
ASDF: Another System Definition Facility

This manual describes ASDF, a system definition facility for Common Lisp programs and
libraries.

You can find the latest version of this manual at http://common-lisp.net/project/asdf/asdf.html.

ASDF Copyright c© 2001-2013 Daniel Barlow and contributors.

This manual Copyright c© 2001-2013 Daniel Barlow and contributors.

This manual revised c© 2009-2013 Robert P. Goldman and Francois-Rene Rideau.

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

http://common-lisp.net/project/asdf/asdf.html

i

Table of Contents

1 Introduction . 1

2 Loading ASDF . 2
2.1 Loading a pre-installed ASDF . 2
2.2 Checking whether ASDF is loaded . 2
2.3 Upgrading ASDF . 3
2.4 Loading an otherwise installed ASDF . 4

3 Configuring ASDF . 5
3.1 Configuring ASDF to find your systems . 5
3.2 Configuring ASDF to find your systems — old style 5
3.3 Configuring where ASDF stores object files . 6
3.4 Resetting Configuration . 7

4 Using ASDF . 9
4.1 Loading a system . 9
4.2 Other Operations . 9
4.3 Summary . 10
4.4 Moving on . 10

5 Defining systems with defsystem 11
5.1 The defsystem form . 11
5.2 A more involved example . 12
5.3 The defsystem grammar . 13

5.3.1 Component names . 14
5.3.2 Component types . 14
5.3.3 System class names . 14
5.3.4 Defsystem depends on . 15
5.3.5 Weakly depends on . 15
5.3.6 Pathname specifiers . 15
5.3.7 Version specifiers . 16
5.3.8 Using logical pathnames . 16
5.3.9 Serial dependencies . 17
5.3.10 Source location . 17
5.3.11 if-feature option . 18
5.3.12 if-component-dep-fails option . 18

5.4 Other code in .asd files . 18

ii

6 The object model of ASDF 19
6.1 Operations . 20

6.1.1 Predefined operations of ASDF . 21
6.1.2 Creating new operations . 23

6.2 Components . 25
6.2.1 Common attributes of components . 26

6.2.1.1 Name . 26
6.2.1.2 Version identifier . 26
6.2.1.3 Required features . 26
6.2.1.4 Dependencies . 27
6.2.1.5 pathname . 28
6.2.1.6 properties . 28

6.2.2 Pre-defined subclasses of component . 28
6.2.3 Creating new component types . 29

6.3 Functions . 30

7 Controlling where ASDF searches for systems
. 31

7.1 Configurations . 31
7.2 Truenames and other dangers . 31
7.3 XDG base directory . 32
7.4 Backward Compatibility . 32
7.5 Configuration DSL . 32
7.6 Configuration Directories . 34

7.6.1 The :here directive . 35
7.7 Shell-friendly syntax for configuration . 35
7.8 Search Algorithm . 36
7.9 Caching Results . 36
7.10 Configuration API . 36
7.11 Status . 37
7.12 Rejected ideas . 37
7.13 TODO . 38
7.14 Credits for the source-registry . 38

8 Controlling where ASDF saves compiled files
. 39

8.1 Configurations . 39
8.2 Backward Compatibility . 40
8.3 Configuration DSL . 40
8.4 Configuration Directories . 42
8.5 Shell-friendly syntax for configuration . 43
8.6 Semantics of Output Translations . 43
8.7 Caching Results . 43
8.8 Output location API . 43
8.9 Credits for output translations . 44

iii

9 Error handling . 45
9.1 ASDF errors . 45
9.2 Compilation error and warning handling . 45

10 Miscellaneous additional functionality 46
10.1 Controlling file compilation . 46
10.2 Controlling source file character encoding . 47
10.3 Miscellaneous Functions . 48
10.4 Some Utility Functions . 50

11 Getting the latest version 54

12 FAQ . 55
12.1 “Where do I report a bug?” . 55
12.2 “What has changed between ASDF 1 and ASDF 2?” 55

12.2.1 What are ASDF 1 and ASDF 2? . 55
12.2.2 ASDF can portably name files in subdirectories 55
12.2.3 Output translations . 55
12.2.4 Source Registry Configuration . 56
12.2.5 Usual operations are made easier to the user 56
12.2.6 Many bugs have been fixed . 56
12.2.7 ASDF itself is versioned . 57
12.2.8 ASDF can be upgraded . 57
12.2.9 Decoupled release cycle . 57
12.2.10 Pitfalls of the transition to ASDF 2 . 57

12.3 Issues with installing the proper version of ASDF 59
12.3.1 “My Common Lisp implementation comes with an outdated

version of ASDF. What to do?” . 59
12.3.2 “I’m a Common Lisp implementation vendor. When and

how should I upgrade ASDF?” . 59
12.4 Issues with configuring ASDF . 60

12.4.1 “How can I customize where fasl files are stored?” 60
12.4.2 “How can I wholly disable the compiler output cache?” . . 60

12.5 Issues with using and extending ASDF to define systems 60
12.5.1 “How can I cater for unit-testing in my system?” 60
12.5.2 “How can I cater for documentation generation in my

system?” . 61
12.5.3 “How can I maintain non-Lisp (e.g. C) source files?” 61
12.5.4 “I want to put my module’s files at the top level. How do I

do this?” . 61
12.5.5 How do I create a system definition where all the source files

have a .cl extension? . 62

13 TODO list . 64
13.1 Outstanding spec questions, things to add . 64
13.2 Missing bits in implementation . 64

iv

14 Inspiration . 65
14.1 mk-defsystem (defsystem-3.x) . 65
14.2 defsystem-4 proposal . 65
14.3 kmp’s “The Description of Large Systems”, MIT AI Memo 801

. 65

Concept Index . 66

Function and Class Index . 67

Variable Index . 68

Chapter 1: Introduction 1

1 Introduction

ASDF is Another System Definition Facility: a tool for specifying how systems of Common
Lisp software are comprised of components (sub-systems and files), and how to operate on
these components in the right order so that they can be compiled, loaded, tested, etc.

ASDF presents three faces: one for users of Common Lisp software who want to reuse
other people’s code, one for writers of Common Lisp software who want to specify how to
build their systems, one for implementers of Common Lisp extensions who want to extend
the build system. See Section 3.4 [Loading a system], page 7, to learn how to use ASDF
to load a system. See Chapter 5 [Defining systems with defsystem], page 11, to learn how
to define a system of your own. See Chapter 6 [The object model of ASDF], page 19, for a
description of the ASDF internals and how to extend ASDF.

Nota Bene: We have released ASDF 2.000 on May 31st 2010, and ASDF 3.0 on January
31st 2013. Releases of ASDF 2 and later have since then been included in all actively
maintained CL implementations that used to bundle ASDF 1, plus some implementations
that didn’t use to, and has been made to work with all actively used CL implementations
and a few more. See Chapter 12 [“What has changed between ASDF 1 and ASDF 2?”],
page 55. Furthermore, it is possible to upgrade from ASDF 1 to ASDF 2 or ASDF 3 on
the fly. For this reason, we have stopped supporting ASDF 1 and ASDF 2. If you are using
ASDF 1 or ASDF 2 and are experiencing any kind of issues or limitations, we recommend
you upgrade to ASDF 3 — and we explain how to do that. See Chapter 2 [Loading ASDF],
page 2.

Also note that ASDF is not to be confused with ASDF-Install. ASDF-Install is not
part of ASDF, but a separate piece of software. ASDF-Install is also unmaintained and
obsolete. We recommend you use Quicklisp instead, which works great and is being actively
maintained. If you want to download software from version control instead of tarballs, so
you may more easily modify it, we recommend clbuild.

Chapter 2: Loading ASDF 2

2 Loading ASDF

2.1 Loading a pre-installed ASDF

Most recent Lisp implementations include a copy of ASDF 2, and soon ASDF 3. You can
usually load this copy using Common Lisp’s require function:

(require "asdf")

As of the writing of this manual, the following implementations provide ASDF 2 this
way: abcl allegro ccl clisp cmucl ecl lispworks mkcl sbcl xcl. The following implementation
doesn’t provide it yet but will in an upcoming release: scl. The following implementations
are obsolete, not actively maintained, and most probably will never bundle it: cormanlisp
gcl genera mcl.

If the implementation you are using doesn’t provide ASDF 2 or ASDF 3, see see Chapter 2
[Loading an otherwise installed ASDF], page 2 below. If that implementation is still actively
maintained, you may also send a bug report to your Lisp vendor and complain about their
failing to provide ASDF.

NB: all implementations except clisp also accept (require "ASDF"), (require ’asdf)

and (require :asdf). For portability’s sake, you probably want to use (require "asdf").

2.2 Checking whether ASDF is loaded

To check whether ASDF is properly loaded in your current Lisp image, you can run this
form:

(asdf:asdf-version)

If it returns a string, that is the version of ASDF that is currently installed.

If it raises an error, then either ASDF is not loaded, or you are using an old version of
ASDF.

You can check whether an old version is loaded by checking if the ASDF package is
present. The form below will allow you to programmatically determine whether a recent
version is loaded, an old version is loaded, or none at all:

(when (find-package :asdf)

(let ((ver (symbol-value (or (find-symbol (string :*asdf-version*) :asdf)

(find-symbol (string :*asdf-revision*) :asdf)))))

(etypecase ver

(string ver)

(cons (with-output-to-string (s)

(loop for (n . m) on ver do (princ n s) (when m (princ "." s)))))

(null "1.0"))))

If it returns nil then ASDF is not installed. Otherwise it should return a string. If it
returns "1.0", then it can actually be any version before 1.77 or so, or some buggy variant
of 1.x.

If you are experiencing problems with ASDF, please try upgrading to the latest released
version, using the method below, before you contact us and raise an issue.

Chapter 2: Loading ASDF 3

2.3 Upgrading ASDF

If your implementation provides ASDF 3 or later, you only need to (require "asdf"):
ASDF will automatically look whether an updated version of itself is available amongst the
regularly configured systems, before it compiles anything else. See see Chapter 3 [Config-
uring ASDF], page 5 below.

If your implementation does provide ASDF 2 or later, but not ASDF 3 or later, and you
want to upgrade to a more recent version, you need to install and configure your ASDF
as above, and additionally, you need to explicitly tell ASDF to load itself, right after you
require your implementation’s old ASDF 2:

(require "asdf")

(asdf:load-system :asdf)

If on the other hand, your implementation only provides an old ASDF, you will require
a special configuration step and an old-style loading. Take special attention to not omit the
trailing directory separator / at the end of your pathname:

(require "asdf")

(push #p"/path/to/new/asdf/" asdf:*central-registry*)

(asdf:oos ’asdf:load-op :asdf)

Note that ASDF 1 won’t redirect its output files, or at least won’t do it according to your
usual ASDF 2 configuration. You therefore need write access on the directory where you
install the new ASDF, and make sure you’re not using it for multiple mutually incompatible
implementations. At worst, you may have to have multiple copies of the new ASDF, e.g.
one per implementation installation, to avoid clashes. Note that to our knowledge all
implementations that provide ASDF provide ASDF 2 in their latest release, so you may
want to upgrade your implementation rather than go through that hoop.

Finally, if you are using an unmaintained implementation that does not provide ASDF
at all, see see Chapter 2 [Loading an otherwise installed ASDF], page 2 below.

Note that there are some limitations to upgrading ASDF:

• Previously loaded ASDF extension becomes invalid, and will need to be reloaded. This
applies to e.g. CFFI-Grovel, or to hacks used by ironclad, etc. Since it isn’t possible to
automatically detect what extensions are present that need to be invalidated, ASDF
will actually invalidate all previously loaded systems when it is loaded on top of a
different ASDF version, starting with ASDF 2.014.8 (as far as releases go, 2.015); and
it will automatically attempt this self-upgrade as its very first step starting with ASDF
3.

• For this an many other reasons, it important reason to load, configure and upgrade
ASDF (if needed) as one of the very first things done by your build and startup scripts.
Until all implementations provide ASDF 3 or later, it is safer if you upgrade ASDF
and its extensions as a special step at the very beginning of whatever script you are
running, before you start using ASDF to load anything else; even afterwards, it is still
a good idea, to avoid having to load and reload code twice as it gets invalidated.

• Until all implementations provide ASDF 3 or later, it is unsafe to upgrade ASDF as
part of loading a system that depends on a more recent version of ASDF, since the new
one might shadow the old one while the old one is running, and the running old one
will be confused when extensions are loaded into the new one. In the meantime, we

Chapter 2: Loading ASDF 4

recommend that your systems should not specify :depends-on (:asdf), or :depends-
on ((:version :asdf "2.010")), but instead that they check that a recent enough
ASDF is installed, with such code as:

(unless (or #+asdf2 (asdf:version-satisfies

(asdf:asdf-version) *required-asdf-version*))

(error "FOO requires ASDF ~A or later." *required-asdf-version*))

• Until all implementations provide ASDF 3 or later, it is unsafe for a system to tran-
sitively depend on ASDF and not directly depend on ASDF; if any of the system you
use either depends-on asdf, system-depends-on asdf, or transitively does, you should
also do as well.

2.4 Loading an otherwise installed ASDF

If your implementation doesn’t include ASDF, if for some reason the upgrade somehow
fails, does not or cannot apply to your case, you will have to install the file ‘asdf.lisp’
somewhere and load it with:

(load "/path/to/your/installed/asdf.lisp")

The single file ‘asdf.lisp’ is all you normally need to use ASDF.

You can extract this file from latest release tarball on the ASDF website. If you are
daring and willing to report bugs, you can get the latest and greatest version of ASDF from
its git repository. See Chapter 11 [Getting the latest version], page 54.

For maximum convenience you might want to have ASDF loaded whenever you start
your Lisp implementation, for example by loading it from the startup script or dumping a
custom core — check your Lisp implementation’s manual for details.

http://common-lisp.net/project/asdf/

Chapter 3: Configuring ASDF 5

3 Configuring ASDF

3.1 Configuring ASDF to find your systems

So it may compile and load your systems, ASDF must be configured to find the ‘.asd’ files
that contain system definitions.

Since ASDF 2, the preferred way to configure where ASDF finds your systems is the
source-registry facility, fully described in its own chapter of this manual. See Chapter 7
[Controlling where ASDF searches for systems], page 31.

The default location for a user to install Common Lisp software is under
‘~/.local/share/common-lisp/source/’. If you install software there (it can be a
symlink), you don’t need further configuration. If you’re installing software yourself at a
location that isn’t standard, you have to tell ASDF where you installed it. See below. If
you’re using some tool to install software (e.g. Quicklisp), the authors of that tool should
already have configured ASDF.

The simplest way to add a path to your search path, say ‘/home/luser/.asd-link-farm/’
is to create the directory ‘~/.config/common-lisp/source-registry.conf.d/’ and
there create a file with any name of your choice, and with the type ‘conf’, for instance
‘42-asd-link-farm.conf’ containing the line:

(:directory "/home/luser/.asd-link-farm/")

If you want all the subdirectories under ‘/home/luser/lisp/’ to be recursively scanned
for ‘.asd’ files, instead use:

(:tree "/home/luser/lisp/")

Note that your Operating System distribution or your system administrator may already
have configured system-managed libraries for you.

The required ‘.conf’ extension allows you to have disabled files or editor backups (ending
in ‘~’), and works portably (for instance, it is a pain to allow both empty and non-empty
extension on CLISP). Excluded are files the name of which start with a ‘.’ character. It is
customary to start the filename with two digits that specify the order in which the directories
will be scanned.

ASDF will automatically read your configuration the first time you try to find a system.
You can reset the source-registry configuration with:

(asdf:clear-source-registry)

And you probably should do so before you dump your Lisp image, if the configura-
tion may change between the machine where you save it at the time you save it and the
machine you resume it at the time you resume it. Actually, you should use (asdf:clear-

configuration) before you dump your Lisp image, which includes the above.

3.2 Configuring ASDF to find your systems — old style

The old way to configure ASDF to find your systems is by pushing directory pathnames
onto the variable asdf:*central-registry*.

You must configure this variable between the time you load ASDF and the time you
first try to use it. Loading and configuring ASDF presumably happen as part of some

Chapter 3: Configuring ASDF 6

initialization script that builds or starts your Common Lisp software system. (For instance,
some SBCL users used to put it in their ‘~/.sbclrc’.)

The asdf:*central-registry* is empty by default in ASDF 2 or ASDF 3, but is still
supported for compatibility with ASDF 1. When used, it takes precedence over the above
source-registry1.

For instance, if you wanted ASDF to find the ‘.asd’ file ‘/home/me/src/foo/foo.asd’
your initialization script could after it loads ASDF with (require "asdf") configure it
with:

(push "/home/me/src/foo/" asdf:*central-registry*)

Note the trailing slash: when searching for a system, ASDF will evaluate each entry of
the central registry and coerce the result to a pathname2 at which point the presence of the
trailing directory name separator is necessary to tell Lisp that you’re discussing a directory
rather than a file.

