/[cmucl]/src/code/string.lisp
ViewVC logotype

Contents of /src/code/string.lisp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.29 - (show annotations)
Tue Oct 26 13:56:08 2010 UTC (3 years, 5 months ago) by rtoy
Branch: MAIN
CVS Tags: GIT-CONVERSION, cross-sol-x86-merged, cross-sol-x86-base, snapshot-2010-12, snapshot-2010-11, snapshot-2011-09, snapshot-2011-06, snapshot-2011-07, snapshot-2011-04, snapshot-2011-02, snapshot-2011-03, snapshot-2011-01, cross-sol-x86-2010-12-20, cross-sparc-branch-base, HEAD
Branch point for: cross-sparc-branch, cross-sol-x86-branch
Changes since 1.28: +2 -2 lines
Add trailing newline.
1 ;;; -*- Log: code.log; Package: Lisp -*-
2 ;;;
3 ;;; **********************************************************************
4 ;;; This code was written as part of the CMU Common Lisp project at
5 ;;; Carnegie Mellon University, and has been placed in the public domain.
6 ;;;
7 (ext:file-comment
8 "$Header: /tiger/var/lib/cvsroots/cmucl/src/code/string.lisp,v 1.29 2010/10/26 13:56:08 rtoy Exp $")
9 ;;;
10 ;;; **********************************************************************
11 ;;;
12 ;;; Functions to implement strings for CMU Common Lisp
13 ;;; Written by David Dill
14 ;;; Rewritten by Skef Wholey, Bill Chiles and Rob MacLachlan.
15 ;;;
16 ;;; ****************************************************************
17 ;;;
18 (in-package "LISP")
19 (intl:textdomain "cmucl")
20
21 (export '(char schar glyph sglyph string
22 string= string-equal string< string> string<= string>= string/=
23 string-lessp string-greaterp string-not-lessp string-not-greaterp
24 string-not-equal
25 string-to-nfc
26 make-string
27 string-trim string-left-trim string-right-trim
28 string-upcase
29 string-downcase string-capitalize nstring-upcase nstring-downcase
30 nstring-capitalize))
31
32 #+unicode
33 (export '(string-to-nfd string-to-nfkd string-to-nfkc))
34
35 (declaim (inline surrogatep surrogates-to-codepoint codepoint surrogates))
36
37 (defun surrogatep (char-or-code &optional surrogate-type)
38 "Test if C is a surrogate. C may be either an integer or a
39 character. Surrogate-type indicates what kind of surrogate to test
40 for. :High means to test for the high (leading) surrogate; :Low
41 tests for the low (trailing surrogate). A value of :Any or Nil
42 tests for any surrogate value (high or low)."
43 (declare (type (or character codepoint) char-or-code)
44 (type (or null (member :high :leading :low :trailing :any)) surrogate-type)
45 (optimize (inhibit-warnings 3)))
46 (let ((code (if (characterp char-or-code)
47 (char-code char-or-code)
48 char-or-code)))
49 (ecase surrogate-type
50 ((:high :leading)
51 ;; Test for high surrogate (#xD800 to #xDBFF)
52 (= #b110110 (ash code -10)))
53 ((:low :trailing)
54 ;; Test for low surrogate (#xDC00 to #xDFFF)
55 (= #b110111 (ash code -10)))
56 ((:any nil)
57 ;; Test for any surrogate (#xD800 to #xDFFF)
58 (= #b11011 (ash code -11))))))
59
60 (defun surrogates-to-codepoint (hi-surrogate-char lo-surrogate-char)
61 "Convert the given Hi and Lo surrogate characters to the
62 corresponding codepoint value"
63 (declare (type character hi-surrogate-char lo-surrogate-char))
64 (+ (ash (- (the (integer #xD800 #xDBFF) (char-code hi-surrogate-char)) #xD800) 10)
65 (the (integer #xDC00 #xDFFF) (char-code lo-surrogate-char)) #x2400))
66
67 (defun codepoint (string i &optional (end (length string)))
68 "Return the codepoint value from String at position I. If that
69 position is a surrogate, it is combined with either the previous or
70 following character (when possible) to compute the codepoint. The
71 second return value is NIL if the position is not a surrogate pair.
72 Otherwise +1 or -1 is returned if the position is the high or low
73 surrogate value, respectively."
74 (declare (type simple-string string) (type kernel:index i end))
75 (let ((code (char-code (schar string i))))
76 (cond ((and (surrogatep code :high) (< (1+ i) end))
77 (let ((tmp (char-code (schar string (1+ i)))))
78 (if (surrogatep tmp :low)
79 (values (truly-the codepoint (+ (ash (- code #xD800) 10) tmp #x2400))
80 +1)
81 (values (truly-the codepoint code) nil))))
82 ((and (surrogatep code :low) (> i 0))
83 (let ((tmp (char-code (schar string (1- i)))))
84 (if (surrogatep tmp :high)
85 (values (truly-the codepoint (+ (ash (- tmp #xD800) 10) code #x2400))
86 -1)
87 (values (truly-the codepoint code) nil))))
88 (t (values (truly-the codepoint code) nil)))))
89
90 (defun surrogates (codepoint)
91 "Return the high and low surrogate characters for Codepoint. If
92 Codepoint is in the BMP, the first return value is the corresponding
93 character and the second is NIL."
94 (declare (type codepoint codepoint))
95 (if (< codepoint #x10000)
96 (values (code-char codepoint) nil)
97 (let* ((tmp (- codepoint #x10000))
98 (hi (logior (ldb (byte 10 10) tmp) #xD800))
99 (lo (logior (ldb (byte 10 0) tmp) #xDC00)))
100 (values (code-char hi) (code-char lo)))))
101
102 (defun (setf codepoint) (codepoint string i)
103 "Set the codepoint at string position I to the Codepoint. If the
104 codepoint requires a surrogate pair, the high (leading surrogate) is
105 stored at position I and the low (trailing) surrogate is stored at
106 I+1"
107 (declare (type codepoint codepoint)
108 (type simple-string string))
109 (let ((widep nil))
110 (multiple-value-bind (hi lo)
111 (surrogates codepoint)
112 (setf (aref string i) hi)
113 (when lo
114 (setf (aref string (1+ i)) lo)
115 (setf widep t)))
116 (values codepoint widep)))
117
118 #+unicode
119 (defun utf16-string-p (string)
120 _N"Check if String is a valid UTF-16 string. If the string is valid,
121 T is returned. If the string is not valid, NIL is returned, and the
122 second value is the index into the string of the invalid character.
123 A string is also invalid if it contains any unassigned codepoints."
124 (do ((len (length string))
125 (index 0 (1+ index)))
126 ((>= index len)
127 t)
128 (multiple-value-bind (codepoint wide)
129 (codepoint string index)
130 ;; We step through the string in order. If there are any
131 ;; surrogates pairs, we must reach the lead surrogate first,
132 ;; which means WIDE is +1. Otherwise, we have an invalid
133 ;; surrogate pair. If we get any codepoint that is in the
134 ;; surrogate range, we also have an invalid string. An
135 ;; unassigned codepoint is also considered invalid.
136 (when (or (eq wide -1)
137 (surrogatep codepoint)
138 (not (unicode-assigned-codepoint-p codepoint)))
139 (return-from utf16-string-p (values nil index)))
140 (when wide (incf index)))))
141
142 (defun string (X)
143 "Coerces X into a string. If X is a string, X is returned. If X is a
144 symbol, X's pname is returned. If X is a character then a one element
145 string containing that character is returned. If X cannot be coerced
146 into a string, an error occurs."
147 (cond ((stringp x) x)
148 ((symbolp x) (symbol-name x))
149 ((characterp x)
150 (let ((res (make-string 1)))
151 (setf (schar res 0) x) res))
152 (t
153 (error 'simple-type-error
154 :datum x
155 :expected-type '(or string symbol character)
156 :format-control (intl:gettext "~S cannot be coerced to a string.")
157 :format-arguments (list x)))))
158
159 ;;; With-One-String is used to set up some string hacking things. The keywords
160 ;;; are parsed, and the string is hacked into a simple-string.
161
162 (eval-when (compile)
163
164 (defmacro with-one-string (string start end cum-offset &rest forms)
165 `(let ((,string (if (stringp ,string) ,string (string ,string))))
166 ;; Optimizer may prove STRING is one.
167 (declare (optimize (ext:inhibit-warnings 3)))
168 (with-array-data ((,string ,string :offset-var ,cum-offset)
169 (,start ,start)
170 (,end (or ,end (length (the vector ,string)))))
171 ,@forms)))
172
173 )
174
175 ;;; With-String is like With-One-String, but doesn't parse keywords.
176
177 (eval-when (compile)
178
179 (defmacro with-string (string &rest forms)
180 `(let ((,string (if (stringp ,string) ,string (string ,string))))
181 (with-array-data ((,string ,string)
182 (start)
183 (end (length (the vector ,string))))
184 ,@forms)))
185
186 )
187
188 ;;; With-Two-Strings is used to set up string comparison operations. The
189 ;;; keywords are parsed, and the strings are hacked into simple-strings.
