up
355 "Array dimensions unknown, must call array-dimension at runtime."))
356 (unless (> (length dims) axis)
357 (abort-transform "Array has dimensions ~S, ~D is too large."
358 dims axis))
359 (let ((dim (nth axis dims)))
360 (cond ((integerp dim)
361 dim)
362 ((= (length dims) 1)
363 (ecase (array-type-complexp array-type)
364 ((t)
365 '(%array-dimension array 0))
366 ((nil)
367 '(length array))
368 (*
369 (give-up "Can't tell if array is simple."))))
370 (t
371 '(%array-dimension array axis)))))))
372
373 ;;; LENGTH -- transform.
374 ;;;
375 ;;; If the length has been declared and it's simple, just return it.
376 ;;;
377 (deftransform length ((vector)
378 ((simple-array * (*))))
379 (let ((type (continuation-type vector)))
380 (unless (array-type-p type)
381 (give-up))
382 (let ((dims (array-type-dimensions type)))
383 (unless (and (listp dims) (integerp (car dims)))
384 (give-up "Vector length unknown, must call length at runtime."))
385 (car dims))))
386
387 ;;; LENGTH -- transform.
388 ;;;
389 ;;; All vectors can get their length by using vector-length. If it's simple,
390 ;;; it will extract the length slot from the vector. It it's complex, it will
391 ;;; extract the fill pointer slot from the array header.
392 ;;;
393 (deftransform length ((vector) (vector))
394 '(vector-length vector))
395
396
397 ;;; If a simple array with known dimensions, then vector-length is a
398 ;;; compile-time constant.
399 ;;;
400 (deftransform vector-length ((vector) ((simple-array * (*))))
401 (let ((vtype (continuation-type vector)))
402 (if (array-type-p vtype)
403 (let ((dim (first (array-type-dimensions vtype))))
404 (when (eq dim '*) (give-up))
405 dim)
406 (give-up))))
407
408
409 ;;; ARRAY-TOTAL-SIZE -- transform.
410 ;;;
411 ;;; Again, if we can tell the results from the type, just use it. Otherwise,
412 ;;; if we know the rank, convert into a computation based on array-dimension.
413 ;;; We can wrap a truly-the index around the multiplications because we know
414 ;;; that the total size must be an index.
415 ;;;
416 (deftransform array-total-size ((array)
417 (array))
418 (let ((array-type (continuation-type array)))
419 (unless (array-type-p array-type)
420 (give-up))
421 (let ((dims (array-type-dimensions array-type)))
422 (unless (listp dims)
423 (give-up "Can't tell the rank at compile time."))
424 (if (member '* dims)
425 (do ((form 1 `(truly-the index
426 (* (array-dimension array ,i) ,form)))
427 (i 0 (1+ i)))
428 ((= i (length dims)) form))
429 (reduce #'* dims)))))
430
431 ;;; ARRAY-HAS-FILL-POINTER-P -- transform.
432 ;;;
433 ;;; Only complex vectors have fill pointers.
434 ;;;
435 (deftransform array-has-fill-pointer-p ((array))
436 (let ((array-type (continuation-type array)))
437 (unless (array-type-p array-type)
438 (give-up))
439 (let ((dims (array-type-dimensions array-type)))
440 (if (and (listp dims) (not (= (length dims) 1)))
441 nil
442 (ecase (array-type-complexp array-type)
443 ((t)
444 t)
445 ((nil)
446 nil)
447 (*
448 (give-up "Array type ambiguous; must call ~
449 array-has-fill-pointer-p at runtime.")))))))
450
451 ;;; %CHECK-BOUND -- transform.
452 ;;;
453 ;;; Primitive used to verify indicies into arrays. If we can tell at
454 ;;; compile-time or we are generating unsafe code, don't bother with the VOP.
455 ;;;
456 (deftransform %check-bound ((array dimension index))
457 (unless (constant-continuation-p dimension)
458 (give-up))
459 (let ((dim (continuation-value dimension)))
460 `(the (integer 0 ,dim) index)))
461 ;;;
462 (deftransform %check-bound ((array dimension index) * *
463 :policy (and (> speed safety) (= safety 0)))
464 'index)
465
466
467 ;;; WITH-ROW-MAJOR-INDEX -- internal.
468 ;;;
469 ;;; Handy macro for computing the row-major index given a set of indices. We
470 ;;; wrap each index with a call to %check-bound to assure that everything
471 ;;; works out correctly. We can wrap all the interior arith with truly-the
472 ;;; index because we know the the resultant row-major index must be an index.
473 ;;;
474 (eval-when (compile eval)
475 ;;;
476 (defmacro with-row-major-index ((array indices index &optional new-value)
477 &rest body)
478 `(let (n-indices dims)
479 (dotimes (i (length ,indices))
480 (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
481 (push (make-symbol (format nil "DIM-~D" i)) dims))
482 (setf n-indices (nreverse n-indices))
483 (setf dims (nreverse dims))
484 `(lambda (,',array ,@n-indices ,@',(when new-value (list new-value)))
485 (let* (,@(let ((,index -1))
486 (mapcar #'(lambda (name)
487 `(,name (array-dimension ,',array
488 ,(incf ,index))))
489 dims))
490 (,',index
491 ,(if (null dims)
492 0
493 (do* ((dims dims (cdr dims))
494 (indices n-indices (cdr indices))
495 (last-dim nil (car dims))
496 (form `(%check-bound ,',array
497 ,(car dims)
498 ,(car indices))
499 `(truly-the index
500 (+ (truly-the index
501 (* ,form
502 ,last-dim))
503 (%check-bound
504 ,',array
505 ,(car dims)
506 ,(car indices))))))
507 ((null (cdr dims)) form)))))
508 ,',@body))))
509 ;;;
510 ); eval-when
511
512 ;;; ARRAY-ROW-MAJOR-INDEX -- transform.