Typically, however, there are a lot of ‘.asd’ files, and a common idiom was to have to
put a bunch of symbolic links to ‘.asd’ files in a common directory and push that directory
(the “link farm”) to the asdf:*central-registry* instead of pushing each of the many
involved directories to the asdf:*central-registry*. ASDF knows how to follow such
symlinks to the actual file location when resolving the paths of system components (on
Windows, you can use Windows shortcuts instead of POSIX symlinks; if you try aliases
under MacOS, we are curious to hear about your experience).

For example, if #p"/home/me/cl/systems/" (note the trailing slash) is a member of
central-registry, you could set up the system foo for loading with asdf with the
following commands at the shell:

$ cd /home/me/cl/systems/

$ ln -s ~/src/foo/foo.asd .

This old style for configuring ASDF is not recommended for new users, but it is supported
for old users, and for users who want to programmatically control what directories are added
to the ASDF search path.

3.3 Configuring where ASDF stores object files

ASDF lets you configure where object files will be stored. Sensible defaults are provided
and you shouldn’t normally have to worry about it.

This allows the same source code repository may be shared between several versions of
several Common Lisp implementations, between several users using different compilation

1 It is possible to further customize the system definition file search. That’s considered advanced use, and
covered later: search forward for *system-definition-search-functions*. See Chapter 5 [Defining
systems with defsystem], page 11.

2 ASDF will indeed call eval on each entry. It will also skip entries that evaluate to nil.

Strings and pathname objects are self-evaluating, in which case the eval step does nothing; but you
may push arbitrary SEXP onto the central registry, that will be evaluated to compute e.g. things that
depend on the value of shell variables or the identity of the user.

The variable asdf:*central-registry* is thus a list of “system directory designators”. A system
directory designator is a form which will be evaluated whenever a system is to be found, and must
evaluate to a directory to look in. By “directory” here, we mean “designator for a pathname with a
supplied DIRECTORY component”.

Chapter 3: Configuring ASDF 7

options and without write privileges on shared source directories, etc. This also allows to
keep source directories uncluttered by plenty of object files.

Starting with ASDF 2, the asdf-output-translations facility was added to ASDF
itself, that controls where object files will be stored. This facility is fully described in a
chapter of this manual, Chapter 8 [Controlling where ASDF saves compiled files], page 39.

The simplest way to add a translation to your search path, say from
‘/foo/bar/baz/quux/’ to ‘/where/i/want/my/fasls/’ is to create the directory
‘~/.config/common-lisp/asdf-output-translations.conf.d/’ and there create a
file with any name of your choice and the type ‘conf’, for instance ‘42-bazquux.conf’
containing the line:

("/foo/bar/baz/quux/" "/where/i/want/my/fasls/")

To disable output translations for source under a given directory, say ‘/toto/tata/’ you
can create a file ‘40-disable-toto.conf’ with the line:

("/toto/tata/")

To wholly disable output translations for all directories, you can create a file
‘00-disable.conf’ with the line:

(t t)

Note that your Operating System distribution or your system administrator may
already have configured translations for you. In absence of any configuration, the
default is to redirect everything under an implementation-dependent subdirectory of
‘~/.cache/common-lisp/’. See Chapter 7 [Controlling where ASDF searches for systems],
page 31, for full details.

The required ‘.conf’ extension allows you to have disabled files or editor backups (ending
in ‘~’), and works portably (for instance, it is a pain to allow both empty and non-empty
extension on CLISP). Excluded are files the name of which start with a ‘.’ character. It is
customary to start the filename with two digits that specify the order in which the directories
will be scanned.

ASDF will automatically read your configuration the first time you try to find a system.
You can reset the source-registry configuration with:

(asdf:clear-output-translations)

And you probably should do so before you dump your Lisp image, if the configuration
may change between the machine where you save it at the time you save it and the machine
you resume it at the time you resume it. (Once again, you should use (asdf:clear-

configuration) before you dump your Lisp image, which includes the above.)

Finally note that before ASDF 2, other ASDF add-ons offered the same functional-
ity, each in subtly different and incompatible ways: ASDF-Binary-Locations, cl-launch,
common-lisp-controller. ASDF-Binary-Locations is now not needed anymore and should
not be used. cl-launch 3.000 and common-lisp-controller 7.2 have been updated to just
delegate this functionality to ASDF.

3.4 Resetting Configuration

When you dump and restore an image, or when you tweak your configuration, you may
want to reset the ASDF configuration. For that you may use the following function:

Chapter 3: Configuring ASDF 8

[Function]clear-configuration
undoes any ASDF configuration, regarding source-registry or output-translations.

If you use SBCL, CMUCL or SCL, you may use this snippet so that the ASDF configu-
ration be cleared automatically as you dump an image:

#+(or cmu sbcl scl)

(pushnew ’clear-configuration

#+(or cmu scl) ext:*before-save-initializations*

#+sbcl sb-ext:*save-hooks*)

For compatibility with all Lisp implementations, however, you might want instead your
build script to explicitly call (asdf:clear-configuration) at an appropriate moment
before dumping.

Chapter 4: Using ASDF 9

4 Using ASDF

4.1 Loading a system

The system foo is loaded (and compiled, if necessary) by evaluating the following Lisp form:

(asdf:load-system :foo)

On some implementations (namely recent versions of ABCL, Allegro CL, Clozure CL,
CMUCL, ECL, GNU CLISP, LispWorks, MKCL, SBCL and XCL), ASDF hooks into the
CL:REQUIRE facility and you can just use:

(require :foo)

In older versions of ASDF, you needed to use (asdf:oos ’asdf:load-op :foo). If your
ASDF is too old to provide asdf:load-system though we recommend that you upgrade to
ASDF 3. See Chapter 2 [Loading an otherwise installed ASDF], page 2.

Note the name of a system is specified as a string or a symbol, typically a keyword. If
a symbol (including a keyword), its name is taken and lowercased. The name must be a
suitable value for the :name initarg to make-pathname in whatever filesystem the system is
to be found. The lower-casing-symbols behaviour is unconventional, but was selected after
some consideration. Observations suggest that the type of systems we want to support
either have lowercase as customary case (unix, mac, windows) or silently convert lowercase
to uppercase (lpns), so this makes more sense than attempting to use :case :common, which
is reported not to work on some implementations

4.2 Other Operations

ASDF provides three commands for the most common system operations: load-system,
compile-system or test-system. It also provides require-system, a version of load-
system that skips trying to update systems that are already loaded.

Because ASDF is an extensible system for defining operations on components, it also
provides a generic function operate (which is usually abbreviated by oos). You’ll use oos

whenever you want to do something beyond compiling, loading and testing.

Output from ASDF and ASDF extensions are supposed to be sent to the CL stream
standard-output, and so rebinding that stream around calls to asdf:operate should
redirect all output from ASDF operations.

Reminder: before ASDF can operate on a system, however, it must be able to find and
load that system’s definition. See Chapter 3 [Configuring ASDF to find your systems],
page 5.

For the advanced users, note that require-system calls load-system with keyword
arguments :force-not (already-loaded-systems). already-loaded-systems returns a
list of the names of loaded systems. load-system applies operate with the operation from
load-system-operation, which by default is load-op, the system, and any provided
keyword arguments.

Chapter 4: Using ASDF 10

4.3 Summary

To use ASDF:

• Load ASDF itself into your Lisp image, either through (require "asdf") or else
through (load "/path/to/asdf.lisp").

• Make sure ASDF can find system definitions thanks to proper source-registry configu-
ration.

• Load a system with (asdf:load-system :my-system) or use some other operation on
some system of your choice.

4.4 Moving on

That’s all you need to know to use ASDF to load systems written by others. The rest of this
manual deals with writing system definitions for Common Lisp software you write yourself,
including how to extend ASDF to define new operation and component types.

Chapter 5: Defining systems with defsystem 11

5 Defining systems with defsystem

This chapter describes how to use asdf to define systems and develop software.

5.1 The defsystem form

Systems can be constructed programmatically by instantiating components using make-

instance. Most of the time, however, it is much more practical to use a static defsystem

form. This section begins with an example of a system definition, then gives the full
grammar of defsystem.

Let’s look at a simple system. This is a complete file that would usually be saved as
‘hello-lisp.asd’:

(in-package :asdf)

(defsystem "hello-lisp"

:description "hello-lisp: a sample Lisp system."

:version "0.2.1"

:author "Joe User <joe@example.com>"

:licence "Public Domain"

:components ((:file "packages")

(:file "macros" :depends-on ("packages"))

(:file "hello" :depends-on ("macros"))))

Some notes about this example:

• The file starts with an in-package form to use package asdf. You could instead start
your definition by using a qualified name asdf:defsystem.

• If in addition to simply using defsystem, you are going to define functions, create ASDF
extension, globally bind symbols, etc., it is recommended that to avoid namespace
pollution between systems, you should create your own package for that purpose, for
instance replacing the above (in-package :asdf) with:

(defpackage :foo-system

(:use :cl :asdf))

(in-package :foo-system)

• The defsystem form defines a system named hello-lisp that contains three source
files: ‘packages’, ‘macros’ and ‘hello’.

• The file ‘macros’ depends on ‘packages’ (presumably because the package it’s in is
defined in ‘packages’), and the file ‘hello’ depends on ‘macros’ (and hence, transitively
on ‘packages’). This means that ASDF will compile and load ‘packages’ and ‘macros’
before starting the compilation of file ‘hello’.

• The files are located in the same directory as the file with the system definition. ASDF
resolves symbolic links (or Windows shortcuts) before loading the system definition file
and stores its location in the resulting system1. This is a good thing because the user
can move the system sources without having to edit the system definition.

1 It is possible, though almost never necessary, to override this behaviour.

Chapter 5: Defining systems with defsystem 12

• Make sure you know how the :version numbers will be parsed! They are parsed
as period-separated lists of integers. I.e., in the example, 0.2.1 is to be interpreted,
roughly speaking, as (0 2 1). In particular, version 0.2.1 is interpreted the same as
0.0002.1 and is strictly version-less-than version 0.20.1, even though the two are the
same when interpreted as decimal fractions. Instead of a string representing the version,
the :version argument can be an expression that is resolved to such a string using the
following trivial domain-specific language: in addition to being a literal string, it can be
an expression of the form (:read-file-form <pathname-or-string> :at <access-

at-specifier>), which will be resolved by reading a form in the specified pathname
(read as a subpathname of the current system if relative or a unix-namestring). You
may use a uiop:access-at specifier with the (optional) :at keyword, by default the
specifier is 0, meaning the first form is returned.

5.2 A more involved example

Let’s illustrate some more involved uses of defsystem via a slightly convoluted example:

(defsystem "foo"

:version "1.0.0"

:components ((:module "mod"

:components ((:file "bar")

(:file"baz")

(:file "quux"))

:perform (compile-op :after (op c)

(do-something c))

:explain (compile-op :after (op c)

(explain-something c)))

(:file "blah")))

The :module component named "mod" is a collection of three files, which will be located
in a subdirectory of the main code directory named ‘mod’ (this location can be overridden; see
the discussion of the :pathname option in Section 5.3 [The defsystem grammar], page 13).

The method-form tokens provide a shorthand for defining methods on particular com-
ponents. This part

:perform (compile-op :after (op c)

(do-something c))

:explain (compile-op :after (op c)

(explain-something c))

has the effect of

(defmethod perform :after ((op compile-op) (c (eql ...)))

(do-something c))

(defmethod explain :after ((op compile-op) (c (eql ...)))

(explain-something c))

where ... is the component in question. In this case ... would expand to something
like

(find-component "foo" "mod")

Chapter 5: Defining systems with defsystem 13

For more details on the syntax of such forms, see Section 5.3 [The defsystem grammar],
page 13. For more details on what these methods do, see Section 6.1 [Operations], page 20
in Chapter 6 [The object model of ASDF], page 19.

5.3 The defsystem grammar

system-definition := (defsystem system-designator system-option*)

system-option := :defsystem-depends-on system-list

| :weakly-depends-on system-list

| :class class-name (see discussion below)

| module-option

| option

module-option := :components component-list

| :serial [t | nil]

option :=

| :pathname pathname-specifier

| :default-component-class class-name

| :perform method-form

| :explain method-form

| :output-files method-form

| :operation-done-p method-form

| :if-feature feature-expression

| :depends-on (dependency-def*)

| :in-order-to (dependency+)

system-list := (simple-component-name*)

component-list := (component-def*)

component-def := (component-type simple-component-name option*)

component-type := :module | :file | :static-file | other-component-type

other-component-type := symbol-by-name (see Section 5.3 [Component types],

page 13)

This is used in :depends-on, as opposed to ‘‘dependency,’’

which is used in :in-order-to

dependency-def := simple-component-name

| (feature feature-name)

| (:version simple-component-name version-specifier)

‘‘dependency’’ is used in :in-order-to, as opposed to

Chapter 5: Defining systems with defsystem 14

‘‘dependency-def’’

dependency := (dependent-op requirement+)

requirement := (required-op required-component+)

| (:feature feature-name)

dependent-op := operation-name

required-op := operation-name

simple-component-name := string

| symbol

pathname-specifier := pathname | string | symbol

method-form := (operation-name qual lambda-list &rest

body)

qual := method qualifier

component-dep-fail-option := :fail | :try-next | :ignore

feature-expression := keyword | (:and feature-expression*)

| (:or feature-expression*) | (:not feature-expression)

5.3.1 Component names

Component names (simple-component-name) may be either strings or symbols.

5.3.2 Component types

Component type names, even if expressed as keywords, will be looked up by name in the
current package and in the asdf package, if not found in the current package. So a component
type my-component-type, in the current package my-system-asd can be specified as :my-
component-type, or my-component-type.

system and its subclasses are not allowed as component types for such children compo-
nents.

5.3.3 System class names

A system class name will be looked up in the same way as a Component type (see above),
except that only system and its subclasses are allowed. Typically, one will not need to
specify a system class name, unless using a non-standard system class defined in some
ASDF extension, typically loaded through DEFSYSTEM-DEPENDS-ON, see below. For such
class names in the ASDF package, we recommend that the :class option be specified using
a keyword symbol, such as

:class :MY-NEW-SYSTEM-SUBCLASS

This practice will ensure that package name conflicts are avoided. Otherwise, the symbol
MY-NEW-SYSTEM-SUBCLASS will be read into the current package before it has been exported
from the ASDF extension loaded by :defsystem-depends-on, causing a name conflict in
the current package.

Chapter 5: Defining systems with defsystem 15

5.3.4 Defsystem depends on

The :defsystem-depends-on option to defsystem allows the programmer to specify an-
other ASDF-defined system or set of systems that must be loaded before the system defi-
nition is processed. Typically this is used to load an ASDF extension that is used in the
system definition.

5.3.5 Weakly depends on

We do NOT recommend you use this feature. If you are tempted to write a system foo
that weakly-depends-on a system bar, we recommend that you should instead write system
foo in a parametric way, and offer some special variable and/or some hook to specialize its
behavior; then you should write a system foo+bar that does the hooking of things together.

The (deprecated) :weakly-depends-on option to defsystem allows the programmer to
specify another ASDF-defined system or set of systems that ASDF should try to load, but
need not load in order to be successful. Typically this is used if there are a number of
systems that, if present, could provide additional functionality, but which are not necessary
for basic function.

Currently, although it is specified to be an option only to defsystem, this option is
accepted at any component, but it probably only makes sense at the defsystem level.
Programmers are cautioned not to use this component option except at the defsystem

level, as this anomalous behavior may be removed without warning.

Finally, you might look into the asdf-system-connections extension, that will let you
define additional code to be loaded when two systems are simultaneously loaded. It may or
may not be considered good style, but at least it can be used in a way that has deterministic
behavior independent of load order, unlike weakly-depends-on.

5.3.6 Pathname specifiers

A pathname specifier (pathname-specifier) may be a pathname, a string or a symbol.
When no pathname specifier is given for a component, which is the usual case, the compo-
nent name itself is used.

If a string is given, which is the usual case, the string will be interpreted as a Unix-
style pathname where / characters will be interpreted as directory separators. Usually,
Unix-style relative pathnames are used (i.e. not starting with /, as opposed to absolute
pathnames); they are relative to the path of the parent component. Finally, depending on
the component-type, the pathname may be interpreted as either a file or a directory, and
if it’s a file, a file type may be added corresponding to the component-type, or else it will
be extracted from the string itself (if applicable).