190
191 (eval-when (compile)
192
193 (defmacro with-two-strings (string1 string2 start1 end1 cum-offset-1
194 start2 end2 &rest forms)
195 `(let ((,string1 (if (stringp ,string1) ,string1 (string ,string1)))
196 (,string2 (if (stringp ,string2) ,string2 (string ,string2))))
197 (with-array-data ((,string1 ,string1 :offset-var ,cum-offset-1)
198 (,start1 ,start1)
199 (,end1 (or ,end1 (length (the vector ,string1)))))
200 (with-array-data ((,string2 ,string2)
201 (,start2 ,start2)
202 (,end2 (or ,end2 (length (the vector ,string2)))))
203 ,@forms))))
204
205 )
206
207
208 (defun char (string index)
209 "Given a string and a non-negative integer index less than the length of
210 the string, returns the character object representing the character at
211 that position in the string."
212 (declare (optimize (safety 1)))
213 (char string index))
214
215 (defun %charset (string index new-el)
216 (declare (optimize (safety 1)))
217 (setf (char string index) new-el))
218
219 (defun schar (string index)
220 "SCHAR returns the character object at an indexed position in a string
221 just as CHAR does, except the string must be a simple-string."
222 (declare (optimize (safety 1)))
223 (schar string index))
224
225 (defun %scharset (string index new-el)
226 (declare (optimize (safety 1)))
227 (setf (schar string index) new-el))
228
229 (defun string=* (string1 string2 start1 end1 start2 end2)
230 (with-two-strings string1 string2 start1 end1 offset1 start2 end2
231 (not (%sp-string-compare string1 start1 end1 string2 start2 end2))))
232
233
234 (defun string/=* (string1 string2 start1 end1 start2 end2)
235 (with-two-strings string1 string2 start1 end1 offset1 start2 end2
236 (let ((comparison (%sp-string-compare string1 start1 end1
237 string2 start2 end2)))
238 (if comparison (- (the fixnum comparison) offset1)))))
239
240 (eval-when (compile eval)
241
242 ;;; Lessp is true if the desired expansion is for string<* or string<=*.
243 ;;; Equalp is true if the desired expansion is for string<=* or string>=*.
244 (defmacro string<>=*-body (lessp equalp)
245 (let ((offset1 (gensym)))
246 `(with-two-strings string1 string2 start1 end1 ,offset1 start2 end2
247 (let ((index (%sp-string-compare string1 start1 end1
248 string2 start2 end2)))
249 (if index
250 (cond ((= (the fixnum index) (the fixnum end1))
251 ,(if lessp
252 `(- (the fixnum index) ,offset1)
253 `nil))
254 ((= (+ (the fixnum index) (- start2 start1))
255 (the fixnum end2))
256 ,(if lessp
257 `nil
258 `(- (the fixnum index) ,offset1)))
259 #-unicode
260 ((,(if lessp 'char< 'char>)
261 (schar string1 index)
262 (schar string2 (+ (the fixnum index) (- start2 start1))))
263 (- (the fixnum index) ,offset1))
264 #-unicode
265 (t nil)
266 #+unicode
267 (t
268 ;; Compare in code point order. See
269 ;; http://icu-project.org/docs/papers/utf16_code_point_order.html
270 (flet ((fixup (code)
271 (if (>= code #xe000)
272 (- code #x800)
273 (+ code #x2000))))
274 (declare (inline fixup))
275 (let* ((c1 (char-code (schar string1 index)))
276 (c2 (char-code (schar string2
277 (+ (the fixnum index)
278 (- start2 start1))))))
279 (cond ((and (>= c1 #xd800)
280 (>= c2 #xd800))
281 (let ((fix-c1 (fixup c1))
282 (fix-c2 (fixup c2)))
283 (if (,(if lessp '< '>) fix-c1 fix-c2)
284 (- (the fixnum index) ,offset1)
285 nil)))
286 (t
287 (if (,(if lessp '< '>) c1 c2)
288 (- (the fixnum index) ,offset1)
289 nil)))))))
290 ,(if equalp `(- (the fixnum end1) ,offset1) 'nil))))))
291 ) ; eval-when
292
293 (defun string<* (string1 string2 start1 end1 start2 end2)
294 (declare (fixnum start1 start2))
295 (string<>=*-body t nil))
296
297 (defun string>* (string1 string2 start1 end1 start2 end2)
298 (declare (fixnum start1 start2))
299 (string<>=*-body nil nil))
300
301 (defun string<=* (string1 string2 start1 end1 start2 end2)
302 (declare (fixnum start1 start2))
303 (string<>=*-body t t))
304
305 (defun string>=* (string1 string2 start1 end1 start2 end2)
306 (declare (fixnum start1 start2))
307 (string<>=*-body nil t))
308
309
310
311 (defun string< (string1 string2 &key (start1 0) end1 (start2 0) end2)
312 "Given two strings, if the first string is lexicographically less than
313 the second string, returns the longest common prefix (using char=)
314 of the two strings. Otherwise, returns ()."
315 (string<* string1 string2 start1 end1 start2 end2))
316
317 (defun string> (string1 string2 &key (start1 0) end1 (start2 0) end2)
318 "Given two strings, if the first string is lexicographically greater than
319 the second string, returns the longest common prefix (using char=)
320 of the two strings. Otherwise, returns ()."
321 (string>* string1 string2 start1 end1 start2 end2))
322
323
324 (defun string<= (string1 string2 &key (start1 0) end1 (start2 0) end2)
325 "Given two strings, if the first string is lexicographically less than
326 or equal to the second string, returns the longest common prefix
327 (using char=) of the two strings. Otherwise, returns ()."
328 (string<=* string1 string2 start1 end1 start2 end2))
329
330 (defun string>= (string1 string2 &key (start1 0) end1 (start2 0) end2)
331 "Given two strings, if the first string is lexicographically greater
332 than or equal to the second string, returns the longest common prefix
333 (using char=) of the two strings. Otherwise, returns ()."
334 (string>=* string1 string2 start1 end1 start2 end2))
335
336 (defun string= (string1 string2 &key (start1 0) end1 (start2 0) end2)
337 "Given two strings (string1 and string2), and optional integers start1,
338 start2, end1 and end2, compares characters in string1 to characters in
339 string2 (using char=)."
340 (string=* string1 string2 start1 end1 start2 end2))
341
342 (defun string/= (string1 string2 &key (start1 0) end1 (start2 0) end2)
343 "Given two strings, if the first string is not lexicographically equal
344 to the second string, returns the longest common prefix (using char=)
345 of the two strings. Otherwise, returns ()."
346 (string/=* string1 string2 start1 end1 start2 end2))
347
348
349 (eval-when (compile eval)
350
351 ;;; STRING-NOT-EQUAL-LOOP is used to generate character comparison loops for
352 ;;; STRING-EQUAL and STRING-NOT-EQUAL.
353 (defmacro string-not-equal-loop (end end-value
354 &optional (abort-value nil abortp))
355 (declare (fixnum end))
356 (let ((end-test (if (= end 1)
357 `(= index1 (the fixnum end1))
358 `(= index2 (the fixnum end2)))))
359 `(do ((index1 start1 (1+ index1))
360 (index2 start2 (1+ index2)))
361 (,(if abortp
362 end-test
363 `(or ,end-test
364 (not (char-equal (schar string1 index1)
365 (schar string2 index2)))))
366 ,end-value)
367 (declare (fixnum index1 index2))
368 ,@(if abortp
369 `((if (not (char-equal (schar string1 index1)
370 (schar string2 index2)))
371 (return ,abort-value)))))))
372 ) ; eval-when
373
374 #+unicode
375 (defun string-case-fold (string &key (start 0) end (casing :simple))
376 _N"Return a new string with the case folded according to Casing as follows:
377
378 :SIMPLE Unicode simple case folding (preserving length)
379 :FULL Unicode full case folding (possibly changing length)
380
381 Default Casing is :SIMPLE."
382 (ecase casing
383 (:simple
384 (with-output-to-string (s)
385 (with-one-string string start end offset
386 (do ((index offset (1+ index)))
387 ((>= index end))
388 (multiple-value-bind (code widep)
389 (codepoint string index)
390 (when widep (incf index))
391 (multiple-value-bind (hi lo)
392 (surrogates (unicode-case-fold-simple code))
393 (write-char hi s)
394 (when lo (write-char lo s))))))))
395 (:full
396 (with-output-to-string (s)
397 (with-one-string string start end offset
398 (do ((index offset (1+ index)))
399 ((>= index end))
400 (multiple-value-bind (code widep)
401 (codepoint string index)
402 (when widep (incf index))
403 (write-string (unicode-case-fold-full code) s))))))))
404
405 (defun string-equal (string1 string2 &key (start1 0) end1 (start2 0) end2)
406 "Given two strings (string1 and string2), and optional integers start1,
407 start2, end1 and end2, compares characters in string1 to characters in
408 string2 (using char-equal)."
