Introduction

August 28, 2007
Contents
1 Introduction 1
2 Features 1

1 Introduction

ParenScript is a simple language that looks a lot like Lisp, but actually is JavaScript
in disguise. Actually, it is JavaScript embedded in a host Lisp. This way,
JavaScript programs can be seamlessly integrated in a Lisp web application.
The programmer doesn’t have to resort to a different syntax, and JavaScript
code can easily be generated without having to resort to complicated string
generation or FORMAT expressions.

An example is worth more than a thousand words. The following Lisp
expression is a call to the ParenScript “compiler”. The ParenScript “compiler”
transforms the expression in ParenScript into an equivalent, human-readable
expression in JavaScript.

(ps
(defun foobar (a b)
(return (+ a b))))

The resulting javascript is:

function foobar(a, b) {
return a + b;

}

Great care has been given to the indentation and overall readability of the gen-
erated JavaScript code.

2 Features

ParenScript supports all the statements and expressions defined by the Ec-
maScript 262 standard. Lisp symbols are converted to camelcase, javascript-
compliant syntax. This idea is taken from Linj by Antonio Menezes Leitao.
Here are a few examples of Lisp symbol to JavaScript name conversion:

(js-to-string ’foobar) => "foobar"
(js-to-string ’foo-bar) => "fooBar"
(js-to-string ’foo-b-0@-r) "fooBAtR"
(js-to-string ’foo-b@r) "fooBatr"
(js-to-string ’*array) => "Array"
(js-to-string ’#*math.floor) => "Math.floor"

I n
v Vv

It also supports additional iteration constructs, relieving the programmer of the
burden of iterating over arrays. for loops can be written using the customary
DO syntax.

(ps
(do ((i O (incf 1))
(j (aref arr i) (aref arr i)))
((>=1i 10))
(alert (+ "i is " i " and j is " j))))

; compiles to

n
for (var i = 0, j = arr[i]l; i < 10; i = ++i, j = arr[i]) {
alert(’i is > + i + > and j is ’ + j);

}

ParenScript uses the Lisp reader, allowing for reader macros. It also comes
with its own macro environment, allowing host Lisp macros and ParenScript
macros to coexist without interfering with each other. For example, the 1+
construct is implemented using a ParenScript macro:

(defpsmacro 1+ (form)
‘(+ ,form 1))

ParenScript allows the creation of JavaScript objects in a Lispy way, using key-
word arguments.

(ps
(create :foo "foo"
:bla "bla"))

; compiles to
n

{ foo : ’foo’,
bla : ’bla’ }

ParenScript features a HTML generator. Using the same syntax as the HTML-
GEN package of Franz, Inc., it can generate JavaScript string expressions. This
allows for a clean integration of HTML in ParenScript code, instead of writing
the tedious and error-prone string generation code generally found in JavaScript.

(ps
(defun add-div (name href link-text)
(document.write
(ps-html ((:div :id name)

"The link is: "
((:a :href href) link-text))))))

; compiles to
n

function addDiv(name, href, linkText) {
document.write(’<div id=\"’ + name + ’\">The link is: <a href=\"’
+ href + ’\">’
+ linkText + ’</div>’);

In order to have a complete web application framework available in Lisp, Paren-
Script also provides a sexp-based syntax for CSS stylesheets. Thus, a complete
web application featuring HTML, CSS and JavaScript documents can be gener-
ated using Lisp syntax, allowing the programmer to use Lisp macros to factor
out the redundancies and complexities of Web syntax. For example, to gener-
ate a CSS inline node in a HTML document using the AllegroServe HTMLGEN
library:

(html-stream *standard-outputx*
(html
(:html
(:head
(css (* :border "1px solid black")
(div.blOrg :font-family "serif")
(("a:active" "a:hoover") :color "black" :size "200%"))))))

; which produces

<html><head><style type="text/css">

<l--
* {
border:1px solid black;
}
div.blorg {
font-family:serif;
}

a:active,a:hoover {
color:black;
size:200%;

-—>
</style>
</head>
</html>