For instance, the component-type :module wants a directory pathname, and so a string
"foo/bar" will be interpreted as the pathname ‘#p"foo/bar/"’. On the other hand, the
component-type :file wants a file of type lisp, and so a string "foo/bar" will be inter-
preted as the pathname ‘#p"foo/bar.lisp"’, and a string "foo/bar.quux" will be inter-
preted as the pathname ‘#p"foo/bar.quux.lisp"’. Finally, the component-type :static-
file wants a file without specifying a type, and so a string "foo/bar" will be interpreted
as the pathname ‘#p"foo/bar"’, and a string "foo/bar.quux" will be interpreted as the
pathname ‘#p"foo/bar.quux"’.

Chapter 5: Defining systems with defsystem 16

ASDF does not interpret the string ".." to designate the parent directory. This string
will be passed through to the underlying operating system for interpretation. We believe
that this will work on all platforms where ASDF is deployed, but do not guarantee this
behavior. A pathname object with a relative directory component of :up or :back is the
only guaranteed way to specify a parent directory.

If a symbol is given, it will be translated into a string, and downcased in the process.
The downcasing of symbols is unconventional, but was selected after some consideration.
Observations suggest that the type of systems we want to support either have lowercase
as customary case (Unix, Mac, windows) or silently convert lowercase to uppercase (lpns),
so this makes more sense than attempting to use :case :common as argument to make-

pathname, which is reported not to work on some implementations.

Pathname objects may be given to override the path for a component. Such objects
are typically specified using reader macros such as #p or #.(make-pathname ...). Note
however, that #p... is a shorthand for #.(parse-namestring ...) and that the behav-
ior of parse-namestring is completely non-portable, unless you are using Common Lisp
logical-pathnames, which themselves involve other non-portable behavior (see Section 5.3
[Using logical pathnames], page 13, below). Pathnames made with #.(make-pathname ...)

can usually be done more easily with the string syntax above. The only case that you re-
ally need a pathname object is to override the component-type default file type for a given
component. Therefore, pathname objects should only rarely be used. Unhappily, ASDF 1
didn’t properly support parsing component names as strings specifying paths with directo-
ries, and the cumbersome #.(make-pathname ...) syntax had to be used. An alternative
to #. read-time evaluation is to use (eval ‘(defsystem ... ,pathname ...)).

Note that when specifying pathname objects, ASDF does not do any special interpreta-
tion of the pathname influenced by the component type, unlike the procedure for pathname-
specifying strings. On the one hand, you have to be careful to provide a pathname that
correctly fulfills whatever constraints are required from that component type (e.g. naming
a directory or a file with appropriate type); on the other hand, you can circumvent the file
type that would otherwise be forced upon you if you were specifying a string.

5.3.7 Version specifiers

Version specifiers are strings to be parsed as period-separated lists of integers. I.e., in the
example, "0.2.1" is to be interpreted, roughly speaking, as (0 2 1). In particular, version
"0.2.1" is interpreted the same as "0.0002.1", though the latter is not canonical and may
lead to a warning being issued. Also, "1.3" and "1.4" are both strictly uiop:version< to
"1.30", quite unlike what would have happened had the version strings been interpreted
as decimal fractions.

System definers are encouraged to use version identifiers of the form x.y.z for major
version, minor version and patch level, where significant API incompatibilities are signaled
by an increased major number.

See Section 6.2.1 [Common attributes of components], page 26.

5.3.8 Using logical pathnames

We do not generally recommend the use of logical pathnames, especially not so to newcomers
to Common Lisp. However, we do support the use of logical pathnames by old timers, when
such is their preference.

Chapter 5: Defining systems with defsystem 17

To use logical pathnames, you will have to provide a pathname object as a
:pathname specifier to components that use it, using such syntax as #p"LOGICAL-

HOST:absolute;path;to;component.lisp".

You only have to specify such logical pathname for your system or some top-level com-
ponent. Sub-components’ relative pathnames, specified using the string syntax for names,
will be properly merged with the pathnames of their parents. The specification of a log-
ical pathname host however is not otherwise directly supported in the ASDF syntax for
pathname specifiers as strings.

The asdf-output-translation layer will avoid trying to resolve and translate logical
pathnames. The advantage of this is that you can define yourself what translations you
want to use with the logical pathname facility. The disadvantage is that if you do not
define such translations, any system that uses logical pathnames will behave differently
under asdf-output-translations than other systems you use.

If you wish to use logical pathnames you will have to configure the translations yourself
before they may be used. ASDF currently provides no specific support for defining logical
pathname translations.

Note that the reasons we do not recommend logical pathnames are that (1) there is no
portable way to set up logical pathnames before they are used, (2) logical pathnames are
limited to only portably use a single character case, digits and hyphens. While you can
solve the first issue on your own, describing how to do it on each of fifteen implementations
supported by ASDF is more than we can document. As for the second issue, mind that the
limitation is notably enforced on SBCL, and that you therefore can’t portably violate the
limitations but must instead define some encoding of your own and add individual mappings
to name physical pathnames that do not fit the restrictions. This can notably be a problem
when your Lisp files are part of a larger project in which it is common to name files or
directories in a way that includes the version numbers of supported protocols, or in which
files are shared with software written in different programming languages where conventions
include the use of underscores, dots or CamelCase in pathnames.

5.3.9 Serial dependencies

If the :serial t option is specified for a module, ASDF will add dependencies for each child
component, on all the children textually preceding it. This is done as if by :depends-on.

:serial t

:components ((:file "a") (:file "b") (:file "c"))

is equivalent to

:components ((:file "a")

(:file "b" :depends-on ("a"))

(:file "c" :depends-on ("a" "b")))

5.3.10 Source location

The :pathname option is optional in all cases for systems defined via defsystem, and in
the usual case the user is recommended not to supply it.

Instead, ASDF follows a hairy set of rules that are designed so that

1. find-system will load a system from disk and have its pathname default to the right
place.

Chapter 5: Defining systems with defsystem 18

2. This pathname information will not be overwritten with *default-pathname-

defaults* (which could be somewhere else altogether) if the user loads up the ‘.asd’
file into his editor and interactively re-evaluates that form.

If a system is being loaded for the first time, its top-level pathname will be set to:

• The host/device/directory parts of *load-truename*, if it is bound.

• *default-pathname-defaults*, otherwise.

If a system is being redefined, the top-level pathname will be

• changed, if explicitly supplied or obtained from *load-truename* (so that an updated
source location is reflected in the system definition)

• changed if it had previously been set from *default-pathname-defaults*

• left as before, if it had previously been set from *load-truename* and *load-

truename* is currently unbound (so that a developer can evaluate a defsystem form
from within an editor without clobbering its source location)

5.3.11 if-feature option

This option allows you to specify a feature expression to be evaluated as if by #+ to con-
ditionally include a component in your build. If the expression is false, the component
is dropped as well as any dependency pointing to it. As compared to using #+ which is
expanded at read-time, this allows you to have an object in your component hierarchy that
can be used for manipulations beside building your project. This option was added in ASDF
3.

5.3.12 if-component-dep-fails option

This option was removed in ASDF 3. Its semantics was limited in purpose and dubious to
explain, and its implementation was breaking a hole into the ASDF object model. Please
use the if-feature option instead.

5.4 Other code in .asd files

Files containing defsystem forms are regular Lisp files that are executed by load. Conse-
quently, you can put whatever Lisp code you like into these files. However, it is recommended
to keep such forms to a minimal, and to instead define defsystem extensions that you use
with :defsystem-depends-on.

If however, you might insist on including code in the .asd file itself, e.g., to examine and
adjust the compile-time environment, possibly adding appropriate features to *features*.
If so, here are some conventions we recommend you follow, so that users can control certain
details of execution of the Lisp in ‘.asd’ files:

• Any informative output (other than warnings and errors, which are the condition sys-
tem’s to dispose of) should be sent to the standard CL stream *standard-output*, so
that users can easily control the disposition of output from ASDF operations.

Chapter 6: The object model of ASDF 19

6 The object model of ASDF

ASDF is designed in an object-oriented way from the ground up. Both a system’s structure
and the operations that can be performed on systems follow a extensible protocol.

This allows the addition of behaviours: for example, cffi adds support of special FFI
description files to interface with C libraries and of wrapper files to embed C code in Lisp;
abcl-jar supports creating Java JAR archives in ABCL; and poiu supports for compiling
code in parallel using background processes.

This chapter deals with components and operations.

A component represents an individual source file or a group of source files, and the
things that get transformed into. A system is a component at the top level of the component
hierarchy. A source-file is a component representing a single source-file and the successive
output files into which it is transformed. A module is an intermediate component itself
grouping several other components, themselves source-files or further modules.

An Operation represents a transformation that can be performed on a component,
turning them from source files to intermediate results to final outputs.

A pair of an operation and a component is called an action. An action represents a
particular build step to be performed, after all its dependencies have been fulfilled. In the
ASDF model, actions depend on other actions. The term action itself was used by Kent
Pitman in his old article, but was only used by ASDF hackers starting with the ASDF
2; but the concept is ubiquitous since the very beginning of ASDF 1, though previously
implicit.

Then, there are many functions available to users, extenders and implementers of ASDF
to use, define or implement the activities that are part of building your software. Though
they manipulate actions, most of these functions do not take as an argument a reified pair
(a cons cell) of an operation and a component; instead, they usually take two separate
arguments, which allows to take advantage of the power CLOS-style multiple dispatch for
fun and profit.

There are many hooks in which to add functionality, by customizing the behavior of
existing functions.

Last but not least is the notion of dependency between two actions. The structure of
dependencies between actions is a directed dependency graph. ASDF is invoked by being
told to operate with some operation on some toplevel system; it will then traverse the
graph and build a plan that follows its structure. To be successfully buildable, this graph
of actions but be acyclic. If, as a user, extender or implementer of ASDF, you fail to keep
the dependency graph without cycles, ASDF will fail loudly as it eventually finds one. To
clearly distinguish the direction of dependencies, ASDF 3 uses the words requiring and
required as applied to an action depending on the other: the requiring action depends-on

the completion of all required actions before it may itself be performed.

Using the defsystem syntax, users may easily express direct dependencies along the
graph of the object hierarchy: between a component and its parent, its children, and its
siblings. By defining custom CLOS methods, you can express more elaborate dependencies
as you wish. Most common operations, such as load-op, compile-op or load-source-

op are automatically propagate “downward” the component hierarchy and are “covariant”

Chapter 6: The object model of ASDF 20

with it: to act the operation on the parent module, you must first act it on all the chil-
dren components, with the action on the parent being parent of the action on each child.
Other operations, such as prepare-op and prepare-source-op (introduced in ASDF 3)
are automatically propagated “upward” the component hierarchy and are “contravariant”
with it: to perform the operation of preparing for compilation of a child component, you
must perform the operation of preparing for compilation of its parent component, and so
on, ensuring that all the parent’s dependencies are (compiled and) loaded before the child
component may be compiled and loaded. Yet other operations, such as test-op or load-
fasl-op remain at the system level, and are not propagated along the hierarchy, but instead
do something global on the system.

6.1 Operations

An operation object of the appropriate type is instantiated whenever the user wants to do
something with a system like

• compile all its files

• load the files into a running lisp environment

• copy its source files somewhere else

Operations can be invoked directly, or examined to see what their effects would be
without performing them. There are a bunch of methods specialised on operation and
component type that actually do the grunt work.

The operation object contains whatever state is relevant for this purpose (perhaps a list
of visited nodes, for example) but primarily is a nice thing to specialise operation methods
on and easier than having them all be EQL methods.

Operations are invoked on systems via operate.

[Generic function]operate operation system &restinitargs &keyforce
force-not verbose &allow-other-keys

[Generic function]oos operation system &restinitargs &key&allow-other-keys
operate invokes operation on system. oos is a synonym for operate.

operation is a symbol that is passed, along with the supplied initargs, to make-

instance to create the operation object. system is a system designator.

The initargs are passed to the make-instance call when creating the operation object.
Note that dependencies may cause the operation to invoke other operations on the
system or its components: the new operations will be created with the same initargs
as the original one.

If force is :all, then all systems are forced to be recompiled even if not modified
since last compilation. If force is t, then only the system being loaded is forced to
be recompiled even if not modified since last compilation, but other systems are not
affected. If force is a list, then it specifies a list of systems that are forced to be
recompiled even if not modified since last compilation. If force-not is :all, then all
systems are forced not to be recompiled even if modified since last compilation. If
force-not is t, then only the system being loaded is forced not to be recompiled even
if modified since last compilation, but other systems are not affected. If force-not is
a list, then it specifies a list of systems that are forced not to be recompiled even if

Chapter 6: The object model of ASDF 21

modified since last compilation. force takes precedences over force-not; both of them
apply to systems that are dependencies and were already compiled.

To see what operate would do, you can use:

(asdf:traverse operation-class system-name)

6.1.1 Predefined operations of ASDF

All the operations described in this section are in the asdf package. They are invoked via
the operate generic function.

(asdf:operate ’asdf:operation-name :system-name {operation-options ...})

[Operation]compile-op
This operation compiles the specified component. A cl-source-file will be
compile-file’d. All the children and dependencies of a system or module will be
recursively compiled by compile-op.

compile-op depends on prepare-op which itself depends on a load-op of all of a
component’s dependencies, as well as of its parent’s dependencies. When operate is
called on compile-op, all these dependencies will be loaded as well as compiled; yet,
some parts of the system main remain unloaded, because nothing depends on them.
Use load-op to load a system.

[Operation]load-op
This operation loads the compiled code for a specified component. A cl-source-

file will have its compiled fasl loaded, which fasl is the output of compile-op that
load-op depends on. All the children and dependencies of a system or module will
be recursively loaded by load-op.

load-op depends on prepare-op which itself depends on a load-op of all of a com-
ponent’s dependencies, as well as of its parent’s dependencies.

[Operation]prepare-op
This operation ensures that the dependencies of a component and its recursive par-
ents are loaded (as per load-op), as a prerequisite before compile-op and load-op

operations may be performed on a given component.

[Operation]load-source-op, prepare-source-op
load-source-op will load the source for the files in a module rather than they com-
piled fasl output. It has a prepare-source-op analog to prepare-op, that ensures
the dependencies are themselves loaded via load-source-op.

There is no provision in ASDF for ensuring that some components are always loaded
as source, while others are always compiled. While this idea often comes up in dis-
cussions, it actually doesn’t play well with either the linking model of ECL or with
various bundle operations (see below), and is eventually not workable; also the de-
pendency model of ASDF would have to be modified incompatibly to allow for such
trick. If your code doesn’t compile cleanly, fix it. If compilation makes it slow, use
declaim or eval-when to adjust your compiler settings, or eschew compilation by
evaluating a quoted source form at load-time.

Chapter 6: The object model of ASDF 22

[Operation]test-op
This operation will perform some tests on the module. The default method will
do nothing. The default dependency is to require load-op to be performed on the
module first. The default operation-done-p is that the operation is never done —
we assume that if you invoke the test-op, you want to test the system, even if you
have already done so.

The results of this operation are not defined by ASDF. It has proven difficult to define
how the test operation should signal its results to the user in a way that is compatible
with all of the various test libraries and test techniques in use in the community.

People typically define test-op methods like thus:

(defmethod perform ((o asdf:test-op)

(s (eql (asdf:find-system :my-system))))

(asdf:load-system :my-system-test)

(funcall (read-from-string "my-system-test:test-suite")))

Using load-system in the perform method rather than an :in-order-to dependency,
is sometimes necessary for backward compatibility with ASDF 2 and older, to avoid
circular dependencies that could arise because of the way these old versions propagate
dependencies.

If you don’t care for compatibility with ASDF 2, you could use the following options
in your defsystem form:

:in-order-to ((test-op (load-op :my-system-test)))

:perform (test-op (o c) (symbol-call :my-system-test :test-suite))

[Operation]fasl-op, monolithic-fasl-op, load-fasl-op, binary-op,
monolithic-binary-op, lib-op, monolithic-lib-op, dll-op,
monolithic-dll-op, program-op

These are “bundle” operations, that can create a single-file “bundle” for all the con-
tents of each system in an application, or for the entire application.

fasl-op will create a single fasl file for each of the systems needed, grouping all its
many fasls in one, so you can deliver each system as a single fasl. monolithic-fasl-
op will create a single fasl file for target system and all its dependencies, so you can
deliver your entire application as a single fasl. load-fasl-op will load the output
of fasl-op (though if it the output is not up-to-date, it will load the intermediate
fasls indeed as part of building it); this matters a lot on ECL, where the dynamic
linking involved in loading tens of individual fasls can be noticeably more expensive
than loading a single one.

Once you have created a fasl with fasl-op, you can use precompiled-system to
deliver it in a way that is compatible with clients having dependencies on your system,
whether it is distributed as source or as a single binary; the ‘.asd’ file to be delivered
with the fasl will look like this:

(defsystem :mysystem :class :precompiled-system

:fasl (some expression that will evaluate to a pathname))

Or you can use binary-op to let ASDF create such a system for you as well as
the fasl-op output, or monolithic-binary-op. This allows you to deliver code
for your systems or applications as a single file. Of course, if you want to test the

Chapter 6: The object model of ASDF 23

result in the current image, before you try to use any newly created ‘.asd’ files,
you should not forget to (asdf:clear-configuration) or at least (asdf:clear-

source-registry), so it re-populates the source-registry from the filesystem.