409 (declare (fixnum start1 start2))
410 (with-two-strings string1 string2 start1 end1 offset1 start2 end2
411 (let ((slen1 (- (the fixnum end1) start1))
412 (slen2 (- (the fixnum end2) start2)))
413 (declare (fixnum slen1 slen2))
414 (if (or (minusp slen1) (minusp slen2))
415 ;;prevent endless looping later.
416 (error (intl:gettext "Improper bounds for string comparison.")))
417 (if (= slen1 slen2)
418 ;;return () immediately if lengths aren't equal.
419 (string-not-equal-loop 1 t nil)))))
420
421 (defun string-not-equal (string1 string2 &key (start1 0) end1 (start2 0) end2)
422 "Given two strings, if the first string is not lexicographically equal
423 to the second string, returns the longest common prefix (using char-equal)
424 of the two strings. Otherwise, returns ()."
425 (with-two-strings string1 string2 start1 end1 offset1 start2 end2
426 (let ((slen1 (- end1 start1))
427 (slen2 (- end2 start2)))
428 (declare (fixnum slen1 slen2))
429 (if (or (minusp slen1) (minusp slen2))
430 ;;prevent endless looping later.
431 (error (intl:gettext "Improper bounds for string comparison.")))
432 (cond ((or (minusp slen1) (or (minusp slen2)))
433 (error (intl:gettext "Improper substring for comparison.")))
434 ((= slen1 slen2)
435 (string-not-equal-loop 1 nil (- index1 offset1)))
436 ((< slen1 slen2)
437 (string-not-equal-loop 1 (- index1 offset1)))
438 (t
439 (string-not-equal-loop 2 (- index1 offset1)))))))
440
441
442
443 (eval-when (compile eval)
444
445 ;;; STRING-LESS-GREATER-EQUAL-TESTS returns a test on the lengths of string1
446 ;;; and string2 and a test on the current characters from string1 and string2
447 ;;; for the following macro.
448 (defun string-less-greater-equal-tests (lessp equalp)
449 (if lessp
450 (if equalp
451 ;; STRING-NOT-GREATERP
452 (values '<=
453 #-unicode `(not (char-greaterp char1 char2))
454 #+unicode `(<= char1 char2))
455 ;; STRING-LESSP
456 (values '<
457 #-unicode `(char-lessp char1 char2)
458 #+unicode `(< char1 char2)))
459 (if equalp
460 ;; STRING-NOT-LESSP
461 (values '>=
462 #-unicode `(not (char-lessp char1 char2))
463 #+unicode `(>= char1 char2))
464 ;; STRING-GREATERP
465 (values '>
466 #-unicode `(char-greaterp char1 char2)
467 #+unicode `(> char1 char2)))))
468
469 #-unicode
470 (defmacro string-less-greater-equal (lessp equalp)
471 (multiple-value-bind (length-test character-test)
472 (string-less-greater-equal-tests lessp equalp)
473 `(with-two-strings string1 string2 start1 end1 offset1 start2 end2
474 (let ((slen1 (- (the fixnum end1) start1))
475 (slen2 (- (the fixnum end2) start2)))
476 (declare (fixnum slen1 slen2))
477 (if (or (minusp slen1) (minusp slen2))
478 ;;prevent endless looping later.
479 (error (intl:gettext "Improper bounds for string comparison.")))
480 (do ((index1 start1 (1+ index1))
481 (index2 start2 (1+ index2))
482 (char1)
483 (char2))
484 ((or (= index1 (the fixnum end1)) (= index2 (the fixnum end2)))
485 (if (,length-test slen1 slen2) (- index1 offset1)))
486 (declare (fixnum index1 index2))
487 (setq char1 (schar string1 index1))
488 (setq char2 (schar string2 index2))
489 (if (not (char-equal char1 char2))
490 (if ,character-test
491 (return (- index1 offset1))
492 (return ()))))))))
493
494 ;; Convert to lowercase for case folding, to match what Unicode
495 ;; CaseFolding.txt says. An example where this matters: U+1E9E maps
496 ;; to U+00DF. But the uppercase version of U+00DF is U+00DF.
497 #+unicode
498 (defmacro equal-char-codepoint (codepoint)
499 `(let ((ch ,codepoint))
500 ;; Handle ASCII separately for bootstrapping and for unidata missing.
501 (if (< 64 ch 91)
502 (+ ch 32)
503 #-(and unicode (not unicode-bootstrap))
504 ch
505 #+(and unicode (not unicode-bootstrap))
506 (if (> ch 127) (unicode-lower ch) ch))))
507
508 #+unicode
509 (defmacro string-less-greater-equal (lessp equalp)
510 (multiple-value-bind (length-test character-test)
511 (string-less-greater-equal-tests lessp equalp)
512 `(with-two-strings string1 string2 start1 end1 offset1 start2 end2
513 (let ((slen1 (- (the fixnum end1) start1))
514 (slen2 (- (the fixnum end2) start2)))
515 (declare (fixnum slen1 slen2))
516 (if (or (minusp slen1) (minusp slen2))
517 ;;prevent endless looping later.
518 (error (intl:gettext "Improper bounds for string comparison.")))
519 (do ((index1 start1 (1+ index1))
520 (index2 start2 (1+ index2)))
521 ((or (= index1 (the fixnum end1)) (= index2 (the fixnum end2)))
522 (if (,length-test slen1 slen2) (- index1 offset1)))
523 (declare (fixnum index1 index2))
524 (multiple-value-bind (char1 wide1)
525 (codepoint string1 index1)
526 (declare (type codepoint char1))
527 (multiple-value-bind (char2 wide2)
528 (codepoint string2 index2)
529 (declare (type codepoint char2))
530 (setf char1 (equal-char-codepoint char1))
531 (setf char2 (equal-char-codepoint char2))
532 (if (= char1 char2)
533 (progn
534 (when wide1 (incf index1))
535 (when wide2 (incf index2)))
536 (if ,character-test
537 (return (- index1 offset1))
538 (return ()))))))))))
539
540 ) ; eval-when
541
542 (defun string-lessp* (string1 string2 start1 end1 start2 end2)
543 (declare (fixnum start1 start2))
544 (string-less-greater-equal t nil))
545
546 (defun string-greaterp* (string1 string2 start1 end1 start2 end2)
547 (declare (fixnum start1 start2))
548 (string-less-greater-equal nil nil))
549
550 (defun string-not-lessp* (string1 string2 start1 end1 start2 end2)
551 (declare (fixnum start1 start2))
552 (string-less-greater-equal nil t))
553
554 (defun string-not-greaterp* (string1 string2 start1 end1 start2 end2)
555 (declare (fixnum start1 start2))
556 (string-less-greater-equal t t))
557
558 (defun string-lessp (string1 string2 &key (start1 0) end1 (start2 0) end2)
559 "Given two strings, if the first string is lexicographically less than
560 the second string, returns the longest common prefix (using char-equal)
561 of the two strings. Otherwise, returns ()."
562 (string-lessp* string1 string2 start1 end1 start2 end2))
563
564 (defun string-greaterp (string1 string2 &key (start1 0) end1 (start2 0) end2)
565 "Given two strings, if the first string is lexicographically greater than
566 the second string, returns the longest common prefix (using char-equal)
567 of the two strings. Otherwise, returns ()."
568 (string-greaterp* string1 string2 start1 end1 start2 end2))
569
570 (defun string-not-lessp (string1 string2 &key (start1 0) end1 (start2 0) end2)
571 "Given two strings, if the first string is lexicographically greater
572 than or equal to the second string, returns the longest common prefix
573 (using char-equal) of the two strings. Otherwise, returns ()."
574 (string-not-lessp* string1 string2 start1 end1 start2 end2))
575
576 (defun string-not-greaterp (string1 string2 &key (start1 0) end1 (start2 0)
577 end2)
578 "Given two strings, if the first string is lexicographically less than
579 or equal to the second string, returns the longest common prefix
580 (using char-equal) of the two strings. Otherwise, returns ()."
581 (string-not-greaterp* string1 string2 start1 end1 start2 end2))
582
583
584 (defun make-string (count &key element-type ((:initial-element fill-char)))
585 "Given a character count and an optional fill character, makes and returns
586 a new string Count long filled with the fill character."
587 (declare (type fixnum count))
588 (assert (subtypep element-type 'character))
589 (if fill-char
590 (do ((i 0 (1+ i))
591 (string (make-string count)))
592 ((= i count) string)
593 (declare (fixnum i))
594 (setf (schar string i) fill-char))
595 (make-string count)))
596
597 (defun string-upcase-simple (string &key (start 0) end)
598 (declare (fixnum start))
599 (let* ((string (if (stringp string) string (string string)))
600 (slen (length string)))
601 (declare (fixnum slen))
602 (with-one-string string start end offset
603 (let ((offset-slen (+ slen offset))
604 (newstring (make-string slen)))
605 (declare (fixnum offset-slen))
606 (do ((index offset (1+ index))
607 (new-index 0 (1+ new-index)))
608 ((= index start))
609 (declare (fixnum index new-index))
610 (setf (schar newstring new-index) (schar string index)))
611 (do ((index start (1+ index))
612 (new-index (- start offset) (1+ new-index)))
613 ((= index (the fixnum end)))
614 (declare (fixnum index new-index))
615 (multiple-value-bind (code wide) (codepoint string index)
616 (when wide (incf index))
617 ;; Handle ASCII specially because this is called early in
618 ;; initialization, before unidata is available.