513 ;;;
514 ;;; Just return the index after computing it.
515 ;;;
516 (deftransform array-row-major-index ((array &rest indices))
517 (with-row-major-index (array indices index)
518 index))
519
520
521
522 ;;;; Array accessors:
523
524 ;;; SVREF, %SVSET, SCHAR, %SCHARSET, CHAR,
525 ;;; %CHARSET, SBIT, %SBITSET, BIT, %BITSET
526 ;;; -- source transforms.
527 ;;;
528 ;;; We convert all typed array accessors into aref and %aset with type
529 ;;; assertions on the array.
530 ;;;
531 (macrolet ((frob (reffer setter type)
532 `(progn
533 (def-source-transform ,reffer (a &rest i)
534 (if (byte-compiling)
535 (values nil t)
536 `(aref (the ,',type ,a) ,@i)))
537 (def-source-transform ,setter (a &rest i)
538 (if (byte-compiling)
539 (values nil t)
540 `(%aset (the ,',type ,a) ,@i))))))
541 (frob svref %svset simple-vector)
542 (frob schar %scharset simple-string)
543 (frob char %charset string)
544 (frob sbit %sbitset (simple-array bit))
545 (frob bit %bitset (array bit)))
546
547 ;;; AREF, %ASET -- transform.
548 ;;;
549 ;;; Convert into a data-vector-ref (or set) with the set of indices replaced
550 ;;; with the an expression for the row major index.
551 ;;;
552 (deftransform aref ((array &rest indices))
553 (with-row-major-index (array indices index)
554 (data-vector-ref array index)))
555 ;;;
556 (deftransform %aset ((array &rest stuff))
557 (let ((indices (butlast stuff)))
558 (with-row-major-index (array indices index new-value)
559 (data-vector-set array index new-value))))
560
561 ;;; ROW-MAJOR-AREF, %SET-ROW-MAJOR-AREF -- transform.
562 ;;;
563 ;;; Just convert into a data-vector-ref (or set) after checking that the
564 ;;; index is inside the array total size.
565 ;;;
566 (deftransform row-major-aref ((array index))
567 `(data-vector-ref array (%check-bound array (array-total-size array) index)))
568 ;;;
569 (deftransform %set-row-major-aref ((array index new-value))
570 `(data-vector-set array
571 (%check-bound array (array-total-size array) index)
572 new-value))
573
574
575 ;;;; Bit-vector array operation canonicalization:
576 ;;;
577 ;;; We convert all bit-vector operations to have the result array specified.
578 ;;; This allows any result allocation to be open-coded, and eliminates the need
579 ;;; for any VM-dependent transforms to handle these cases.
580
581 (dolist (fun '(bit-and bit-ior bit-xor bit-eqv bit-nand bit-nor bit-andc1
582 bit-andc2 bit-orc1 bit-orc2))
583 ;;
584 ;; Make a result array if result is NIL or unsupplied.
585 (deftransform fun ((bit-array-1 bit-array-2 &optional result-bit-array)
586 '(bit-vector bit-vector &optional null) '*
587 :eval-name t :policy (>= speed space))
588 `(,fun bit-array-1 bit-array-2
589 (make-array (length bit-array-1) :element-type 'bit)))
590 ;;
591 ;; If result its T, make it the first arg.
592 (deftransform fun ((bit-array-1 bit-array-2 result-bit-array)
593 '(bit-vector bit-vector (member t)) '*
594 :eval-name t)
595 `(,fun bit-array-1 bit-array-2 bit-array-1)))
596
597 ;;; Similar for BIT-NOT, but there is only one arg...
598 ;;;
599 (deftransform bit-not ((bit-array-1 &optional result-bit-array)
600 (bit-vector &optional null) *
601 :policy (>= speed space))
602 '(bit-not bit-array-1
603 (make-array (length bit-array-1) :element-type 'bit)))
604 ;;;
605 (deftransform bit-not ((bit-array-1 result-bit-array)
606 (bit-vector (constant-argument t)))
607 '(bit-not bit-array-1 bit-array-1))
608
609
610 ;;; ARRAY-HEADER-P -- transform.
611 ;;;
612 ;;; Pick off some constant cases.
613 ;;;
614 (deftransform array-header-p ((array) (array))
615 (let ((type (continuation-type array)))
616 (declare (optimize (safety 3)))
617 (unless (array-type-p type)
618 (give-up))
619 (let ((dims (array-type-dimensions type)))
620 (cond ((csubtypep type (specifier-type '(simple-array * (*))))
621 ;; No array header.
622 nil)
623 ((and (listp dims) (> (length dims) 1))
624 ;; Multi-dimensional array, will have a header.
625 t)
626 (t
627 (give-up))))))

  ViewVC Help
Powered by ViewVC 1.1.5