The program-op operation will create an executable program from the specified sys-
tem and its dependencies. You can use UIOP for its pre-image-dump hooks, its post-
image-restore hooks, and its access to command-line arguments. And you can specify
an entry point my-app:main by specifying in your defsystem the option :entry-

point "my-app:main". Depending on your implementation, running (asdf:operate

’asdf:program-op :my-app) may quit the current Lisp image upon completion. See
the example in ‘test/hello-world-example.asd’ and ‘test/hello.lisp’, as built
and tested by ‘test/test-program.script’ and ‘test/make-hello-world.lisp’.

There is also lib-op for building a linkable ‘.a’ file (Windows: ‘.lib’) from all
linkable object dependencies (FFI files, and on ECL, Lisp files too), and its monolithic
equivalent monolithic-lib-op. And there is also dll-op (respectively its monolithic
equivalent monolithic-lib-op) for building a linkable ‘.so’ file (Windows: ‘.dll’,
MacOS X: ‘.dynlib’) to create a single dynamic library for all the extra FFI code to
be linked into each of your systems (respectively your entire application).

All these “bundle” operations are available since ASDF 3 on all actively supported
Lisp implementations, but may be unavailable on unmaintained legacy implementa-
tions. This functionality was previously available for select implementations, as part
of a separate system asdf-bundle, itself descended from the ECL-only asdf-ecl.

The pathname of the output of bundle operations is subject to output-translation as
usual, unless the operation is equal to the :build-operation argument to defsystem.
This behavior is not very satisfactory and may change in the future. Maybe you have
suggestions on how to better configure it?

[Operation]concatenate-source-op, monolithic-concatenate-source-op,
load-concatenated-source-op, compile-concatenated-source-op,
load-compiled-concatenated-source-op,
monolithic-load-concatenated-source-op,
monolithic-compile-concatenated-source-op,
monolithic-load-compiled-concatenated-source-op

These operation, as their respective names indicate, consist in concatenating all cl-
source-file source files in a system (or in a system and all its dependencies, if
monolithic), in the order defined by dependencies, then loading the result, or compil-
ing then loading the result.

These operations are useful to deliver a system or application as a single source file,
and for testing that said file loads properly, or compiles then loads properly.

ASDF itself is notably delivered as a single source file this way using monolithic-

concatenate-source-op, transcluding a prelude and the uiop library before the
asdf/defsystem system itself.

6.1.2 Creating new operations

ASDF was designed to be extensible in an object-oriented fashion. To teach ASDF new
tricks, a programmer can implement the behaviour he wants by creating a subclass of
operation.

Chapter 6: The object model of ASDF 24

ASDF’s pre-defined operations are in no way “privileged”, but it is requested that de-
velopers never use the asdf package for operations they develop themselves. The rationale
for this rule is that we don’t want to establish a “global asdf operation name registry”, but
also want to avoid name clashes.

Your operation must usually provide methods for one or more of the following generic
functions:

• perform Unless your operation, like prepare-op, is for dependency propagation only,
the most important function for which to define a method is usually perform, which
will be called to perform the operation on a specified component, after all dependencies
have been performed.

The perform method must call output-files (see below) to find out where to put its
files, because the user is allowed to override the method or tweak the output-translation
mechanism. Perform should only use the primary value returned by output-files. If
one and only one output file is expected, it can call output-file that checks that this
is the case and returns the first and only list element.

• output-files If your perform method has any output, you must define a method for
this function. for ASDF to determine where the outputs of performing operation lie.

Your method may return two values, a list of pathnames, and a boolean. If the boolean
is nil (or you fail to return multiple values), then enclosing :around methods may
translate these pathnames, e.g. to ensure object files are somehow stored in some
implementation-dependent cache. If the boolean is t then the pathnames are marked
not be translated by the enclosing :around method.

• component-depends-on If the action of performing the operation on a component has
dependencies, you must define a method on component-depends-on.

Your method will take as specialized arguments an operation and a component which
together identify an action, and return a list of entries describing actions that this
action depends on. The format of entries is described below.

It is strongly advised that you should always append the results of (call-next-method)
to the results of your method, or “interesting” failures will likely occur, unless you’re
a true specialist of ASDF internals. It is unhappily too late to compatibly use the
append method combination, but conceptually that’s the protocol that is being man-
ually implemented.

Each entry returned by component-depends-on is itself a list.

The first element of an entry is an operation designator: either an operation object
designating itself, or a symbol that names an operation class (that ASDF will instanti-
ate using make-operation). For instance, load-op, compile-op and prepare-op are
common such names, denoting the respective operations.

The rest of each entry is a list of component designators: either a component object
designating itself, or an identifier to be used with find-component. find-component

will be called with the current component’s parent as parent, and the identifier as
second argument. The identifier is typically a string, a symbol (to be downcased as per
coerce-name), or a list of strings or symbols. In particular, the empty list nil denotes
the parent itself.

An operation may provide methods for the following generic functions:

Chapter 6: The object model of ASDF 25

• input-files A method for this function is often not needed, since ASDF has a pretty
clever default input-files mechanism. You only need create a method if there are
multiple ultimate input files, and/or the bottom one doesn’t depend on the component-
pathname of the component.

• operation-done-p You only need to define a method on that function if you can detect
conditions that invalidate previous runs of the operation, even though no filesystem
timestamp has changed, in which case you return nil (the default is t).

For instance, the method for test-op always returns nil, so that tests are always run
afresh. Of course, the test-op for your system could depend on a deterministically
repeatable test-report-op, and just read the results from the report files, in which
case you could have this method return t.

Operations that print output should send that output to the standard CL stream
standard-output, as the Lisp compiler and loader do.

6.2 Components

A component represents a source file or (recursively) a collection of components. A system
is (roughly speaking) a top-level component that can be found via find-system.

A system designator is a system itself, or a string or symbol that behaves just like any
other component name (including with regard to the case conversion rules for component
names).

A component designator, relative to a base component, is either a component itself, or
a string or symbol, or a list of designators.

[Function]find-system system-designator &optional(error-p t)
Given a system designator, find-system finds and returns a system. If no system is
found, an error of type missing-component is thrown, or nil is returned if error-p
is false.

To find and update systems, find-system funcalls each element in the *system-

definition-search-functions* list, expecting a pathname to be returned, or a
system object, from which a pathname may be extracted, and that will be registered.
The resulting pathname (if any) is loaded if one of the following conditions is true:

• there is no system of that name in memory

• the pathname is different from that which was previously loaded

• the file’s last-modified time exceeds the last-modified time of the system in
memory

When system definitions are loaded from ‘.asd’ files, a new scratch package is created
for them to load into, so that different systems do not overwrite each others operations.
The user may also wish to (and is recommended to) include defpackage and in-

package forms in his system definition files, however, so that they can be loaded
manually if need be.

The default value of *system-definition-search-functions* is a list of two func-
tions. The first function looks in each of the directories given by evaluating members
of *central-registry* for a file whose name is the name of the system and whose
type is ‘asd’. The first such file is returned, whether or not it turns out to actually

Chapter 6: The object model of ASDF 26

define the appropriate system. The second function does something similar, for the
directories specified in the source-registry. Hence, it is strongly advised to define
a system foo in the corresponding file foo.asd.

[Function]find-component base path
Given a base component (or designator for such), and a path, find the component
designated by the path starting from the base.

If path is a component object, it designates itself, independently from the base.

If path is a string, or symbol denoting a string via coerce-name, then base is re-
solved to a component object, which must be a system or module, and the designated
component is the child named by the path.

If path is a cons cell, find-component with the base and the car of the path, and
the resulting object is used as the base for a tail call to find-component with the
car of the path.

If base is a component object, it designates itself.

If base is null, then path is used as the base, with nil as the path.

If base is a string, or symbol denoting a string via coerce-name, it designates a
system as per find-system.

If base is a cons cell, it designates the component found by find-component with its
car as base and cdr as path.

6.2.1 Common attributes of components

All components, regardless of type, have the following attributes. All attributes except
name are optional.

6.2.1.1 Name

A component name is a string or a symbol. If a symbol, its name is taken and lowercased.

Unless overridden by a :pathname attribute, the name will be interpreted as a pathname
specifier according to a Unix-style syntax. See Section 5.3 [Pathname specifiers], page 13.

6.2.1.2 Version identifier

This optional attribute specifies a version for the current component. The version should
typically be a string of integers separated by dots, for example ‘1.0.11’. For more infor-
mation on version specifiers, see Section 5.3 [The defsystem grammar], page 13.

A version may then be queried by the generic function version-satisfies, to see if
:version dependencies are satisfied, and when specifying dependencies, a constraint of
minimal version to satisfy can be specified using e.g. (:version "mydepname" "1.0.11").

Note that in the wild, we typically see version numbering only on components of type
system. Presumably it is much less useful within a given system, wherein the library author
is responsible to keep the various files in synch.

6.2.1.3 Required features

Traditionally defsystem users have used #+ reader conditionals to include or exclude specific
per-implementation files. This means that any single implementation cannot read the entire

Chapter 6: The object model of ASDF 27

system, which becomes a problem if it doesn’t wish to compile it, but instead for example
to create an archive file containing all the sources, as it will omit to process the system-
dependent sources for other systems.

Each component in an asdf system may therefore specify using :if-feature a feature
expression using the same syntax as #+ does, such that any reference to the component will
be ignored during compilation, loading and/or linking if the expression evaluates to false.
Since the expression is read by the normal reader, you must explicitly prefix your symbols
with : so they be read as keywords; this is as contrasted with the #+ syntax that implicitly
reads symbols in the keyword package by default.

For instance, :if-feature (:and :x86 (:or :sbcl :cmu :scl)) specifies that the given
component is only to be compiled and loaded when the implementation is SBCL, CMUCL
or Scieneer CL on an x86 machine. You can not write it as :if-feature (and x86 (or

sbcl cmu scl)) since the symbols would presumably fail to be read as keywords.

6.2.1.4 Dependencies

This attribute specifies dependencies of the component on its siblings. It is optional but
often necessary.

There is an excitingly complicated relationship between the initarg and the method that
you use to ask about dependencies

Dependencies are between (operation component) pairs. In your initargs for the compo-
nent, you can say

:in-order-to ((compile-op (load-op "a" "b") (compile-op "c"))

(load-op (load-op "foo")))

This means the following things:

• before performing compile-op on this component, we must perform load-op on a and
b, and compile-op on c,

• before performing load-op, we have to load foo

The syntax is approximately

(this-op @{(other-op required-components)@}+)

simple-component-name := string

| symbol

required-components := simple-component-name

| (required-components required-components)

component-name := simple-component-name

| (:version simple-component-name minimum-version-object)

Side note:

This is on a par with what ACL defsystem does. mk-defsystem is less general: it has an
implied dependency

for all source file x, (load x) depends on (compile x)

and using a :depends-on argument to say that b depends on a actually means that

Chapter 6: The object model of ASDF 28

(compile b) depends on (load a)

This is insufficient for e.g. the McCLIM system, which requires that all the files are
loaded before any of them can be compiled]

End side note

In ASDF, the dependency information for a given component and operation can be
queried using (component-depends-on operation component), which returns a list

((load-op "a") (load-op "b") (compile-op "c") ...)

component-depends-on can be subclassed for more specific component/operation types:
these need to (call-next-method) and append the answer to their dependency, unless they
have a good reason for completely overriding the default dependencies.

If it weren’t for CLISP, we’d be using LIST method combination to do this transparently.
But, we need to support CLISP. If you have the time for some CLISP hacking, I’m sure
they’d welcome your fixes.

A minimal version can be specified for a component you depend on (typically another
system), by specifying (:version "other-system" "1.2.3") instead of simply "other-

system" as the dependency. See the discussion of the semantics of :version in the defsys-
tem grammar.

6.2.1.5 pathname

This attribute is optional and if absent (which is the usual case), the component name will
be used.

See Section 5.3 [Pathname specifiers], page 13, for an explanation of how this attribute
is interpreted.

Note that the defsystem macro (used to create a “top-level” system) does additional
processing to set the filesystem location of the top component in that system. This is
detailed elsewhere. See Chapter 5 [Defining systems with defsystem], page 11.

6.2.1.6 properties

This attribute is optional.

Packaging systems often require information about files or systems in addition to that
specified by ASDF’s pre-defined component attributes. Programs that create vendor pack-
ages out of ASDF systems therefore have to create “placeholder” information to satisfy these
systems. Sometimes the creator of an ASDF system may know the additional information
and wish to provide it directly.

(component-property component property-name) and associated setfmethod will al-
low the programmatic update of this information. Property names are compared as if by
EQL, so use symbols or keywords or something.

6.2.2 Pre-defined subclasses of component

[Component]source-file
A source file is any file that the system does not know how to generate from other
components of the system.

Note that this is not necessarily the same thing as “a file containing data that is
typically fed to a compiler”. If a file is generated by some pre-processor stage (e.g.

Chapter 6: The object model of ASDF 29

a ‘.h’ file from ‘.h.in’ by autoconf) then it is not, by this definition, a source file.
Conversely, we might have a graphic file that cannot be automatically regenerated,
or a proprietary shared library that we received as a binary: these do count as source
files for our purposes.

Subclasses of source-file exist for various languages. FIXME: describe these.

[Component]module
A module is a collection of sub-components.

A module component has the following extra initargs:

• :components the components contained in this module

• :default-component-class All children components which don’t specify their
class explicitly are inferred to be of this type.

• :if-component-dep-fails This attribute was removed in ASDF 3. Do not use
it. Use :if-feature instead.

• :serial When this attribute is set, each subcomponent of this component is as-
sumed to depend on all subcomponents before it in the list given to :components,
i.e. all of them are loaded before a compile or load operation is performed on it.

The default operation knows how to traverse a module, so most operations will not
need to provide methods specialised on modules.

module may be subclassed to represent components such as foreign-language linked
libraries or archive files.

[Component]system
system is a subclass of module.

A system is a module with a few extra attributes for documentation purposes; these
are given elsewhere. See Section 5.3 [The defsystem grammar], page 13.

Users can create new classes for their systems: the default defsystem macro takes a
:class keyword argument.

6.2.3 Creating new component types

New component types are defined by subclassing one of the existing component classes and
specializing methods on the new component class.

FIXME: this should perhaps be explained more throughly, not only by example ...

As an example, suppose we have some implementation-dependent functionality that we
want to isolate in one subdirectory per Lisp implementation our system supports. We create
a subclass of cl-source-file:

(defclass unportable-cl-source-file (cl-source-file)

())

Function asdf:implementation-type (exported since 2.014.14) gives us the name of the
subdirectory. All that’s left is to define how to calculate the pathname of an unportable-

cl-source-file.

(defmethod component-pathname ((component unportable-cl-source-file))

(merge-pathnames*

(parse-unix-namestring (format nil "~(~A~)/" (asdf:implementation-type)))

Chapter 6: The object model of ASDF 30

(call-next-method)))

The new component type is used in a defsystem form in this way:

(defsystem :foo

:components

((:file "packages")

...

(:unportable-cl-source-file "threads"

:depends-on ("packages" ...))

...

)

6.3 Functions

[version-satisfies]version version-spec
Does version satisfy the version-spec. A generic function. ASDF provides built-in
methods for version being a component or string. version-spec should be a string.
If it’s a component, its version is extracted as a string before further processing.

A version string satisfies the version-spec if after parsing, the former is no older than
the latter. Therefore "1.9.1", "1.9.2" and "1.10" all satisfy "1.9.1", but "1.8.4"
or "1.9" do not. For more information about how version-satisfies parses and
interprets version strings and specifications, see Section 5.3 [The defsystem grammar],
page 13 (version specifiers) and Section 6.2.1 [Common attributes of components],
page 26.

Note that in versions of ASDF prior to 3.0.1, including the entire ASDF 1 and ASDF
2 series, version-satisfies would also require that the version and the version-spec
have the same major version number (the first integer in the list); if the major version
differed, the version would be considered as not matching the spec. But that feature
was not documented, therefore presumably not relied upon, whereas it was a nuisance
to several users. Starting with ASDF 3.0.1, version-satisfies does not treat the
major version number specially, and returns T simply if the first argument designates
a version that isn’t older than the one specified as a second argument. If needs be, the
(:version ...) syntax for specifying dependencies could be in the future extended
to specify an exclusive upper bound for compatible versions as well as an inclusive
lower bound.

Chapter 7: Controlling where ASDF searches for systems 31

7 Controlling where ASDF searches for systems

7.1 Configurations

Configurations specify paths where to find system files.