619 (cond ((< 96 code 123) (decf code 32))
620 #+unicode
621 ((> code 127) (setq code (unicode-upper code))))
622 ;;@@ WARNING: this may, in theory, need to extend newstring
623 ;; but that never actually occurs as of Unicode 5.1.0,
624 ;; so I'm just going to ignore it for now...
625 (multiple-value-bind (hi lo) (surrogates code)
626 (setf (schar newstring new-index) hi)
627 (when lo
628 (setf (schar newstring (incf new-index)) lo)))))
629 ;;@@ WARNING: see above
630 (do ((index end (1+ index))
631 (new-index (- (the fixnum end) offset) (1+ new-index)))
632 ((= index offset-slen))
633 (declare (fixnum index new-index))
634 (setf (schar newstring new-index) (schar string index)))
635 newstring))))
636
637 #+unicode
638 (defun string-upcase-full (string &key (start 0) end)
639 (declare (fixnum start))
640 (let* ((string (if (stringp string) string (string string)))
641 (slen (length string)))
642 (declare (fixnum slen))
643 (with-output-to-string (s)
644 (with-one-string string start end offset
645 (let ((offset-slen (+ slen offset)))
646 (declare (fixnum offset-slen))
647 (write-string string s :start offset :end start)
648 (do ((index start (1+ index)))
649 ((= index (the fixnum end)))
650 (declare (fixnum index))
651 (multiple-value-bind (code wide)
652 (codepoint string index)
653 (when wide (incf index))
654 ;; Handle ASCII specially because this is called early in
655 ;; initialization, before unidata is available.
656 (cond ((< 96 code 123)
657 (write-char (code-char (decf code 32)) s))
658 ((> code 127)
659 (write-string (unicode-full-case-upper code) s))
660 (t
661 (multiple-value-bind (hi lo)
662 (surrogates code)
663 (write-char hi s)
664 (when lo
665 (write-char lo s)))))))
666 (write-string string s :start end :end offset-slen))))))
667
668 (defun string-upcase (string &key (start 0) end #+unicode (casing :simple))
669 #-unicode
670 _N"Given a string, returns a new string that is a copy of it with all
671 lower case alphabetic characters converted to uppercase."
672 #+unicode
673 _N"Given a string, returns a new string that is a copy of it with all
674 lower case alphabetic characters converted to uppercase. Casing is
675 :simple or :full for simple or full case conversion, respectively."
676 (declare (fixnum start))
677 #-unicode
678 (string-upcase-simple string :start start :end end)
679 #+unicode
680 (if (eq casing :simple)
681 (string-upcase-simple string :start start :end end)
682 (string-upcase-full string :start start :end end)))
683
684 (defun string-downcase-simple (string &key (start 0) end)
685 (declare (fixnum start))
686 (let* ((string (if (stringp string) string (string string)))
687 (slen (length string)))
688 (declare (fixnum slen))
689 (with-one-string string start end offset
690 (let ((offset-slen (+ slen offset))
691 (newstring (make-string slen)))
692 (declare (fixnum offset-slen))
693 (do ((index offset (1+ index))
694 (new-index 0 (1+ new-index)))
695 ((= index start))
696 (declare (fixnum index new-index))
697 (setf (schar newstring new-index) (schar string index)))
698 (do ((index start (1+ index))
699 (new-index (- start offset) (1+ new-index)))
700 ((= index (the fixnum end)))
701 (declare (fixnum index new-index))
702 (multiple-value-bind (code wide) (codepoint string index)
703 (when wide (incf index))
704 ;; Handle ASCII specially because this is called early in
705 ;; initialization, before unidata is available.
706 (cond ((< 64 code 91) (incf code 32))
707 ((> code 127) (setq code (unicode-lower code))))
708 ;;@@ WARNING: this may, in theory, need to extend newstring
709 ;; but that never actually occurs as of Unicode 5.1.0,
710 ;; so I'm just going to ignore it for now...
711 (multiple-value-bind (hi lo) (surrogates code)
712 (setf (schar newstring new-index) hi)
713 (when lo
714 (setf (schar newstring (incf new-index)) lo)))))
715 ;;@@ WARNING: see above
716 (do ((index end (1+ index))
717 (new-index (- (the fixnum end) offset) (1+ new-index)))
718 ((= index offset-slen))
719 (declare (fixnum index new-index))
720 (setf (schar newstring new-index) (schar string index)))
721 newstring))))
722
723 #+unicode
724 (defun string-downcase-full (string &key (start 0) end)
725 (declare (fixnum start))
726 (let* ((string (if (stringp string) string (string string)))
727 (slen (length string)))
728 (declare (fixnum slen))
729 (with-output-to-string (s)
730 (with-one-string string start end offset
731 (let ((offset-slen (+ slen offset)))
732 (declare (fixnum offset-slen))
733 (write-string string s :start offset :end start)
734 (do ((index start (1+ index)))
735 ((= index (the fixnum end)))
736 (declare (fixnum index))
737 (multiple-value-bind (code wide)
738 (codepoint string index)
739 (when wide (incf index))
740 ;; Handle ASCII specially because this is called early in
741 ;; initialization, before unidata is available.
742 (cond ((< 64 code 91)
743 (write-char (code-char (incf code 32)) s))
744 ((> code 127)
745 (write-string (unicode-full-case-lower code) s))
746 (t
747 (multiple-value-bind (hi lo)
748 (surrogates code)
749 (write-char hi s)
750 (when lo
751 (write-char lo s)))))))
752 (write-string string s :start end :end offset-slen))))))
753
754 (defun string-downcase (string &key (start 0) end #+unicode (casing :simple))
755 #-unicode
756 _N"Given a string, returns a new string that is a copy of it with all
757 upper case alphabetic characters converted to lowercase."
758 #+unicode
759 _N"Given a string, returns a new string that is a copy of it with all
760 upper case alphabetic characters converted to lowercase. Casing is
761 :simple or :full for simple or full case conversion, respectively."
762 (declare (fixnum start))
763 #-unicode
764 (string-downcase-simple string :start start :end end)
765 #+unicode
766 (if (eq casing :simple)
767 (string-downcase-simple string :start start :end end)
768 (string-downcase-full string :start start :end end)))
769
770 (defun string-capitalize-simple (string &key (start 0) end)
771 (declare (fixnum start))
772 (let* ((string (if (stringp string) string (string string)))
773 (slen (length string)))
774 (declare (fixnum slen))
775 (with-one-string string start end offset
776 (let ((offset-slen (+ slen offset))
777 (newstring (make-string slen)))
778 (declare (fixnum offset-slen))
779 (do ((index offset (1+ index))
780 (new-index 0 (1+ new-index)))
781 ((= index start))
782 (declare (fixnum index new-index))
783 (setf (schar newstring new-index) (schar string index)))
784 (do ((index start (1+ index))
785 (new-index (- start offset) (1+ new-index))
786 (newword t)
787 (char ()))
788 ((= index (the fixnum end)))
789 (declare (fixnum index new-index))
790 (setq char (schar string index))
791 (cond ((not (alphanumericp char))
792 (setq newword t))
793 (newword
794 ;;char is first case-modifiable after non-case-modifiable
795 (setq char (char-titlecase char))
796 (setq newword ()))
797 ;;char is case-modifiable, but not first
798 (t (setq char (char-downcase char))))
799 (setf (schar newstring new-index) char))
800 (do ((index end (1+ index))
801 (new-index (- (the fixnum end) offset) (1+ new-index)))
802 ((= index offset-slen))
803 (declare (fixnum index new-index))
804 (setf (schar newstring new-index) (schar string index)))
805 newstring))))
806
807 #+unicode
808 (defun string-capitalize-full (string &key (start 0) end)
809 (declare (fixnum start))
810 (let* ((string (if (stringp string) string (string string)))
811 (slen (length string)))
812 (declare (fixnum slen))
813 (with-output-to-string (s)
814 (with-one-string string start end offset
815 (let ((offset-slen (+ slen offset)))
816 (declare (fixnum offset-slen))
817 (write-string string s :start offset :end start)
818 (flet ((alphanump (m)
819 (or (< 47 m 58) (< 64 m 91) (< 96 m 123)
820 #+(and unicode (not unicode-bootstrap))
821 (and (> m 127)
822 (<= +unicode-category-letter+ (unicode-category m)
823 (+ +unicode-category-letter+ #x0F))))))
824 (do ((index start (1+ index))
825 (newword t))
826 ((= index (the fixnum end)))
827 (declare (fixnum index))
828 (multiple-value-bind (code wide)
829 (codepoint string index)
830 (when wide (incf index))
831 (cond ((not (alphanump code))
832 (multiple-value-bind (hi lo)
833 (surrogates code)
834 (write-char hi s)
835 (when lo (write-char lo s)))
836 (setq newword t))
837 (newword
838 ;;char is first case-modifiable after non-case-modifiable
839 (write-string (unicode-full-case-title code) s)
840 (setq newword ()))
841 ;;char is case-modifiable, but not first
842 (t
843 (write-string (unicode-full-case-lower code) s))))))
844 (write-string string s :start end :end offset-slen))))))
845
846 (defun string-capitalize (string &key (start 0) end
847 #+unicode (casing :simple)
848 #+unicode unicode-word-break)
849 #-unicode
850 _N"Given a string, returns a copy of the string with the first
851 character of each ``word'' converted to upper-case, and remaining
852 chars in the word converted to lower case. A ``word'' is defined
853 to be a string of case-modifiable characters delimited by
854 non-case-modifiable chars."
855 #+unicode
856 _N"Given a string, returns a copy of the string with the first
857 character of each ``word'' converted to upper-case, and remaining
858 chars in the word converted to lower case. A ``word'' is defined
859 to be a string of case-modifiable characters delimited by
860 non-case-modifiable chars. Casing is :simple or :full for
861 simple or full case conversion, respectively."
862
863 (declare (fixnum start))
864 #-unicode
865 (string-capitalize-simple string :start start :end end)
866 #+unicode
867 (if unicode-word-break
868 (string-capitalize-unicode string :start start :end end :casing casing)
869 (if (eq casing :simple)
870 (string-capitalize-simple string :start start :end end)
871 (string-capitalize-full string :start start :end end))))
872
873 (defun nstring-upcase (string &key (start 0) end)
874 "Given a string, returns that string with all lower case alphabetic
875 characters converted to uppercase."
876 (declare (fixnum start))
877 (let ((save-header string))
878 (with-one-string string start end offset
879 (do ((index start (1+ index)))
880 ((= index (the fixnum end)))
881 (declare (fixnum index))
882 (multiple-value-bind (code wide) (codepoint string index)
883 (declare (ignore wide))
884 ;; Handle ASCII specially because this is called early in
885 ;; initialization, before unidata is available.
886 (cond ((< 96 code 123) (decf code 32))
887 #+unicode
888 ((> code 127) (setq code (unicode-upper code))))
889 ;;@@ WARNING: this may, in theory, need to extend string
890 ;; (which, obviously, we can't do here. Unless
891 ;; STRING is adjustable, maybe)
892 ;; but that never actually occurs as of Unicode 5.1.0,
893 ;; so I'm just going to ignore it for now...
894 (multiple-value-bind (hi lo) (surrogates code)
895 (setf (schar string index) hi)
896 (when lo
897 (setf (schar string (incf index)) lo))))))
898 save-header))
899
900 (defun nstring-downcase (string &key (start 0) end)
901 "Given a string, returns that string with all upper case alphabetic
902 characters converted to lowercase."
903 (declare (fixnum start))
904 (let ((save-header string))
905 (with-one-string string start end offset
906 (do ((index start (1+ index)))
907 ((= index (the fixnum end)))
908 (declare (fixnum index))
909 (multiple-value-bind (code wide) (codepoint string index)
910 (declare (ignore wide))
911 (cond ((< 64 code 91) (incf code 32))
912 #+unicode
913 ((> code 127) (setq code (unicode-lower code))))
914 ;;@@ WARNING: this may, in theory, need to extend string
915 ;; (which, obviously, we can't do here. Unless
916 ;; STRING is adjustable, maybe)
917 ;; but that never actually occurs as of Unicode 5.1.0,
918 ;; so I'm just going to ignore it for now...
919 (multiple-value-bind (hi lo) (surrogates code)
920 (setf (schar string index) hi)
921 (when lo
922 (setf (schar string (incf index)) lo))))))
923 save-header))
924
925 (defun nstring-capitalize (string &key (start 0) end)
926 "Given a string, returns that string with the first
927 character of each ``word'' converted to upper-case, and remaining
928 chars in the word converted to lower case. A ``word'' is defined
929 to be a string of case-modifiable characters delimited by
930 non-case-modifiable chars."
931 (declare (fixnum start))
932 (let ((save-header string))
933 (with-one-string string start end offset
934 (do ((index start (1+ index))
935 (newword t)
936 (char ()))
937 ((= index (the fixnum end)))
938 (declare (fixnum index))
939 (setq char (schar string index))
940 (cond ((not (alphanumericp char))
941 (setq newword t))
942 (newword
943 ;;char is first case-modifiable after non-case-modifiable
944 (setf (schar string index) (char-titlecase char))
945 (setq newword ()))
946 (t
947 (setf (schar string index) (char-downcase char))))))
948 save-header))
949
950
951 #+unicode
952 (progn
953 ;; Like string-left-trim, but return the index
954 (defun string-left-trim-index (char-bag string)
955 (with-string string
956 (if (stringp char-bag)
957 ;; When char-bag is a string, we try to do the right thing.
958 ;; Convert char-bag to a list of codepoints and compare the
959 ;; codepoints in the string with this.
960 (let ((code-bag (with-string char-bag
961 (do ((index start (1+ index))
962 (result nil))
963 ((= index end)
964 (nreverse result))
965 (multiple-value-bind (c widep)
966 (codepoint char-bag index)
967 (push c result)
968 (when widep (incf index)))))))
969 (do ((index start (1+ index)))
970 ((= index (the fixnum end))
971 end)
972 (declare (fixnum index))
973 (multiple-value-bind (c widep)
974 (codepoint string index)
975 (unless (find c code-bag)
976 (return-from string-left-trim-index index))
977 (when widep (incf index)))))
978 ;; When char-bag is a list, we just look at each codepoint of
979 ;; STRING to see if it's in char-bag. If char-bag contains a
980 ;; surrogate, we could accidentally trim off a surrogate,
981 ;; leaving an invalid UTF16 string.
982 (do ((index start (1+ index)))
983 ((= index (the fixnum end))
984 end)
985 (declare (fixnum index))
986 (multiple-value-bind (c widep)
987 (codepoint string index)
988 (unless (find c char-bag :key #'char-code)
989 (return-from string-left-trim-index index))
990 (when widep (incf index)))))))
991
992 (defun string-left-trim (char-bag string)
993 _N"Given a set of characters (a list or string) and a string, returns
994 a copy of the string with the characters in the set removed from the
995 left end. If the set of characters is a string, surrogates will be
996 properly handled."
997 (let ((begin (string-left-trim-index char-bag string)))
998 (with-string string
999 (declare (ignore start))
1000 (subseq string begin end))))
1001
1002 (defun string-right-trim-index (char-bag string)
1003 (with-string string
1004 (if (stringp char-bag)
1005 ;; When char-bag is a string, we try to do the right thing
1006 ;; with surrogates. Convert char-bag to a list of codepoints
1007 ;; and compare the codepoints in the string with this.
1008 (let ((code-bag (with-string char-bag
1009 (do ((index start (1+ index))
1010 (result nil))
1011 ((= index end)
1012 result)
1013 (multiple-value-bind (c widep)
1014 (codepoint char-bag index)
1015 (push c result)
1016 (when widep (incf index)))))))
1017 (do ((index (1- end) (1- index)))
1018 ((< index start)
1019 start)
1020 (declare (fixnum index))
1021 (multiple-value-bind (c widep)
1022 (codepoint string index)
1023 (unless (find c code-bag)
1024 (return-from string-right-trim-index (1+ index)))
1025 (when widep (decf index)))))
1026 ;; When char-bag is a list, we just look at each codepoint of
1027 ;; STRING to see if it's in char-bag. If char-bag contains a
1028 ;; surrogate, we could accidentally trim off a surrogate,
1029 ;; leaving an invalid UTF16 string.
1030 (do ((index (1- end) (1- index)))
1031 ((< index start)
1032 start)
1033 (declare (fixnum index))
1034 (multiple-value-bind (c widep)
1035 (codepoint string index)
1036 (unless (find c char-bag :key #'char-code)
1037 (return-from string-right-trim-index (1+ index)))
1038 (when widep (decf index)))))))
1039
1040 (defun string-right-trim (char-bag string)
1041 _N"Given a set of characters (a list or string) and a string, returns
1042 a copy of the string with the characters in the set removed from the
1043 right end. If the set of characters is a string, surrogates will be
1044 properly handled."
1045 (let ((stop (string-right-trim-index char-bag string)))
1046 (with-string string
1047 (declare (ignore end))
1048 (subseq string start stop))))
1049
1050 (defun string-trim (char-bag string)
1051 _N"Given a set of characters (a list or string) and a string, returns a
1052 copy of the string with the characters in the set removed from both
1053 ends. If the set of characters is a string, surrogates will be
1054 properly handled."
1055 (let ((left-end (string-left-trim-index char-bag string))
1056 (right-end (string-right-trim-index char-bag string)))
1057 (with-string string
1058 (declare (ignore start end))
1059 (subseq (the simple-string string) left-end right-end))))
1060 ) ; end unicode version
1061
1062 #-unicode
1063 (progn
1064 (defun string-left-trim (char-bag string)
1065 _N"Given a set of characters (a list or string) and a string, returns
1066 a copy of the string with the characters in the set removed from the
1067 left end."