1. The search registry may use some hardcoded wrapping registry specification. This
allows some implementations (notably SBCL) to specify where to find some special
implementation-provided systems that need to precisely match the version of the im-
plementation itself.

2. An application may explicitly initialize the source-registry configuration using the con-
figuration API (see Chapter 7 [Configuration API], page 31, below) in which case this
takes precedence. It may itself compute this configuration from the command-line,
from a script, from its own configuration file, etc.

3. The source registry will be configured from the environment variable CL_SOURCE_

REGISTRY if it exists.

4. The source registry will be configured from user configuration file
‘$XDG_CONFIG_DIRS/common-lisp/source-registry.conf’ (which defaults
to ‘~/.config/common-lisp/source-registry.conf’) if it exists.

5. The source registry will be configured from user configuration directory
‘$XDG_CONFIG_DIRS/common-lisp/source-registry.conf.d/’ (which defaults to
‘~/.config/common-lisp/source-registry.conf.d/’) if it exists.

6. The source registry will be configured from system configuration file
‘/etc/common-lisp/source-registry.conf’ if it exists/

7. The source registry will be configured from system configuration directory
‘/etc/common-lisp/source-registry.conf.d/’ if it exists.

8. The source registry will be configured from a default configuration. This configura-
tion may allow for implementation-specific systems to be found, for systems to be
found the current directory (at the time that the configuration is initialized) as well as
:directory entries for ‘$XDG_DATA_DIRS/common-lisp/systems/’ and :tree entries
for ‘$XDG_DATA_DIRS/common-lisp/source/’. For instance, SBCL will include direc-
tories for its contribs when it can find them; it will look for them where SBCL was
installed, or at the location specified by the SBCL_HOME environment variable.

Each of these configurations is specified as an s-expression in a trivial domain-specific
language (defined below). Additionally, a more shell-friendly syntax is available for the
environment variable (defined yet below).

Each of these configurations is only used if the previous configuration explicitly or im-
plicitly specifies that it includes its inherited configuration.

Additionally, some implementation-specific directories may be automatically prepended
to whatever directories are specified in configuration files, no matter if the last one inherits
or not.

7.2 Truenames and other dangers

One great innovation of the original ASDF was its ability to leverage CL:TRUENAME to locate
where your source code was and where to build it, allowing for symlink farms as a simple

Chapter 7: Controlling where ASDF searches for systems 32

but effective configuration mechanism that is easy to control programmatically. ASDF 3
still supports this configuration style, and it is enabled by default; however we recommend
you instead use our source-registry configuration mechanism described below, because it is
easier to setup in a portable way across users and implementations.

Addtionally, some people dislike truename, either because it is very slow on their system,
or because they are using content-addressed storage where the truename of a file is related
to a digest of its individual contents, and not to other files in the same intended project. For
these people, ASDF 3 allows to eschew the TRUENAME mechanism, by setting the variable
asdf:*resolve-symlinks* to nil.

PS: Yes, if you haven’t read Vernor Vinge’s short but great classic “True Names... and
Other Dangers” then you’re in for a treat.

7.3 XDG base directory

Note that we purport to respect the XDG base directory specification as to where config-
uration files are located, where data files are located, where output file caches are located.
Mentions of XDG variables refer to that document.

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

This specification allows the user to specify some environment variables to customize
how applications behave to his preferences.

On Windows platforms, when not using Cygwin, instead of the XDG base directory
specification, we try to use folder configuration from the registry regarding Common AppData

and similar directories. Since support for querying the Windows registry is not possible to
do in reasonable amounts of portable Common Lisp code, ASDF 3 relies on the environment
variables that Windows usually exports.

7.4 Backward Compatibility

For backward compatibility as well as to provide a practical backdoor for hackers, ASDF will
first search for .asd files in the directories specified in asdf:*central-registry* before
it searches in the source registry above.

See Chapter 3 [Configuring ASDF to find your systems — old style], page 5.

By default, asdf:*central-registry* will be empty.

This old mechanism will therefore not affect you if you don’t use it, but will take prece-
dence over the new mechanism if you do use it.

7.5 Configuration DSL

Here is the grammar of the s-expression (SEXP) DSL for source-registry configuration:

;; A configuration is a single SEXP starting with keyword :source-registry

;; followed by a list of directives.

CONFIGURATION := (:source-registry DIRECTIVE ...)

;; A directive is one of the following:

DIRECTIVE :=

;; INHERITANCE DIRECTIVE:

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

Chapter 7: Controlling where ASDF searches for systems 33

;; Your configuration expression MUST contain

;; exactly one of either of these:

:inherit-configuration | ; splices inherited configuration (often specified last)

:ignore-inherited-configuration | ; drop inherited configuration (specified anywhere)

;; forward compatibility directive (since ASDF 2.011.4), useful when

;; you want to use new configuration features but have to bootstrap a

;; the newer required ASDF from an older release that doesn’t sport said features:

:ignore-invalid-entries | ; drops subsequent invalid entries instead of erroring out

;; add a single directory to be scanned (no recursion)

(:directory DIRECTORY-PATHNAME-DESIGNATOR) |

;; add a directory hierarchy, recursing but excluding specified patterns

(:tree DIRECTORY-PATHNAME-DESIGNATOR) |

;; override the defaults for exclusion patterns

(:exclude EXCLUSION-PATTERN ...) |

;; augment the defaults for exclusion patterns

(:also-exclude EXCLUSION-PATTERN ...) |

;; Note that the scope of a an exclude pattern specification is

;; the rest of the current configuration expression or file.

;; splice the parsed contents of another config file

(:include REGULAR-FILE-PATHNAME-DESIGNATOR) |

;; This directive specifies that some default must be spliced.

:default-registry

REGULAR-FILE-PATHNAME-DESIGNATOR := PATHNAME-DESIGNATOR ;; interpreted as a file

DIRECTORY-PATHNAME-DESIGNATOR := PATHNAME-DESIGNATOR ;; interpreted as a directory name

PATHNAME-DESIGNATOR :=

NIL | ;; Special: skip this entry.

ABSOLUTE-COMPONENT-DESIGNATOR ;; see pathname DSL

EXCLUSION-PATTERN := a string without wildcards, that will be matched exactly

against the name of a any subdirectory in the directory component

of a path. e.g. "_darcs" will match ‘#p"/foo/bar/_darcs/src/bar.asd"’

Pathnames are designated using another DSL, shared with the output-translations con-
figuration DSL below. The DSL is resolved by the function asdf::resolve-location, to
be documented and exported at some point in the future.

ABSOLUTE-COMPONENT-DESIGNATOR :=

(ABSOLUTE-COMPONENT-DESIGNATOR RELATIVE-COMPONENT-DESIGNATOR ...) |

STRING | ;; namestring (better be absolute or bust, directory assumed where applicable).

;; In output-translations, directory is assumed and **/*.*.* added if it’s last.

Chapter 7: Controlling where ASDF searches for systems 34

;; On MCL, a MacOSX-style POSIX namestring (for MacOS9 style, use #p"...");

;; Note that none of the above applies to strings used in *central-registry*,

;; which doesn’t use this DSL: they are processed as normal namestrings.

;; however, you can compute what you put in the *central-registry*

;; based on the results of say (asdf::resolve-location "/Users/fare/cl/cl-foo/")

PATHNAME | ;; pathname (better be an absolute path, or bust)

;; In output-translations, unless followed by relative components,

;; it better have appropriate wildcards, as in **/*.*.*

:HOME | ;; designates the user-homedir-pathname ~/

:USER-CACHE | ;; designates the default location for the user cache

:HERE | ;; designates the location of the configuration file

;; (or *default-pathname-defaults*, if invoked interactively)

:ROOT ;; magic, for output-translations source only: paths that are relative

;; to the root of the source host and device

;; Not valid anymore: :SYSTEM-CACHE (was a security hazard)

RELATIVE-COMPONENT-DESIGNATOR :=

(RELATIVE-COMPONENT-DESIGNATOR RELATIVE-COMPONENT-DESIGNATOR ...) |

STRING | ;; relative directory pathname as interpreted by parse-unix-namestring.

;; In output translations, if last component, **/*.*.* is added

PATHNAME | ;; pathname; unless last component, directory is assumed.

:IMPLEMENTATION | ;; directory based on implementation, e.g. sbcl-1.0.45-linux-x64

:IMPLEMENTATION-TYPE | ;; a directory based on lisp-implementation-type only, e.g. sbcl

:DEFAULT-DIRECTORY | ;; a relativized version of the default directory

:*/ | ;; any direct subdirectory (since ASDF 2.011.4)

:**/ | ;; any recursively inferior subdirectory (since ASDF 2.011.4)

:*.*.* | ;; any file (since ASDF 2.011.4)

;; Not supported (anymore): :UID and :USERNAME

For instance, as a simple case, my ‘~/.config/common-lisp/source-registry.conf’,
which is the default place ASDF looks for this configuration, once contained:

(:source-registry

(:tree (:home "cl")) ;; will expand to e.g. "/home/joeluser/cl/"

:inherit-configuration)

7.6 Configuration Directories

Configuration directories consist in files each containing a list of directives without any
enclosing (:source-registry ...) form. The files will be sorted by namestring as if by
string< and the lists of directives of these files with be concatenated in order. An implicit
:inherit-configuration will be included at the end of the list.

This allows for packaging software that has file granularity (e.g. Debian’s dpkg or some
future version of clbuild) to easily include configuration information about distributed
software.

The convention is that, for sorting purposes, the names of files in such a directory begin
with two digits that determine the order in which these entries will be read. Also, the type

Chapter 7: Controlling where ASDF searches for systems 35

of these files is conventionally "conf" and as a limitation to some implementations (e.g.
GNU clisp), the type cannot be nil.

Directories may be included by specifying a directory pathname or namestring in an
:include directive, e.g.:

(:include "/foo/bar/")

Hence, to achieve the same effect as my example ‘~/.config/common-lisp/source-registry.conf’
above, I could simply create a file ‘~/.config/common-lisp/source-registry.conf.d/33-home-fare-cl.conf’
alone in its directory with the following contents:

(:tree "/home/fare/cl/")

7.6.1 The :here directive

The :here directive is an absolute pathname designator that refers to the directory con-
taining the configuration file currently being processed.

The :here directive is intended to simplify the delivery of complex CL systems, and
for easy configuration of projects shared through revision control systems, in accordance
with our design principle that each participant should be able to provide all and only the
information available to him or her.

Consider a person X who has set up the source code repository for a complex project
with a master directory ‘dir/’. Ordinarily, one might simply have the user add a directive
that would look something like this:

(:tree "path/to/dir")

But what if X knows that there are very large subtrees under dir that are filled with,
e.g., Java source code, image files for icons, etc.? All of the asdf system definitions are
contained in the subdirectories ‘dir/src/lisp/’ and ‘dir/extlib/lisp/’, and these are
the only directories that should be searched.

In this case, X can put into ‘dir/’ a file ‘asdf.conf’ that contains the following:

(:source-registry

(:tree (:here "src/lisp/"))

(:tree (:here "extlib/lisp"))

(:directory (:here "outlier/")))

Then when someone else (call her Y) checks out a copy of this repository, she need only
add

(:include "/path/to/my/checkout/directory/asdf.conf")

to one of her previously-existing asdf source location configuration files, or invoke
initialize-source-registry with a configuration form containing that s-expression.
ASDF will find the .conf file that X has provided, and then set up source locations within
the working directory according to X’s (relative) instructions.

7.7 Shell-friendly syntax for configuration

When considering environment variable CL_SOURCE_REGISTRY ASDF will skip to next con-
figuration if it’s an empty string. It will READ the string as a SEXP in the DSL if it begins
with a paren (and it will be interpreted much like TEXINPUTS list of paths, where

Chapter 7: Controlling where ASDF searches for systems 36

* paths are separated by a : (colon) on Unix platforms (including cygwin), by a ;

(semicolon) on other platforms (mainly, Windows).

* each entry is a directory to add to the search path.

* if the entry ends with a double slash // then it instead indicates a tree in the subdi-
rectories of which to recurse.

* if the entry is the empty string (which may only appear once), then it indicates that
the inherited configuration should be spliced there.

7.8 Search Algorithm

In case that isn’t clear, the semantics of the configuration is that when searching for a
system of a given name, directives are processed in order.

When looking in a directory, if the system is found, the search succeeds, otherwise it
continues.

When looking in a tree, if one system is found, the search succeeds. If multiple systems
are found, the consequences are unspecified: the search may succeed with any of the found
systems, or an error may be raised. ASDF currently returns the first system found, XCVB
currently raised an error. If none is found, the search continues.

Exclude statements specify patterns of subdirectories the systems from which to ignore.
Typically you don’t want to use copies of files kept by such version control systems as Darcs.
Exclude statements are not propagated to further included or inherited configuration files
or expressions; instead the defaults are reset around every configuration statement to the
default defaults from asdf::*default-source-registry-exclusions*.

Include statements cause the search to recurse with the path specifications from the file
specified.

An inherit-configuration statement cause the search to recurse with the path specifica-
tions from the next configuration (see Chapter 7 [Configurations], page 31 above).

7.9 Caching Results

The implementation is allowed to either eagerly compute the information from the config-
urations and file system, or to lazily re-compute it every time, or to cache any part of it as
it goes. To explicitly flush any information cached by the system, use the API below.

7.10 Configuration API

The specified functions are exported from your build system’s package. Thus for ASDF the
corresponding functions are in package ASDF, and for XCVB the corresponding functions
are in package XCVB.

[Function]initialize-source-registry &optionalPARAMETER
will read the configuration and initialize all internal variables. You may extend or
override configuration from the environment and configuration files with the given
PARAMETER, which can be nil (no configuration override), or a SEXP (in the
SEXP DSL), a string (as in the string DSL), a pathname (of a file or directory with
configuration), or a symbol (fbound to function that when called returns one of the
above).

Chapter 7: Controlling where ASDF searches for systems 37

[Function]clear-source-registry
undoes any source registry configuration and clears any cache for the search algorithm.
You might want to call this function (or better, clear-configuration) before you
dump an image that would be resumed with a different configuration, and return
an empty configuration. Note that this does not include clearing information about
systems defined in the current image, only about where to look for systems not yet
defined.

[Function]ensure-source-registry &optionalPARAMETER
checks whether a source registry has been initialized. If not, initialize it with the
given PARAMETER.

Every time you use ASDF’s find-system, or anything that uses it (such as operate,
load-system, etc.), ensure-source-registry is called with parameter nil, which the
first time around causes your configuration to be read. If you change a configuration file,
you need to explicitly initialize-source-registry again, or maybe simply to clear-

source-registry (or clear-configuration) which will cause the initialization to happen
next time around.

7.11 Status

This mechanism is vastly successful, and we have declared that asdf:*central-registry*
is not recommended anymore, though we will continue to support it. All hooks into
implementation-specific search mechanisms have been integrated in the wrapping-source-
registry that everyone uses implicitly.

7.12 Rejected ideas

Alternatives I considered and rejected included:

1. Keep asdf:*central-registry* as the master with its current semantics, and some-
how the configuration parser expands the new configuration language into a expanded
series of directories of subdirectories to lookup, pre-recursing through specified hierar-
chies. This is kludgy, and leaves little space of future cleanups and extensions.

2. Keep asdf:*central-registry* remains the master but extend its semantics in com-
pletely new ways, so that new kinds of entries may be implemented as a recursive
search, etc. This seems somewhat backwards.

3. Completely remove asdf:*central-registry* and break backwards compatibility.
Hopefully this will happen in a few years after everyone migrate to a better ASDF
and/or to XCVB, but it would be very bad to do it now.

4. Replace asdf:*central-registry* by a symbol-macro with appropriate magic when
you dereference it or setf it. Only the new variable with new semantics is handled by
the new search procedure. Complex and still introduces subtle semantic issues.

I’ve been suggested the below features, but have rejected them, for the sake of keeping
ASDF no more complex than strictly necessary.

• More syntactic sugar: synonyms for the configuration directives, such as
(:add-directory X) for (:directory X), or (:add-directory-hierarchy X) or
(:add-directory X :recurse t) for (:tree X).

Chapter 7: Controlling where ASDF searches for systems 38

• The possibility to register individual files instead of directories.

• Integrate Xach Beane’s tilde expander into the parser, or something similar that is shell-
friendly or shell-compatible. I’d rather keep ASDF minimal. But maybe this precisely
keeps it minimal by removing the need for evaluated entries that ASDF has? i.e. uses
of USER-HOMEDIR-PATHNAME and $SBCL_HOME Hopefully, these are already superseded
by the :default-registry

• Using the shell-unfriendly syntax /** instead of // to specify recursion down a filesys-
tem tree in the environment variable. It isn’t that Lisp friendly either.

7.13 TODO

• Add examples

7.14 Credits for the source-registry

Thanks a lot to Stelian Ionescu for the initial idea.