1068 (with-string string
1069 (do ((index start (1+ index)))
1070 ((or (= index (the fixnum end))
1071 (not (find (schar string index) char-bag)))
1072 (subseq (the simple-string string) index end))
1073 (declare (fixnum index)))))
1074
1075 (defun string-right-trim (char-bag string)
1076 _N"Given a set of characters (a list or string) and a string, returns
1077 a copy of the string with the characters in the set removed from the
1078 right end."
1079 (with-string string
1080 (do ((index (1- (the fixnum end)) (1- index)))
1081 ((or (< index start) (not (find (schar string index) char-bag)))
1082 (subseq (the simple-string string) start (1+ index)))
1083 (declare (fixnum index)))))
1084
1085 (defun string-trim (char-bag string)
1086 _N"Given a set of characters (a list or string) and a string, returns a
1087 copy of the string with the characters in the set removed from both
1088 ends."
1089 (with-string string
1090 (let* ((left-end (do ((index start (1+ index)))
1091 ((or (= index (the fixnum end))
1092 (not (find (schar string index) char-bag)))
1093 index)
1094 (declare (fixnum index))))
1095 (right-end (do ((index (1- (the fixnum end)) (1- index)))
1096 ((or (< index left-end)
1097 (not (find (schar string index) char-bag)))
1098 (1+ index))
1099 (declare (fixnum index)))))
1100 (subseq (the simple-string string) left-end right-end))))
1101 ) ; non-unicode version
1102
1103 #+unicode
1104 (progn
1105 (declaim (inline %glyph-f %glyph-b))
1106 (defun %glyph-f (string index)
1107 (declare (optimize (speed 3) (space 0) (safety 0) (debug 0))
1108 (type simple-string string) (type kernel:index index))
1109 (let* ((prev 0)
1110 (l (length string))
1111 (c (codepoint string index l))
1112 (n (+ index (if (> c #xFFFF) 2 1))))
1113 (declare (type codepoint c) (type kernel:index l n))
1114 (loop while (< n l) do
1115 (let* ((c (codepoint string n l))
1116 (d (the (unsigned-byte 8) (unicode-combining-class c))))
1117 (when (or (zerop d) (< d prev))
1118 (return))
1119 (setq prev d)
1120 (incf n (if (> c #xFFFF) 2 1))))
1121 n))
1122
1123 (defun %glyph-b (string index)
1124 (declare (optimize (speed 3) (space 0) (safety 0) (debug 0))
1125 (type simple-string string) (type kernel:index index))
1126 (let* ((prev 255)
1127 (n (1- index)))
1128 (declare (type kernel:index n))
1129 (loop until (< n 0) do
1130 (let* ((c (codepoint string n 0))
1131 (d (the (unsigned-byte 8) (unicode-combining-class c))))
1132 (cond ((zerop d) (return))
1133 ((> d prev) (incf n (if (> c #xFFFF) 2 1)) (return)))
1134 (setq prev d)
1135 (decf n (if (> c #xFFFF) 2 1))))
1136 n))
1137 ) ; unicode
1138
1139 (defun glyph (string index &key (from-end nil))
1140 "GLYPH returns the glyph at the indexed position in a string, and the
1141 position of the next glyph (or NIL) as a second value. A glyph is
1142 a substring consisting of the character at INDEX followed by all
1143 subsequent combining characters."
1144 (declare (type simple-string string) (type kernel:index index))
1145 #-unicode
1146 (char string index)
1147 #+unicode
1148 (with-array-data ((string string) (start) (end))
1149 (declare (ignore start end))
1150 (let ((n (if from-end (%glyph-b string index) (%glyph-f string index))))
1151 (if from-end
1152 (values (subseq string n index) (and (> n 0) n))
1153 (values (subseq string index n) (and (< n (length string)) n))))))
1154
1155 (defun sglyph (string index &key (from-end nil))
1156 "SGLYPH returns the glyph at the indexed position, the same as GLYPH,
1157 except that the string must be a simple-string"
1158 (declare (type simple-string string) (type kernel:index index))
1159 #-unicode
1160 (schar string index)
1161 #+unicode
1162 (let ((n (if from-end (%glyph-b string index) (%glyph-f string index))))
1163 (if from-end
1164 (values (subseq string n index) (and (> n 0) n))
1165 (values (subseq string index n) (and (< n (length string)) n)))))
1166
1167 #+unicode
1168 (defun string-reverse* (sequence)
1169 (declare (optimize (speed 3) (space 0) (safety 0))
1170 (type string sequence))
1171 (with-string sequence
1172 (let* ((length (- end start))
1173 (string (make-string length))
1174 (j length))
1175 (declare (type kernel:index length j))
1176 (loop for i = start then n as n = (%glyph-f sequence i) do
1177 (replace string sequence :start1 (decf j (- n i)) :start2 i :end2 n)
1178 while (< n end))
1179 string)))
1180
1181 #+unicode
1182 (defun string-nreverse* (sequence)
1183 (declare (optimize (speed 3) (space 0) (safety 0))
1184 (type string sequence))
1185 (with-string sequence
1186 (flet ((rev (start end)
1187 (do ((i start (1+ i))
1188 (j (1- end) (1- j)))
1189 ((>= i j))
1190 (declare (type kernel:index i j))
1191 (rotatef (schar sequence i) (schar sequence j)))))
1192 (let ((len end))
1193 (loop for i = start then n as n = (%glyph-f sequence i) do
1194 (rev i n) while (< n len))
1195 (rev start end))))
1196 sequence)
1197
1198
1199
1200
1201 #+unicode
1202 (progn
1203 (defun decompose (string &optional (compatibility t))
1204 (declare (type string string))
1205 (let ((result (make-string (cond ((< (length string) 40)
1206 (* 5 (length string)))
1207 ((< (length string) 4096)
1208 (* 2 (length string)))
1209 (t (round (length string) 5/6)))))
1210 (fillptr 0))
1211 (declare (type kernel:index fillptr))
1212 (labels ((rec (string start end)
1213 (declare (type simple-string string))
1214 (do ((i start (1+ i)))
1215 ((= i end))
1216 (declare (type kernel:index i))
1217 (multiple-value-bind (code wide) (codepoint string i)
1218 (when wide (incf i))
1219 (let ((decomp (unicode-decomp code compatibility)))
1220 (if decomp (rec decomp 0 (length decomp)) (out code))))))
1221 (out (code)
1222 (multiple-value-bind (hi lo) (surrogates code)
1223 (outch hi)
1224 (when lo
1225 (outch lo))
1226 (let ((cc (unicode-combining-class code)))
1227 (unless (zerop cc)
1228 (order lo cc (- fillptr (if lo 3 2)))))))
1229 (outch (char)
1230 (when (= fillptr (length result))
1231 (let ((tmp (make-string (round (length result) 5/6))))
1232 (replace tmp result)
1233 (setq result tmp)))
1234 (setf (schar result fillptr) char)
1235 (incf fillptr))
1236 (order (wide1 cc last)
1237 (loop until (minusp last) do
1238 (multiple-value-bind (code2 wide2) (codepoint result last)
1239 (let ((cc2 (unicode-combining-class code2)))
1240 (cond ((zerop cc2) (return))
1241 ((> cc2 cc)
1242 (case (+ (if wide2 2 0) (if wide1 1 0))
1243 (0 (rotatef (schar result last)
1244 (schar result (1+ last))))
1245 (1 (rotatef (schar result last)
1246 (schar result (+ last 1))
1247 (schar result (+ last 2))))
1248 (2 (rotatef (schar result last)
1249 (schar result (1- last))
1250 (schar result (1+ last))))
1251 (3 (rotatef (schar result last)
1252 (schar result (+ last 2)))
1253 (rotatef (schar result (1- last))
1254 (schar result (1+ last)))))
1255 (decf last (if wide2 2 1)))
1256 (t (return))))))))
1257 (with-string string
1258 (rec string start end))
1259 (shrink-vector result fillptr))))
1260
1261 (declaim (inline normalized-codepoint-p))
1262 (defun normalized-codepoint-p (cp form)
1263 (ecase form
1264 (:nfc (unicode-nfc-qc cp))
1265 (:nfkc (unicode-nfkc-qc cp))
1266 (:nfd (unicode-nfd-qc cp))
1267 (:nfkd (unicode-nfkd-qc cp))))
1268
1269 ;; Perform check to see if string is already normalized. The Unicode
1270 ;; example can return YES, NO, or MAYBE. For our purposes, only YES
1271 ;; is important, for which we return T. For NO or MAYBE, we return NIL.
1272 (defun normalized-form-p (string &optional (form :nfc))
1273 (declare (type (member :nfc :nfkc :nfd :nfkd) form)
1274 (optimize (speed 3)))
1275 (with-string string
1276 (let ((last-class 0))
1277 (declare (type (integer 0 256) last-class))
1278 (do ((k start (1+ k)))
1279 ((>= k end))
1280 (declare (type kernel:index k))
1281 (multiple-value-bind (ch widep)
1282 (codepoint string k end)
1283 (when widep (incf k))
1284 ;; Handle ASCII specially
1285 (unless (< ch 128)
1286 (let ((class (unicode-combining-class ch)))
1287 (declare (type (unsigned-byte 8) class))
1288 (when (and (> last-class class) (not (zerop class)))
1289 ;; Definitely not normalized
1290 (return-from normalized-form-p nil))
1291 (let ((check (normalized-codepoint-p ch form)))
1292 (unless (eq check :y)
1293 (return-from normalized-form-p nil)))
1294 (setf last-class class)))))
1295 t)))
1296
1297
1298 ;; Compose a string in place. The string must already be in decomposed form.
1299 (defun %compose (target)
1300 (declare (type string target)
1301 (optimize (speed 3)))
1302 (let ((len (length target))
1303 (starter-pos 0))
1304 (declare (type kernel:index starter-pos))
1305 (multiple-value-bind (starter-ch wide)
1306 (codepoint target 0 len)
1307 (let ((comp-pos (if wide 2 1))
1308 (last-class (unicode-combining-class starter-ch)))
1309 (declare (type (integer 0 256) last-class)
1310 (type kernel:index comp-pos))
1311 (unless (zerop last-class)
1312 ;; Fix for strings starting with a combining character
1313 (setf last-class 256))
1314 ;; Loop on decomposed characters, combining where possible
1315 (do ((decomp-pos comp-pos (1+ decomp-pos)))
1316 ((>= decomp-pos len))
1317 (declare (type kernel:index decomp-pos))
1318 (multiple-value-bind (ch wide)
1319 (codepoint target decomp-pos len)
1320 (when wide (incf decomp-pos))
1321 (let ((ch-class (unicode-combining-class ch))
1322 (composite (unicode-pairwise-composition starter-ch ch)))
1323 (declare (type (integer 0 256) ch-class))
1324 (cond ((and composite
1325 (or (< last-class ch-class) (zerop last-class)))
1326 ;; Note: As far as I know, there is no pairwise
1327 ;; composition such that the composite character
1328 ;; is outside the BMP but the starter-ch is
1329 ;; inside the BMP. Hence, it is always safe to
1330 ;; replace the possible surrogate at starter-pos
1331 ;; with another. We won't accidentally replace
1332 ;; the next character with our trailing surrogate
1333 ;; character.
1334 (multiple-value-bind (hi lo)
1335 (surrogates composite)
1336 (setf (aref target starter-pos) hi)
1337 (when lo
1338 (setf (aref target (1+ starter-pos)) lo))
1339 (setf starter-ch composite)))
1340 (t
1341 (when (zerop ch-class)
1342 (setf starter-pos comp-pos)
1343 (setf starter-ch ch))
1344 (setf last-class ch-class)
1345 (multiple-value-bind (hi lo)
1346 (surrogates ch)
1347 (setf (aref target comp-pos) hi)
1348 (when lo
1349 (incf comp-pos)
1350 (setf (aref target comp-pos) lo))
1351 (incf comp-pos)))))))
1352 (shrink-vector target comp-pos)))))
1353
1354 (defun string-to-nfd (string)
1355 _N"Convert String to Unicode Normalization Form D (NFD) using the
1356 canonical decomposition. The NFD string is returned"
1357 (decompose string nil))
1358
1359 (defun string-to-nfkd (string)
1360 _N"Convert String to Unicode Normalization Form KD (NFKD) uisng the
1361 compatible decomposition form. The NFKD string is returned."
1362 (decompose string t))
1363
1364 (defun string-to-nfc (string)
1365 _N"Convert String to Unicode Normalization Form C (NFC). If the
1366 string a simple string and is already normalized, the original
1367 string is returned."
1368 (if (normalized-form-p string :nfc)
1369 (if (simple-string-p string) string (coerce string 'simple-string))
1370 (coerce (if (normalized-form-p string :nfd)
1371 (%compose (copy-seq string))
1372 (%compose (string-to-nfd string)))
1373 'simple-string)))
1374
1375 (defun string-to-nfkc (string)
1376 _N"Convert String to Unicode Normalization Form KC (NFKC). If the
1377 string is a simple string and is already normalized, the original
1378 string is returned."
1379 (if (normalized-form-p string :nfkc)
1380 (if (simple-string-p string) string (coerce string 'simple-string))
1381 (coerce (if (normalized-form-p string :nfkd)
1382 (%compose (copy-seq string))
1383 (%compose (string-to-nfkd string)))
1384 'simple-string)))
1385 ) ; end unicode
1386
1387 #-unicode ;; Needed by package.lisp
1388 (defun string-to-nfc (string)
1389 (if (simple-string-p string) string (coerce string 'simple-string)))
1390
1391
1392 ;;;
1393 ;;; This is a Lisp translation of the Scheme code from William
1394 ;;; D. Clinger that implements the word-breaking algorithm. This is
1395 ;;; used with permission.
1396 ;;;
1397 ;;; This version is modified from the original at
1398 ;;; http://www.ccs.neu.edu/home/will/R6RS/ to conform to CMUCL's
1399 ;;; implementation of the word break properties.
1400 ;;;
1401 ;;;
1402 ;;; Copyright statement and original comments:
1403 ;;;
1404 ;;;--------------------------------------------------------------------------------
1405
1406 ;; Copyright 2006 William D Clinger.
1407 ;;
1408 ;; Permission to copy this software, in whole or in part, to use this
1409 ;; software for any lawful purpose, and to redistribute this software
1410 ;; is granted subject to the restriction that all copies made of this
1411 ;; software must include this copyright and permission notice in full.
1412 ;;
1413 ;; I also request that you send me a copy of any improvements that you
1414 ;; make to this software so that they may be incorporated within it to
1415 ;; the benefit of the Scheme community.
1416
1417 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1418 ;;
1419 ;; Word-breaking as defined by Unicode Standard Annex #29.
1420 ;;
1421 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1422
1423 ;; Implementation notes.
1424 ;;
1425 ;; The string-foldcase, string-downcase, and string-titlecase
1426 ;; procedures rely on the notion of a word, which is defined
1427 ;; by Unicode Standard Annex 29.
1428 ;;
1429 ;; The string-foldcase and string-downcase procedures rely on
1430 ;; word boundaries only when they encounter a Greek sigma, so
1431 ;; their performance should not be greatly affected by the
1432 ;; performance of the word-breaking algorithm.
1433 ;;
1434 ;; The string-titlecase procedure must find all word boundaries,
1435 ;; but it is typically used on short strings (titles).
1436 ;;
1437 ;; Hence the performance of the word-breaking algorithm should
1438 ;; not matter too much for this reference implementation.
1439 ;; Word-breaking is more generally useful, however, so I tried
1440 ;; to make this implementation reasonably efficient.
1441 ;;
1442 ;; Word boundaries are defined by 14 different rules in
1443 ;; Unicode Standard Annex #29, and by GraphemeBreakProperty.txt
1444 ;; and WordBreakProperty.txt. See also WordBreakTest.html.
1445 ;;
1446 ;; My original implementation of those specifications failed
1447 ;; 6 of the 494 tests in auxiliary/WordBreakTest.txt, but it
1448 ;; appeared to me that those tests were inconsistent with the
1449 ;; word-breaking rules in UAX #29. John Cowan forwarded my
1450 ;; bug report to the Unicode experts, and Mark Davis responded
1451 ;; on 29 May 2007:
1452 ;;
1453 ;; Thanks for following up on this. I think you have found a problem in the
1454 ;; formulation of word break, not the test. The intention was to break after a
1455 ;; Sep character, as is done in Sentence break. So my previous suggestion was
1456 ;; incorrect; instead, what we need is a new rule:
1457 ;;
1458 ;; *Break after paragraph separators.*
1459 ;; WB3a. Sep �
1460 ;; I'll make a propose to the UTC for this.
1461 ;;
1462 ;; Here is Will's translation of those rules (including WB3a)
1463 ;; into a finite state machine that searches forward within a
1464 ;; string, looking for the next position at which a word break
1465 ;; is allowed. The current state consists of an index i into
1466 ;; the string and a summary of the left context whose rightmost
1467 ;; character is at index i. The left context is usually
1468 ;; determined by the character at index i, but there are three
1469 ;; complications:
1470 ;;
1471 ;; Extend and Format characters are ignored unless they
1472 ;; follow a separator or the beginning of the text.
1473 ;; ALetter followed by MidLetter is treated specially.
1474 ;; Numeric followed by MidNum is treated specially.
1475 ;;
1476 ;; In the implementation below, the left context ending at i
1477 ;; is encoded by the following symbols:
1478 ;;
1479 ;; CR
1480 ;; Sep (excluding CR)
1481 ;; ALetter
1482 ;; MidLetter
1483 ;; ALetterMidLetter (ALetter followed by MidLetter)
1484 ;; Numeric
1485 ;; MidNum
1486 ;; NumericMidNum (Numeric followed by MidNum)
1487 ;; Katakana
1488 ;; ExtendNumLet
1489 ;; other (none of the above)
1490 ;;
1491 ;; Given a string s and an exact integer i (which need not be
1492 ;; a valid index into s), returns the index of the next character
1493 ;; that is not part of the word containing the character at i,
1494 ;; or the length of s if the word containing the character at i
1495 ;; extends through the end of s. If i is negative or a valid
1496 ;; index into s, then the returned value will be greater than i.