Thanks to Rommel Martinez for the initial implementation attempt.

All bad design ideas and implementation bugs are to mine, not theirs. But so are good
design ideas and elegant implementation tricks.

— Francois-Rene Rideau fare@tunes.org, Mon, 22 Feb 2010 00:07:33 -0500

mailto:fare@tunes.org

Chapter 8: Controlling where ASDF saves compiled files 39

8 Controlling where ASDF saves compiled files

Each Common Lisp implementation has its own format for compiled files (fasls for short,
short for “fast loading”). If you use multiple implementations (or multiple versions of the
same implementation), you’ll soon find your source directories littered with various ‘fasl’s,
‘dfsl’s, ‘cfsl’s and so on. Worse yet, some implementations use the same file extension
while changing formats from version to version (or platform to platform) which means that
you’ll have to recompile binaries as you switch from one implementation to the next.

Since ASDF 2, ASDF includes the asdf-output-translations facility to mitigate the
problem.

8.1 Configurations

Configurations specify mappings from input locations to output locations. Once again we
rely on the XDG base directory specification for configuration. See Chapter 7 [XDG base
directory], page 31.

1. Some hardcoded wrapping output translations configuration may be used. This allows
special output translations (or usually, invariant directories) to be specified correspond-
ing to the similar special entries in the source registry.

2. An application may explicitly initialize the output-translations configuration using the
Configuration API in which case this takes precedence. (see Chapter 8 [Configuration
API], page 39.) It may itself compute this configuration from the command-line, from
a script, from its own configuration file, etc.

3. The source registry will be configured from the environment variable ASDF_OUTPUT_

TRANSLATIONS if it exists.

4. The source registry will be configured from user configuration file
‘$XDG_CONFIG_DIRS/common-lisp/asdf-output-translations.conf’ (which
defaults to ‘~/.config/common-lisp/asdf-output-translations.conf’) if it exists.

5. The source registry will be configured from user configuration directory
‘$XDG_CONFIG_DIRS/common-lisp/asdf-output-translations.conf.d/’ (which
defaults to ‘~/.config/common-lisp/asdf-output-translations.conf.d/’) if it
exists.

6. The source registry will be configured from system configuration file
‘/etc/common-lisp/asdf-output-translations.conf’ if it exists.

7. The source registry will be configured from system configuration directory
‘/etc/common-lisp/asdf-output-translations.conf.d/’ if it exists.

Each of these configurations is specified as a SEXP in a trival domain-specific language
(defined below). Additionally, a more shell-friendly syntax is available for the environment
variable (defined yet below).

Each of these configurations is only used if the previous configuration explicitly or im-
plicitly specifies that it includes its inherited configuration.

Note that by default, a per-user cache is used for output files. This allows the seamless
use of shared installations of software between several users, and takes files out of the way
of the developers when they browse source code, at the expense of taking a small toll when
developers have to clean up output files and find they need to get familiar with output-
translations first.

Chapter 8: Controlling where ASDF saves compiled files 40

8.2 Backward Compatibility

We purposefully do NOT provide backward compatibility with earlier versions of ASDF-
Binary-Locations (8 Sept 2009), common-lisp-controller (7.0) or cl-launch (2.35),
each of which had similar general capabilities. The previous APIs of these programs were
not designed for configuration by the end-user in an easy way with configuration files.
Recent versions of same packages use the new asdf-output-translations API as defined
below: common-lisp-controller (7.2) and cl-launch (3.000). ASDF-Binary-Locations

is fully superseded and not to be used anymore.

This incompatibility shouldn’t inconvenience many people. Indeed, few people use and
customize these packages; these few people are experts who can trivially adapt to the new
configuration. Most people are not experts, could not properly configure these features
(except inasmuch as the default configuration of common-lisp-controller and/or cl-

launch might have been doing the right thing for some users), and yet will experience
software that “just works”, as configured by the system distributor, or by default.

Nevertheless, if you are a fan of ASDF-Binary-Locations, we provide a limited emulation
mode:

[Function]enable-asdf-binary-locations-compatibility
&keycentralize-lisp-binaries default-toplevel-directory
include-per-user-information map-all-source-files source-to-target-mappings

This function will initialize the new asdf-output-translations facility in a
way that emulates the behavior of the old ASDF-Binary-Locations facility.
Where you would previously set global variables *centralize-lisp-binaries*,
default-toplevel-directory, *include-per-user-information*, *map-all-source-files*
or *source-to-target-mappings* you will now have to pass the same values as
keyword arguments to this function. Note however that as an extension the
:source-to-target-mappings keyword argument will accept any valid pathname
designator for asdf-output-translations instead of just strings and pathnames.

If you insist, you can also keep using the old ASDF-Binary-Locations (the one avail-
able as an extension to load of top of ASDF, not the one built into a few old versions
of ASDF), but first you must disable asdf-output-translations with (asdf:disable-

output-translations), or you might experience “interesting” issues.

Also, note that output translation is enabled by default. To disable it, use
(asdf:disable-output-translations).

8.3 Configuration DSL

Here is the grammar of the SEXP DSL for asdf-output-translations configuration:

;; A configuration is single SEXP starting with keyword :source-registry

;; followed by a list of directives.

CONFIGURATION := (:output-translations DIRECTIVE ...)

;; A directive is one of the following:

DIRECTIVE :=

;; INHERITANCE DIRECTIVE:

;; Your configuration expression MUST contain

Chapter 8: Controlling where ASDF saves compiled files 41

;; exactly one of either of these:

:inherit-configuration | ; splices inherited configuration (often specified last)

:ignore-inherited-configuration | ; drop inherited configuration (specified anywhere)

;; forward compatibility directive (since ASDF 2.011.4), useful when

;; you want to use new configuration features but have to bootstrap a

;; the newer required ASDF from an older release that doesn’t sport said features:

:ignore-invalid-entries | ; drops subsequent invalid entries instead of erroring out

;; include a configuration file or directory

(:include PATHNAME-DESIGNATOR) |

;; enable global cache in ~/.common-lisp/cache/sbcl-1.0.45-linux-amd64/ or something.

:enable-user-cache |

;; Disable global cache. Map / to /

:disable-cache |

;; add a single directory to be scanned (no recursion)

(DIRECTORY-DESIGNATOR DIRECTORY-DESIGNATOR)

;; use a function to return the translation of a directory designator

(DIRECTORY-DESIGNATOR (:function TRANSLATION-FUNCTION))

DIRECTORY-DESIGNATOR :=

NIL | ;; As source: skip this entry. As destination: same as source

T | ;; as source matches anything, as destination leaves pathname unmapped.

ABSOLUTE-COMPONENT-DESIGNATOR ;; same as in the source-registry language

TRANSLATION-FUNCTION :=

SYMBOL | ;; symbol of a function that takes two arguments,

;; the pathname to be translated and the matching DIRECTORY-DESIGNATOR

LAMBDA ;; A form which evalutates to a function taking two arguments consisting of

;; the pathname to be translated and the matching DIRECTORY-DESIGNATOR

Relative components better be either relative or subdirectories of the path before them,
or bust.

The last component, if not a pathname, is notionally completed by ‘/**/*.*’. You can
specify more fine-grained patterns by using a pathname object as the last component e.g.
‘#p"some/path/**/foo*/bar-*.fasl"’

You may use #+features to customize the configuration file.

The second designator of a mapping may be nil, indicating that files are not mapped
to anything but themselves (same as if the second designator was the same as the first).

When the first designator is t, the mapping always matches. When the first designator
starts with :root, the mapping matches any host and device. In either of these cases, if the
second designator isn’t t and doesn’t start with :root, then strings indicating the host and

Chapter 8: Controlling where ASDF saves compiled files 42

pathname are somehow copied in the beginning of the directory component of the source
pathname before it is translated.

When the second designator is t, the mapping is the identity. When the second designa-
tor starts with :root, the mapping preserves the host and device of the original pathname.
Notably, this allows you to map files to a subdirectory of the whichever directory the
file is in. Though the syntax is not quite as easy to use as we’d like, you can have an
(source destination) mapping entry such as follows in your configuration file, or you may
use enable-asdf-binary-locations-compatibility with :centralize-lisp-binaries

nil which will do the same thing internally for you:

#.(let ((wild-subdir (make-pathname :directory ’(:relative :wild-inferiors)))

(wild-file (make-pathname :name :wild :version :wild :type :wild)))

‘((:root ,wild-subdir ,wild-file) ;; Or using the implicit wildcard, just :root

(:root ,wild-subdir :implementation ,wild-file)))

Starting with ASDF 2.011.4, you can use the simpler: ‘(:root (:root :**/

:implementation :*.*.*))

:include statements cause the search to recurse with the path specifications from the
file specified.

If the translate-pathname mechanism cannot achieve a desired translation, the user
may provide a function which provides the required algorithim. Such a translation function
is specified by supplying a list as the second directory-designator the first element of
which is the keyword :function, and the second element of which is either a symbol which
designates a function or a lambda expression. The function designated by the second
argument must take two arguments, the first being the pathname of the source file, the
second being the wildcard that was matched. The result of the function invocation should
be the translated pathname.

An :inherit-configuration statement cause the search to recurse with the path spec-
ifications from the next configuration. See Chapter 8 [Configurations], page 39, above.

• :enable-user-cache is the same as (t :user-cache).

• :disable-cache is the same as (t t).

• :user-cache uses the contents of variable asdf::*user-cache* which by default is
the same as using (:home ".cache" "common-lisp" :implementation).

• :system-cache uses the contents of variable asdf::*system-cache* which by default
is the same as using ("/var/cache/common-lisp" :uid :implementation-type) (on
Unix and cygwin), or something semi-sensible on Windows.

8.4 Configuration Directories

Configuration directories consist in files each contains a list of directives without any en-
closing (:output-translations ...) form. The files will be sorted by namestring as if by
string< and the lists of directives of these files with be concatenated in order. An implicit
:inherit-configuration will be included at the end of the list.

This allows for packaging software that has file granularity (e.g. Debian’s dpkg or some
future version of clbuild) to easily include configuration information about software being
distributed.

Chapter 8: Controlling where ASDF saves compiled files 43

The convention is that, for sorting purposes, the names of files in such a directory begin
with two digits that determine the order in which these entries will be read. Also, the type
of these files is conventionally "conf" and as a limitation of some implementations, the type
cannot be nil.

Directories may be included by specifying a directory pathname or namestring in an
:include directive, e.g.:

(:include "/foo/bar/")

8.5 Shell-friendly syntax for configuration

When considering environment variable ASDF_OUTPUT_TRANSLATIONS ASDF will skip to
next configuration if it’s an empty string. It will READ the string as an SEXP in the DSL if
it begins with a paren (and it will be interpreted as a list of directories. Directories should
come by pairs, indicating a mapping directive. Entries are separated by a : (colon) on Unix
platforms (including cygwin), by a ; (semicolon) on other platforms (mainly, Windows).

The magic empty entry, if it comes in what would otherwise be the first entry in a pair,
indicates the splicing of inherited configuration. If it comes as the second entry in a pair,
it indicates that the directory specified first is to be left untranslated (which has the same
effect as if the directory had been repeated).

8.6 Semantics of Output Translations

From the specified configuration, a list of mappings is extracted in a straightforward way:
mappings are collected in order, recursing through included or inherited configuration as
specified. To this list is prepended some implementation-specific mappings, and is appended
a global default.

The list is then compiled to a mapping table as follows: for each entry, in order, resolve
the first designated directory into an actual directory pathname for source locations. If
no mapping was specified yet for that location, resolve the second designated directory to
an output location directory add a mapping to the table mapping the source location to
the output location, and add another mapping from the output location to itself (unless a
mapping already exists for the output location).

Based on the table, a mapping function is defined, mapping source pathnames to output
pathnames: given a source pathname, locate the longest matching prefix in the source
column of the mapping table. Replace that prefix by the corresponding output column in
the same row of the table, and return the result. If no match is found, return the source
pathname. (A global default mapping the filesystem root to itself may ensure that there
will always be a match, with same fall-through semantics).

8.7 Caching Results

The implementation is allowed to either eagerly compute the information from the config-
urations and file system, or to lazily re-compute it every time, or to cache any part of it as
it goes. To explicitly flush any information cached by the system, use the API below.

8.8 Output location API

The specified functions are exported from package ASDF.

Chapter 8: Controlling where ASDF saves compiled files 44

[Function]initialize-output-translations &optionalPARAMETER
will read the configuration and initialize all internal variables. You may extend or
override configuration from the environment and configuration files with the given
PARAMETER, which can be nil (no configuration override), or a SEXP (in the
SEXP DSL), a string (as in the string DSL), a pathname (of a file or directory with
configuration), or a symbol (fbound to function that when called returns one of the
above).

[Function]disable-output-translations
will initialize output translations in a way that maps every pathname to itself, effec-
tively disabling the output translation facility.

[Function]clear-output-translations
undoes any output translation configuration and clears any cache for the mapping
algorithm. You might want to call this function (or better, clear-configuration)
before you dump an image that would be resumed with a different configuration, and
return an empty configuration. Note that this does not include clearing information
about systems defined in the current image, only about where to look for systems not
yet defined.

[Function]ensure-output-translations &optionalPARAMETER
checks whether output translations have been initialized. If not, initialize them with
the given PARAMETER. This function will be called before any attempt to operate
on a system.

[Function]apply-output-translations PATHNAME
Applies the configured output location translations to PATHNAME (calls ensure-

output-translations for the translations).

Every time you use ASDF’s output-files, or anything that uses it (that may compile,
such as operate, perform, etc.), ensure-output-translations is called with parameter
nil, which the first time around causes your configuration to be read. If you change a con-
figuration file, you need to explicitly initialize-output-translations again, or maybe
clear-output-translations (or clear-configuration), which will cause the initializa-
tion to happen next time around.

8.9 Credits for output translations

Thanks a lot to Bjorn Lindberg and Gary King for ASDF-Binary-Locations, and to Peter
van Eynde for Common Lisp Controller.

All bad design ideas and implementation bugs are to mine, not theirs. But so are good
design ideas and elegant implementation tricks.

— Francois-Rene Rideau fare@tunes.org

mailto:fare@tunes.org

Chapter 9: Error handling 45

9 Error handling

9.1 ASDF errors

If ASDF detects an incorrect system definition, it will signal a generalised instance of
SYSTEM-DEFINITION-ERROR.

Operations may go wrong (for example when source files contain errors). These are
signalled using generalised instances of OPERATION-ERROR.

9.2 Compilation error and warning handling

ASDF checks for warnings and errors when a file is compiled. The variables *compile-file-
warnings-behaviour* and *compile-file-errors-behavior* control the handling of any such
events. The valid values for these variables are :error, :warn, and :ignore.

Chapter 10: Miscellaneous additional functionality 46

10 Miscellaneous additional functionality

ASDF includes several additional features that are generally useful for system definition
and development.

10.1 Controlling file compilation

When declaring a component (system, module, file), you can specify a keyword argument
:around-compile function. If left unspecified (and therefore unbound), the value will be
inherited from the parent component if any, or with a default of nil if no value is specified
in any transitive parent.

The argument must be a either nil, a fbound symbol, a lambda-expression (e.g. (lambda
(thunk) ...(funcall thunk ...) ...)) a function object (e.g. using #.#’ but that’s dis-
couraged because it prevents the introspection done by e.g. asdf-dependency-grovel), or
a string that when read yields a symbol or a lambda-expression. nil means the normal
compile-file function will be called. A non-nil value designates a function of one argument
that will be called with a function that will invoke compile-file* with various arguments;
the around-compile hook may supply additional keyword arguments to pass to that call to
compile-file*.

One notable argument that is heeded by compile-file* is :compile-check, a func-
tion called when the compilation was otherwise a success, with the same arguments as
compile-file; the function shall return true if the compilation and its resulting compiled
file respected all system-specific invariants, and false (nil) if it broke any of those invari-
ants; it may issue warnings or errors before it returns nil. (NB: The ability to pass such
extra flags is only available starting with ASDF 2.22.3.) This feature is notably exercised
by asdf-finalizers.

By using a string, you may reference a function, symbol and/or package that will only
be created later during the build, but isn’t yet present at the time the defsystem form is
evaluated. However, if your entire system is using such a hook, you may have to explicitly
override the hook with nil for all the modules and files that are compiled before the hook
is defined.

Using this hook, you may achieve such effects as: locally renaming packages, binding
readtables and other syntax-controlling variables, handling warnings and other condi-
tions, proclaiming consistent optimization settings, saving code coverage information, main-
taining meta-data about compilation timings, setting gensym counters and PRNG seeds
and other sources of non-determinism, overriding the source-location and/or timestamping
systems, checking that some compile-time side-effects were properly balanced, etc.

Note that there is no around-load hook. This is on purpose. Some implementations
such as ECL, GCL or MKCL link object files, which allows for no such hook. Other
implementations allow for concatenating FASL files, which doesn’t allow for such a hook
either. We aim to discourage something that’s not portable, and has some dubious impact
on performance and semantics even when it is possible. Things you might want to do with
an around-load hook are better done around-compile, though it may at times require some
creativity (see e.g. the package-renaming system).

Chapter 10: Miscellaneous additional functionality 47

10.2 Controlling source file character encoding

Starting with ASDF 2.21, components accept a :encoding option so authors may specify
which character encoding should be used to read and evaluate their source code. When
left unspecified, the encoding is inherited from the parent module or system; if no
encoding is specified at any point, the default :autodetect is assumed. By default,
only :default, :utf-8 and :autodetect are accepted. :autodetect, the default, calls
encoding-detection-hook which by default always returns *default-encoding*

which itself defaults to :default.

In other words, there now are plenty of extension hooks, but by default ASDF follows the
backwards compatible behavior of using whichever :default encoding your implementation
uses, which itself may or may not vary based on environment variables and other locale
settings. In practice this means that only source code that only uses ASCII is guaranteed
to be read the same on all implementations independently from any user setting.

Additionally, for backward-compatibility with older versions of ASDF and/or with im-
plementations that do not support unicode and its many encodings, you may want to use the
reader conditionals #+asdf-unicode #+asdf-unicode to protect any :encoding encoding

statement as :asdf-unicode will be present in *features* only if you’re using a recent
ASDF on an implementation that supports unicode. We recommend that you avoid using
unprotected :encoding specifications until after ASDF 2.21 or later becomes widespread,
hopefully by the end of 2012.

While it offers plenty of hooks for extension, and one such extension is being developed
(see below), ASDF itself only recognizes one encoding beside :default, and that is :utf-8,
which is the de facto standard, already used by the vast majority of libraries that use more
than ASCII. On implementations that do not support unicode, the feature :asdf-unicode
is absent, and the :default external-format is used to read even source files declared as
:utf-8. On these implementations, non-ASCII characters intended to be read as one CL
character may thus end up being read as multiple CL characters. In most cases, this
shouldn’t affect the software’s semantics: comments will be skipped just the same, strings
with be read and printed with slightly different lengths, symbol names will be accordingly
longer, but none of it should matter. But a few systems that actually depend on unicode
characters may fail to work properly, or may work in a subtly different way. See for instance
lambda-reader.

We invite you to embrace UTF-8 as the encoding for non-ASCII characters starting
today, even without any explicit specification in your .asd files. Indeed, on some imple-
mentations and configurations, UTF-8 is already the :default, and loading your code may
cause errors if it is encoded in anything but UTF-8. Therefore, even with the legacy be-
havior, non-UTF-8 is guaranteed to break for some users, whereas UTF-8 is pretty much
guaranteed not to break anywhere (provided you do not use a BOM), although it might
be read incorrectly on some implementations. In the future, we intend to make :utf-8 the
default value of *default-encoding*, to be enforced everywhere, so at least the code is
guaranteed to be read correctly everywhere it can be.

If you need non-standard character encodings for your source code, use the extension
system asdf-encodings, by specifying :defsystem-depends-on (:asdf-encodings) in
your defsystem. This extension system will register support for more encodings using
the *encoding-external-format-hook* facility, so you can explicitly specify :encoding

Chapter 10: Miscellaneous additional functionality 48

:latin1 in your .asd file. Using the *encoding-detection-hook* it will also eventually
implement some autodetection of a file’s encoding from an emacs-style -*- mode: lisp ;

coding: latin1 -*- declaration, or otherwise based on an analysis of octet patterns in the
file. At this point, asdf-encoding only supports the encodings that are supported as part
of your implementation. Since the list varies depending on implementations, we once again
recommend you use :utf-8 everywhere, which is the most portable (next is :latin1).

If you’re not using a version of Quicklisp that has it, you may get the source for
asdf-encodings using git: git clone git://common-lisp.net/projects/asdf/asdf-

encodings.git or git clone ssh://common-lisp.net/project/asdf/git/asdf-

encodings.git. You can also browse the repository on http://common-lisp.net/gitweb?p=projects/asdf/asdf-encodings.git.

In the future, we intend to change the default *default-encoding* to :utf-8, which
is already the de facto standard for most libraries that use non-ASCII characters: utf-8
works everywhere and was backhandedly enforced by a lot of people using SBCL and utf-8
and sending reports to authors so they make their packages compatible. A survey showed
only about a handful few libraries are incompatible with non-UTF-8, and then, only in
comments, and we believe that authors will adopt UTF-8 when prompted. See the April
2012 discussion on the asdf-devel mailing-list. For backwards compatibility with users
who insist on a non-UTF-8 encoding, but cannot immediately transition to using asdf-

encodings (maybe because it isn’t ready), it will still be possible to use the :encoding

:default option in your defsystem form to restore the behavior of ASDF 2.20 and earlier.
This shouldn’t be required in libraries, because user pressure as mentioned above will already
have pushed library authors towards using UTF-8; but authors of end-user programs might
care.

When you use asdf-encodings, any further loaded .asd file will use the autodetection
algorithm to determine its encoding; yet if you depend on this detection happening, you
may want to explicitly load asdf-encodings early in your build, for by the time you can use
:defsystem-depends-on, it is already too late to load it. In practice, this means that the
default-encoding is usually used for .asd files. Currently, this defaults to :default for
backwards compatibility, and that means that you shouldn’t rely on non-ASCII characters
in a .asd file. Since component (path)names are the only real data in these files, and non-
ASCII characters are not very portable for file names, this isn’t too much of an issue. We
still encourage you to use either plain ASCII or UTF-8 in .asd files, as we intend to make
:utf-8 the default encoding in the future. This might matter, for instance, in meta-data
about author’s names.

10.3 Miscellaneous Functions

These functions are exported by ASDF for your convenience.

[Function]system-relative-pathname system name &keytype
It’s often handy to locate a file relative to some system. The system-relative-

pathname function meets this need.

It takes two mandatory arguments system and name and a keyword argument type:
system is name of a system, whereas name and optionally type specify a relative
pathname, interpreted like a component pathname specifier by coerce-pathname.
See Section 5.3 [Pathname specifiers], page 13.

http://common-lisp.net/gitweb?p=projects/asdf/asdf-encodings.git

Chapter 10: Miscellaneous additional functionality 49

It returns a pathname built from the location of the system’s source directory and
the relative pathname. For example:

> (asdf:system-relative-pathname ’cl-ppcre "regex.data")

#P"/repository/other/cl-ppcre/regex.data"

[Function]system-source-directory system-designator
ASDF does not provide a turnkey solution for locating data (or other miscellaneous)
files that are distributed together with the source code of a system. Programmers can
use system-source-directory to find such files. Returns a pathname object. The
system-designator may be a string, symbol, or ASDF system object.

[Function]clear-system system-designator
It is sometimes useful to force recompilation of a previously loaded system. In these
cases, it may be useful to (asdf:clear-system :foo) to remove the system from the
table of currently loaded systems; the next time the system foo or one that depends
on it is re-loaded, foo will then be loaded again. Alternatively, you could touch
foo.asd or remove the corresponding fasls from the output file cache. (It was once
conceived that one should provide a list of systems the recompilation of which to force
as the :force keyword argument to load-system; but this has never worked, and
though the feature was fixed in ASDF 2.000, it remains cerror’ed out as nobody ever
used it.)

Note that this does not and cannot by itself undo the previous loading of the system.
Common Lisp has no provision for such an operation, and its reliance on irreversible
side-effects to global datastructures makes such a thing impossible in the general
case. If the software being re-loaded is not conceived with hot upgrade in mind, this
re-loading may cause many errors, warnings or subtle silent problems, as packages,
generic function signatures, structures, types, macros, constants, etc. are being rede-
fined incompatibly. It is up to the user to make sure that reloading is possible and
has the desired effect. In some cases, extreme measures such as recursively delet-
ing packages, unregistering symbols, defining methods on update-instance-for-

redefined-class and much more are necessary for reloading to happen smoothly.
ASDF itself goes through notable pains to make such a hot upgrade possible with re-
spect to its own code, and what it does is ridiculously complex; look at the beginning
of ‘asdf.lisp’ to see what it does.

[Function]register-preloaded-system name &restkeys
A system with name name, created by make-instance with extra keys keys (e.g.
:version), is registered as preloaded. That is, its code has already been loaded into
the current image, and if at some point some other system :depends-on it yet no
source code is found, it is considered as already provided, and ASDF will not raise a
missing-component error.

This function is particularly useful if you distribute your code as fasls with either
fasl-op or monolithic-fasl-op, and want to register systems so that dependencies
will work uniformly whether you’re using your software from source or from fasl.

[Function]run-shell-command control-string &restargs
This function is obsolete and present only for the sake of backwards-compatibility: “If
it’s not backwards, it’s not compatible”. We strongly discourage its use. Its current

Chapter 10: Miscellaneous additional functionality 50

behavior is only well-defined on Unix platforms (which include MacOS X and cygwin).
On Windows, anything goes. The following documentation is only for the purpose of
your migrating away from it in a way that preserves semantics.

Instead we recommend the use run-program, described in the next section, and avail-
able as part of ASDF since ASDF 3.

run-shell-command takes as arguments a format control-string and arguments
to be passed to format after this control-string to produce a string. This string is
a command that will be evaluated with a POSIX shell if possible; yet, on Windows,
some implementations will use CMD.EXE, while others (like SBCL) will make an
attempt at invoking a POSIX shell (and fail if it is not present).

10.4 Some Utility Functions

The below functions are not exported by ASDF itself, but by UIOP, available since ASDF 3.
Some of them have precursors in ASDF 2, but we recommend you rely on ASDF 3 for active
developments. UIOP provides many, many more utility functions, and we recommend you
read its README and sources for more information.

[Function]parse-unix-namestring name &keytype defaults dot-dot
ensure-directory &allow-other-keys

Coerce NAME into a PATHNAME using standard Unix syntax.

Unix syntax is used whether or not the underlying system is Unix; on such non-Unix
systems it is only usable but for relative pathnames; but especially to manipulate
relative pathnames portably, it is of crucial to possess a portable pathname syntax
independent of the underlying OS. This is what parse-unix-namestring provides,
and why we use it in ASDF.

When given a pathname object, just return it untouched. When given nil, just return
nil. When given a non-null symbol, first downcase its name and treat it as a string.
When given a string, portably decompose it into a pathname as below.

#\/ separates directory components.

The last #\/-separated substring is interpreted as follows: 1- If type is :directory
or ensure-directory is true, the string is made the last directory component, and its
name and type are nil. if the string is empty, it’s the empty pathname with all slots
nil. 2- If type is nil, the substring is a file-namestring, and its name and type are
separated by split-name-type. 3- If type is a string, it is the given type, and the
whole string is the name.

Directory components with an empty name the name . are removed. Any directory
named .. is read as dot-dot, which must be one of :back or :up and defaults to
:back.

host, device and version components are taken from defaults, which itself defaults
to *nil-pathname*, also used if defaults is nil. No host or device can be specified
in the string itself, which makes it unsuitable for absolute pathnames outside Unix.

For relative pathnames, these components (and hence the defaults) won’t matter if
you use merge-pathnames* but will matter if you use merge-pathnames, which is an
important reason to always use merge-pathnames*.

Chapter 10: Miscellaneous additional functionality 51

Arbitrary keys are accepted, and the parse result is passed to ensure-pathname

with those keys, removing type, defaults and dot-dot. When you’re manipulating
pathnames that are supposed to make sense portably even though the OS may not be
Unixish, we recommend you use :want-relative t to throw an error if the pathname
is absolute

[Function]merge-pathnames* specified &optionaldefaults
This function is a replacement for merge-pathnames that uses the host and device
from the defaults rather than the specified pathname when the latter is a relative
pathname. This allows ASDF and its users to create and use relative pathnames
without having to know beforehand what are the host and device of the absolute
pathnames they are relative to.

[Function]subpathname pathname subpath &keytype
This function takes a pathname and a subpath and a type. If subpath is already a
pathname object (not namestring), and is an absolute pathname at that, it is returned
unchanged; otherwise, subpath is turned into a relative pathname with given type as
per parse-unix-namestring with :want-relative t :type type, then it is merged
with the pathname-directory-pathname of pathname, as per merge-pathnames*.

We strongly encourage the use of this function for portably resolving relative path-
names in your code base.

[Function]subpathname* pathname subpath &keytype
This function returns nil if the base pathname is nil, otherwise acts like
subpathname.

[Function]run-program command &keyignore-error-status force-shell input output
error-output

if-input-does-not-exist if-output-exists if-error-output-exists element-type external-
format &allow-other-keys

run-program takes a command argument that is either a list of a program name or
path and its arguments, or a string to be executed by a shell. It spawns the command,
waits for it to return, verifies that it exited cleanly (unless told not too below), and
optionally captures and processes its output. It accepts many keyword arguments to
configure its behavior.

run-program returns three values: the first for the output, the second for the error-
output, and the third for the return value. (Beware that before ASDF 3.0.2.11, it
didn’t handle input or error-output, and returned only one value, the one for the
output if any handler was specified, or else the exit code; please upgrade ASDF, or
at least UIOP, to rely on the new enhanced behavior.)

output is its most important argument; it specifies how the output is captured and
processed. If it is nil, then the output is redirected to the null device, that will discard
it. If it is :interactive, then it is inherited from the current process (beware: this
may be different from your *standard-output*, and under SLIME will be on your
inferior-lisp buffer). If it is t, output goes to your current *standard-output*
stream. Otherwise, output should be a value that is a suitable first argument to
slurp-input-stream (see below), or a list of such a value and keyword arguments.

Chapter 10: Miscellaneous additional functionality 52

In this case, run-program will create a temporary stream for the program output; the
program output, in that stream, will be processed by a call to slurp-input-stream,
using output as the first argument (or if it’s a list the first element of output and
the rest as keywords). The primary value resulting from that call (or nil if no call
was needed) will be the first value returned by run-program. E.g., using :output

:string will have it return the entire output stream as a string. And using :output

’(:string :stripped t) will have it return the same string stripped of any ending
newline.

error-output is similar to output, except that the resulting value is returned as the
second value of run-program. t designates the *error-output*. Also :output means
redirecting the error output to the output stream, in which case nil is returned.

input is similar to output, except that vomit-output-stream is used, no value is
returned, and t designates the *standard-input*.

element-type and external-format are passed on to your Lisp implementation,
when applicable, for creation of the output stream.

One and only one of the stream slurping or vomiting may or may not happen in
parallel in parallel with the subprocess, depending on options and implementation,
and with priority being given to output processing. Other streams are completely
produced or consumed before or after the subprocess is spawned, using temporary
files.

force-shell forces evaluation of the command through a shell, even if it was passed
as a list rather than a string. If a shell is used, it is ‘/bin/sh’ on Unix or ‘CMD.EXE’
on Windows, except on implementations that (erroneously, IMNSHO) insist on con-
sulting $SHELL like clisp.

ignore-error-status causes run-program to not raise an error if the spawned pro-
gram exits in error. Following POSIX convention, an error is anything but a normal
exit with status code zero. By default, an error of type subprocess-error is raised
in this case.

run-program works on all platforms supported by ASDF, except Genera. See the
source code for more documentation.

[Function]slurp-input-stream processor input-stream &key
It’s a generic function of two arguments, a target object and an input stream, and
accepting keyword arguments. Predefined methods based on the target object are as
follow:

If the object is a function, the function is called with the stream as argument.

If the object is a cons, its first element is applied to its rest appended by a list of the
input stream.

If the object is an output stream, the contents of the input stream are copied to it.
If the linewise keyword argument is provided, copying happens line by line, and an
optional prefix is printed before each line. Otherwise, copying happen based on a
buffer of size buffer-size, using the specified element-type.

If the object is ’string or :string, the content is captured into a string. Accepted
keywords include the element-type and a flag stripped, which when true causes any
single line ending to be removed as per uiop:stripln.

Chapter 10: Miscellaneous additional functionality 53

If the object is :lines, the content is captured as a list of strings, one per line,
without line ending. If the count keyword argument is provided, it is a maximum
count of lines to be read.

If the object is :line, the content is capture as with :lines above, and then its
sub-object is extracted with the at argument, which defaults to 0, extracting the
first line. A number will extract the corresponding line. See the documentation for
uiop:access-at.

If the object is :forms, the content is captured as a list of S-expressions, as read by
the Lisp reader. If the count argument is provided, it is a maximum count of lines
to be read. We recommend you control the syntax with such macro as uiop:with-
safe-io-syntax.