1497 ;;
1498 ;;;--------------------------------------------------------------------------------
1499
1500 (defun string-next-word-break (s i)
1501 (let ((n (length s)))
1502 (labels
1503 ((char-word-break-category (c)
1504 ;; Map our unicode word break property into what this
1505 ;; algorithm wants.
1506 (let ((cat (lisp::unicode-word-break c)))
1507 (case cat
1508 ((:lf :cr :newline)
1509 :sep)
1510 ((:extend :format)
1511 :extend-or-format)
1512 (otherwise cat))))
1513 (left-context (i)
1514 ;; Given a valid index i into s, returns the left context
1515 ;; at i.
1516 (multiple-value-bind (c widep)
1517 (lisp::codepoint s i n)
1518 (let* ((back
1519 ;; If we're at a regular character or a leading
1520 ;; surrogate, decrementing by 1 gets us the to
1521 ;; previous character. But for a trailing
1522 ;; surrogate, we need to decrement by 2!
1523 (if (eql widep -1)
1524 2
1525 1))
1526 (cat (char-word-break-category c)))
1527 (case cat
1528 ((:sep)
1529 (if (= c (char-code #\return)) :cr cat))
1530 ((:midletter :midnumlet)
1531 (let ((i-1 (- i back)))
1532 (if (and (<= 0 i-1)
1533 (eq (left-context i-1) :aletter))
1534 :aletter-midletter
1535 cat)))
1536 ((:midnum :midnumlet)
1537 (let ((i-1 (- i back)))
1538 (if (and (<= 0 i-1)
1539 (eq (left-context i-1) :numeric))
1540 :numeric-midnum
1541 cat)))
1542 ((:extendorformat)
1543 (if (< 0 i)
1544 (left-context (- i back))
1545 :other))
1546 (otherwise cat)))))
1547
1548 (index-of-previous-non-ignored (j)
1549 ;; Returns the index of the last non-Extend, non-Format
1550 ;; character within (substring s 0 j). Should not be
1551 ;; called unless such a character exists.
1552
1553 (let* ((j1 (- j 1)))
1554 (multiple-value-bind (c widep)
1555 (lisp::codepoint s j1)
1556 (when (eql widep -1)
1557 ;; Back up one more if we're at the trailing
1558 ;; surrogate.
1559 (decf j1))
1560 (let ((cat (char-word-break-category c)))
1561 (case cat
1562 ((:extend-or-format)
1563 (index-of-previous-non-ignored j1))
1564 (otherwise j1))))))
1565
1566 (lookup (j context)
1567 ;; Given j and the context to the left of (not including) j,
1568 ;; returns the index at the start of the next word
1569 ;; (or before which a word break is permitted).
1570
1571 (if (>= j n)
1572 (case context
1573 ((:aletter-midletter :numeric-midnum)
1574 (let ((j (index-of-previous-non-ignored n)))
1575 (if (< i j) j n)))
1576 (otherwise n))
1577 (multiple-value-bind (c widep)
1578 (lisp::codepoint s j)
1579 (let* ((next-j
1580 ;; The next character is either 1 or 2 code
1581 ;; units away. For a leading surrogate, it's
1582 ;; 2; Otherwise just 1.
1583 (if (eql widep 1)
1584 2
1585 1))
1586 (cat (char-word-break-category c)))
1587 (case cat
1588 ((:extend-or-format)
1589 (case context
1590 ((:cr :sep) j)
1591 (otherwise (lookup (+ j next-j) context))))
1592 (otherwise
1593 (case context
1594 ((:cr)
1595 (if (= c (char-code #\linefeed))
1596 ;; Rule WB3: Don't break CRLF, continue looking
1597 (lookup (+ j next-j) cat)
1598 j))
1599 ((:aletter)
1600 (case cat
1601 ((:aletter :numeric :extendnumlet)
1602 ;; Rules WB5, WB9, ?
1603 (lookup (+ j next-j) cat))
1604 ((:midletter :midnumlet)
1605 ;; Rule WB6, need to keep looking
1606 (lookup (+ j next-j) :aletter-midletter))
1607 (otherwise j)))
1608 ((:aletter-midletter)
1609 (case cat
1610 ((:aletter)
1611 ;; Rule WB7
1612 (lookup (+ j next-j) cat))
1613 (otherwise
1614 ;; Rule WB6 and WB7 were extended, but the
1615 ;; region didn't end with :aletter. So
1616 ;; backup and break at that point.
1617 (let ((j2 (index-of-previous-non-ignored j)))
1618 (if (< i j2) j2 j)))))
1619 ((:numeric)
1620 (case cat
1621 ((:numeric :aletter :extendnumlet)
1622 ;; Rules WB8, WB10, ?
1623 (lookup (+ j next-j) cat))
1624 ((:midnum :midnumlet)
1625 ;; Rules WB11, need to keep looking
1626 (lookup (+ j next-j) :numeric-midnum))
1627 (otherwise j)))
1628 ((:numeric-midnum)
1629 (case cat
1630 ((:numeric)
1631 ;; Rule WB11, keep looking
1632 (lookup (+ j next-j) cat))
1633 (otherwise
1634 ;; Rule WB11, WB12 were extended, but the
1635 ;; region didn't end with :numeric, so
1636 ;; backup and break at that point.
1637 (let ((j2 (index-of-previous-non-ignored j)))
1638 (if (< i j2) j2 j)))))
1639 ((:midletter :midnum :midnumlet)
1640 ;; Rule WB14
1641 j)
1642 ((:katakana)
1643 (case cat
1644 ((:katakana :extendnumlet)
1645 ;; Rule WB13, WB13a
1646 (lookup (+ j next-j) cat))
1647 (otherwise j)))
1648 ((:extendnumlet)
1649 (case cat
1650 ((:extendnumlet :aletter :numeric :katakana)
1651 ;; Rule WB13a, WB13b
1652 (lookup (+ j next-j) cat))
1653 (otherwise j)))
1654 (otherwise j)))))))))
1655 (declare (notinline lookup left-context))
1656 (cond ((< i 0)
1657 ;; Rule WB1
1658 0)
1659 ((<= n i)
1660 ;; Rule WB2
1661 n)
1662 (t
1663 (multiple-value-bind (c widep)
1664 (lisp::codepoint s i)
1665 (declare (ignore c))
1666 (lookup (+ i (if (eql widep 1) 2 1)) (left-context i))))))))
1667
1668 (defun string-capitalize-unicode (string &key (start 0) end (casing :simple))
1669 (declare (type (member :simple :full) casing))
1670 (let* ((string (if (stringp string) string (string string)))
1671 (slen (length string)))
1672 (declare (fixnum slen))
1673 (with-output-to-string (result)
1674 (lisp::with-one-string string start end offset
1675 (let ((offset-slen (+ slen offset)))
1676 (declare (fixnum offset-slen))
1677
1678 (write-string string result :start 0 :end start)
1679 (let ((upper (ecase casing
1680 (:simple
1681 #'(lambda (ch)
1682 (multiple-value-bind (hi lo)
1683 (lisp::surrogates (lisp::unicode-upper ch))
1684 (write-char hi result)
1685 (when lo (write-char lo result)))))
1686 (:full
1687 #'(lambda (ch)
1688 (write-string (lisp::unicode-full-case-title ch) result))))))
1689 (do ((start start next)
1690 (next (string-next-word-break string start)
1691 (string-next-word-break string next)))
1692 ((or (= start next)
1693 (>= start end)))
1694 ;; Convert the first character of the word to upper
1695 ;; case, and then make the rest of the word lowercase.
1696 (funcall upper (lisp::codepoint string start))
1697 (write-string (string-downcase string :start (1+ start) :end next :casing casing)
1698 result :start (1+ start) :end next)))
1699 (write-string string result :start end :end offset-slen))))))
1700
1701
1702 ;; Some utilities
1703 (defun codepoints-string (seq)
1704 "Convert a sequence of codepoints to a string. Codepoints outside
1705 the basic multilingual plane (BMP) are converted into the
1706 corresponding surrogate pairs."
1707 (with-output-to-string (s)
1708 (map nil #'(lambda (c)
1709 (multiple-value-bind (hi lo)
1710 (surrogates c)
1711 (write-char hi s)
1712 (when lo (write-char lo s))))
1713 seq)))
1714
1715 (defun string-codepoints (s)
1716 "Convert a string to a list of corresponding code points. Surrogate
1717 pairs in the string are converted into the correspoinding
1718 codepoint."
1719 (declare (type simple-string s))
1720 (let ((len (length s))
1721 cp)
1722 (do ((idx 0))
1723 ((>= idx len))
1724 (multiple-value-bind (c widep)
1725 (codepoint s idx)
1726 (if widep
1727 (incf idx 2)
1728 (incf idx))
1729 (push c cp)))
1730 (nreverse cp)))

  ViewVC Help
Powered by ViewVC 1.1.5