If the object is :form, the content is capture as with :forms above, and then its
sub-object is extracted with the at argument, which defaults to 0, extracting the
first form. A number will extract the corresponding form. See the documentation
for uiop:access-at. We recommend you control the syntax with such macro as
uiop:with-safe-io-syntax.

Chapter 11: Getting the latest version 54

11 Getting the latest version

Decide which version you want. The master branch is where development happens; its HEAD
is usually OK, including the latest fixes and portability tweaks, but an occasional regression
may happen despite our (limited) test suite.

The release branch is what cautious people should be using; it has usually been tested
more, and releases are cut at a point where there isn’t any known unresolved issue.

You may get the ASDF source repository using git: git clone git://common-

lisp.net/projects/asdf/asdf.git

You will find the above referenced tags in this repository. You can also browse the
repository on http://common-lisp.net/gitweb?p=projects/asdf/asdf.git.

Discussion of ASDF development is conducted on the mailing list asdf-devel@common-
lisp.net. http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel

http://common-lisp.net/gitweb?p=projects/asdf/asdf.git
http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel

Chapter 12: FAQ 55

12 FAQ

12.1 “Where do I report a bug?”

ASDF bugs are tracked on launchpad: https://launchpad.net/asdf.

If you’re unsure about whether something is a bug, or for general discussion, use the
asdf-devel mailing list

12.2 “What has changed between ASDF 1 and ASDF 2?”

12.2.1 What are ASDF 1 and ASDF 2?

On May 31st 2010, we have released ASDF 2. ASDF 2 refers to release 2.000 and later.
(Releases between 1.656 and 1.728 were development releases for ASDF 2.) ASDF 1 to any
release earlier than 1.369 or so. If your ASDF doesn’t sport a version, it’s an old ASDF 1.

ASDF 2 and its release candidates push :asdf2 onto *features* so that if you are
writing ASDF-dependent code you may check for this feature to see if the new API is
present. All versions of ASDF should have the :asdf feature.

Additionally, all versions of ASDF 2 define a function (asdf:asdf-version) you may
use to query the version; and the source code of recent versions of ASDF 2 features the
version number prominently on the second line of its source code.

If you are experiencing problems or limitations of any sort with ASDF 1, we recommend
that you should upgrade to ASDF 2, or whatever is the latest release.

12.2.2 ASDF can portably name files in subdirectories

Common Lisp namestrings are not portable, except maybe for logical pathnamestrings,
that themselves have various limitations and require a lot of setup that is itself ultimately
non-portable.

In ASDF 1, the only portable ways to refer to pathnames inside systems and components
were very awkward, using #.(make-pathname ...) and #.(merge-pathnames ...). Even
the above were themselves were inadequate in the general case due to host and device issues,
unless horribly complex patterns were used. Plenty of simple cases that looked portable
actually weren’t, leading to much confusion and greavance.

ASDF 2 implements its own portable syntax for strings as pathname specifiers. Naming
files within a system definition becomes easy and portable again. See Chapter 10 [Miscel-
laneous additional functionality], page 46, merge-pathnames*, coerce-pathname.

On the other hand, there are places where systems used to accept namestrings where
you must now use an explicit pathname object: (defsystem ... :pathname "LOGICAL-

HOST:PATH;TO;SYSTEM;" ...) must now be written with the #p syntax: (defsystem ...

:pathname #p"LOGICAL-HOST:PATH;TO;SYSTEM;" ...)

See Section 5.3 [Pathname specifiers], page 13.

12.2.3 Output translations

A popular feature added to ASDF was output pathname translation: asdf-binary-

locations, common-lisp-controller, cl-launch and other hacks were all implementing
it in ways both mutually incompatible and difficult to configure.

https://launchpad.net/asdf
http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel

Chapter 12: FAQ 56

Output pathname translation is essential to share source directories of portable sys-
tems across multiple implementations or variants thereof, or source directories of shared
installations of systems across multiple users, or combinations of the above.

In ASDF 2, a standard mechanism is provided for that, asdf-output-translations,
with sensible defaults, adequate configuration languages, a coherent set of configuration
files and hooks, and support for non-Unix platforms.

See Chapter 8 [Controlling where ASDF saves compiled files], page 39.

12.2.4 Source Registry Configuration

Configuring ASDF used to require special magic to be applied just at the right moment,
between the moment ASDF is loaded and the moment it is used, in a way that is specific
to the user, the implementation he is using and the application he is building.

This made for awkward configuration files and startup scripts that could not be shared
between users, managed by administrators or packaged by distributions.

ASDF 2 provides a well-documented way to configure ASDF, with sensible defaults,
adequate configuration languages, and a coherent set of configuration files and hooks.

We believe it’s a vast improvement because it decouples application distribution from
library distribution. The application writer can avoid thinking where the libraries are, and
the library distributor (dpkg, clbuild, advanced user, etc.) can configure them once and for
every application. Yet settings can be easily overridden where needed, so whoever needs
control has exactly as much as required.

At the same time, ASDF 2 remains compatible with the old magic you may have in your
build scripts (using *central-registry* and *system-definition-search-functions*)
to tailor the ASDF configuration to your build automation needs, and also allows for new
magic, simpler and more powerful magic.

See Chapter 7 [Controlling where ASDF searches for systems], page 31.

12.2.5 Usual operations are made easier to the user

In ASDF 1, you had to use the awkward syntax (asdf:oos ’asdf:load-op :foo) to load
a system, and similarly for compile-op, test-op.

In ASDF 2, you can use shortcuts for the usual operations: (asdf:load-system :foo),
and similarly for compile-system, test-system.

12.2.6 Many bugs have been fixed

The following issues and many others have been fixed:

• The infamous TRAVERSE function has been revamped completely between ASDF 1
and ASDF 2, with many bugs squashed. In particular, dependencies were not correctly
propagated across modules but now are. It has been completely rewritten many times
over between ASDF 2.000 and ASDF 3, with fundamental issues in the original model
being fixed. Timestamps were not propagated at all, and now are. The internal model
of how actions depend on each other is now both consistent and complete. The :version
and the :force (system1 .. systemN) feature have been fixed.

• Performance has been notably improved for large systems (say with thousands of com-
ponents) by using hash-tables instead of linear search, and linear-time list accumulation
instead of quadratic-time recursive appends.

Chapter 12: FAQ 57

• Many features used to not be portable, especially where pathnames were involved.
Windows support was notably quirky because of such non-portability.

• The internal test suite used to massively fail on many implementations. While still
incomplete, it now fully passes on all implementations supported by the test suite,
except for GCL (due to GCL bugs).

• Support was lacking for some implementations. ABCL and GCL were notably wholly
broken. ECL extensions were not integrated with ASDF release.

• The documentation was grossly out of date.

12.2.7 ASDF itself is versioned

Between new features, old bugs fixed, and new bugs introduced, there were various releases
of ASDF in the wild, and no simple way to check which release had which feature set.
People using or writing systems had to either make worst-case assumptions as to what
features were available and worked, or take great pains to have the correct version of ASDF
installed.

With ASDF 2, we provide a new stable set of working features that everyone can rely
on from now on. Use #+asdf2 to detect presence of ASDF 2, (asdf:version-satisfies
(asdf:asdf-version) "2.345.67") to check the availability of a version no earlier than
required.

12.2.8 ASDF can be upgraded

When an old version of ASDF was loaded, it was very hard to upgrade ASDF in your
current image without breaking everything. Instead you had to exit the Lisp process and
somehow arrange to start a new one from a simpler image. Something that can’t be done
from within Lisp, making automation of it difficult, which compounded with difficulty in
configuration, made the task quite hard. Yet as we saw before, the task would have been
required to not have to live with the worst case or non-portable subset of ASDF features.

With ASDF 2, it is easy to upgrade from ASDF 2 to later versions from within Lisp,
and not too hard to upgrade from ASDF 1 to ASDF 2 from within Lisp. We support hot
upgrade of ASDF and any breakage is a bug that we will do our best to fix. There are still
limitations on upgrade, though, most notably the fact that after you upgrade ASDF, you
must also reload or upgrade all ASDF extensions.

12.2.9 Decoupled release cycle

When vendors were releasing their Lisp implementations with ASDF, they had to basically
never change version because neither upgrade nor downgrade was possible without breaking
something for someone, and no obvious upgrade path was visible and recommendable.

With ASDF 2, upgrade is possible, easy and can be recommended. This means that
vendors can safely ship a recent version of ASDF, confident that if a user isn’t fully satisfied,
he can easily upgrade ASDF and deal with a supported recent version of it. This means
that release cycles will be causally decoupled, the practical consequence of which will mean
faster convergence towards the latest version for everyone.

12.2.10 Pitfalls of the transition to ASDF 2

The main pitfalls in upgrading to ASDF 2 seem to be related to the output translation
mechanism.

Chapter 12: FAQ 58

• Output translations is enabled by default. This may surprise some users, most of them
in pleasant way (we hope), a few of them in an unpleasant way. It is trivial to disable
output translations. See Chapter 12 [“How can I wholly disable the compiler output
cache?”], page 55.

• Some systems in the large have been known not to play well with output translations.
They were relatively easy to fix. Once again, it is also easy to disable output transla-
tions, or to override its configuration.

• The new ASDF output translations are incompatible with ASDF-Binary-Locations.
They replace A-B-L, and there is compatibility mode to emulate your previous A-B-L
configuration. See enable-asdf-binary-locations-compatibility in see Chapter 8
[Backward Compatibility], page 39. But thou shalt not load ABL on top of ASDF 2.

Other issues include the following:

• ASDF pathname designators are now specified in places where they were unspeci-
fied, and a few small adjustments have to be made to some non-portable defsystems.
Notably, in the :pathname argument to a defsystem and its components, a logical
pathname (or implementation-dependent hierarchical pathname) must now be spec-
ified with #p syntax where the namestring might have previously sufficed; moreover
when evaluation is desired #. must be used, where it wasn’t necessary in the toplevel
:pathname argument (but necessary in other :pathname arguments).

• There is a slight performance bug, notably on SBCL, when initially searching for
‘asd’ files, the implicit (directory "/configured/path/**/*.asd") for every con-
figured path (:tree "/configured/path/") in your source-registry configuration
can cause a slight pause. Try to (time (asdf:initialize-source-registry)) to see
how bad it is or isn’t on your system. If you insist on not having this pause, you can
avoid the pause by overriding the default source-registry configuration and not use any
deep :tree entry but only :directory entries or shallow :tree entries. Or you can
fix your implementation to not be quite that slow when recursing through directories.
Update: This performance bug fixed the hard way in 2.010.

• On Windows, only LispWorks supports proper default configuration pathnames based
on the Windows registry. Other implementations make do with environment variables,
that you may have to define yourself if you’re using an older version of Windows.
Windows support is somewhat less tested than Unix support. Please help report and
fix bugs. Update: As of ASDF 2.21, all implementations should now use the same
proper default configuration pathnames and they should actually work, though they
haven’t all been tested.

• The mechanism by which one customizes a system so that Lisp files may use a
different extension from the default ‘.lisp’ has changed. Previously, the pathname
for a component was lazily computed when operating on a system, and you would
(defmethod source-file-type ((component cl-source-file) (system (eql

(find-system ’foo)))) (declare (ignorable component system)) "lis"). Now,
the pathname for a component is eagerly computed when defining the system,
and instead you will (defclass cl-source-file.lis (cl-source-file) ((type

:initform "lis"))) and use :default-component-class cl-source-file.lis as
argument to defsystem, as detailed in a see Chapter 12 [FAQ], page 55 below.

Chapter 12: FAQ 59

12.3 Issues with installing the proper version of ASDF

12.3.1 “My Common Lisp implementation comes with an
outdated version of ASDF. What to do?”

We recommend you upgrade ASDF. See Chapter 2 [Upgrading ASDF], page 2.

If this does not work, it is a bug, and you should report it. See Chapter 12 [Where do I
report a bug], page 55. In the meantime, you can load ‘asdf.lisp’ directly. See Chapter 2
[Loading ASDF], page 2.

12.3.2 “I’m a Common Lisp implementation vendor. When and
how should I upgrade ASDF?”

Since ASDF 2, it should always be a good time to upgrade to a recent version of ASDF. You
may consult with the maintainer for which specific version they recommend, but the latest
release should be correct. We trust you to thoroughly test it with your implementation
before you release it. If there are any issues with the current release, it’s a bug that you
should report upstream and that we will fix ASAP.

As to how to include ASDF, we recommend the following:

• If ASDF isn’t loaded yet, then (require "asdf") should load the version of ASDF
that is bundled with your system. If possible so should (require "ASDF"). You may
have it load some other version configured by the user, if you allow such configuration.

• If your system provides a mechanism to hook into CL:REQUIRE, then it would be nice
to add ASDF to this hook the same way that ABCL, CCL, CLISP, CMUCL, ECL,
SBCL and SCL do it. Please send us appropriate code to this end.

• You may, like SBCL, have ASDF be implicitly used to require systems that are bundled
with your Lisp distribution. If you do have a few magic systems that come with your
implementation in a precompiled way such that one should only use the binary version
that goes with your distribution, like SBCL does, then you should add them in the
beginning of wrapping-source-registry.

• If you have magic systems as above, like SBCL does, then we explicitly ask you to NOT
distribute ‘asdf.asd’ as part of those magic systems. You should still include the file
‘asdf.lisp’ in your source distribution and precompile it in your binary distribution,
but ‘asdf.asd’ if included at all, should be secluded from the magic systems, in a
separate file hierarchy. Alternatively, you may provide the system after renaming it
and its ‘.asd’ file to e.g. asdf-ecl and ‘asdf-ecl.asd’, or sb-asdf and ‘sb-asdf.asd’.
Indeed, if you made ‘asdf.asd’ a magic system, then users would no longer be able to
upgrade ASDF using ASDF itself to some version of their preference that they maintain
independently from your Lisp distribution.

• If you do not have any such magic systems, or have other non-magic systems that you
want to bundle with your implementation, then you may add them to the wrapping-

source-registry, and you are welcome to include ‘asdf.asd’ amongst them. Non-
magic systems should be at the back of the wrapping-source-registry while magic
systems are at the front.

• Please send us upstream any patches you make to ASDF itself, so we can merge them
back in for the benefit of your users when they upgrade to the upstream version.

Chapter 12: FAQ 60

12.4 Issues with configuring ASDF

12.4.1 “How can I customize where fasl files are stored?”

See Chapter 8 [Controlling where ASDF saves compiled files], page 39.

Note that in the past there was an add-on to ASDF called ASDF-binary-locations,
developed by Gary King. That add-on has been merged into ASDF proper, then superseded
by the asdf-output-translations facility.

Note that use of asdf-output-translations can interfere with one aspect of your
systems — if your system uses *load-truename* to find files (e.g., if you have some data
files stored with your program), then the relocation that this ASDF customization performs
is likely to interfere. Use asdf:system-relative-pathname to locate a file in the source
directory of some system, and use asdf:apply-output-translations to locate a file whose
pathname has been translated by the facility.

12.4.2 “How can I wholly disable the compiler output cache?”

To permanently disable the compiler output cache for all future runs of ASDF, you can:

mkdir -p ~/.config/common-lisp/asdf-output-translations.conf.d/

echo ’:disable-cache’ > ~/.config/common-lisp/asdf-output-translations.conf.d/99-disable-cache.conf

This assumes that you didn’t otherwise configure the ASDF files (if you did, edit them
again), and don’t somehow override the configuration at runtime with a shell variable (see
below) or some other runtime command (e.g. some call to asdf:initialize-output-

translations).

To disable the compiler output cache in Lisp processes run by your current shell, try
(assuming bash or zsh) (on Unix and cygwin only):

export ASDF_OUTPUT_TRANSLATIONS=/:

To disable the compiler output cache just in the current Lisp process, use (after loading
ASDF but before using it):

(asdf:disable-output-translations)

12.5 Issues with using and extending ASDF to define
systems

12.5.1 “How can I cater for unit-testing in my system?”

ASDF provides a predefined test operation, test-op. See Section 6.1.1 [Predefined opera-
tions of ASDF], page 21. The test operation, however, is largely left to the system definer
to specify. test-op has been a topic of considerable discussion on the asdf-devel mailing
list, and on the launchpad bug-tracker.

Here are some guidelines:

• For a given system, foo, you will want to define a corresponding test system, such as
foo-test. The reason that you will want this separate system is that ASDF does not
out of the box supply components that are conditionally loaded. So if you want to have
source files (with the test definitions) that will not be loaded except when testing, they
should be put elsewhere.

http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel
http://common-lisp.net/cgi-bin/mailman/listinfo/asdf-devel
https://launchpad.net/asdf

Chapter 12: FAQ 61

• The foo-test system can be defined in an asd file of its own or together with foo. An
aesthetic preference against cluttering up the filesystem with extra asd files should
be balanced against the question of whether one might want to directly load foo-test.
Typically one would not want to do this except in early stages of debugging.

• Record that testing is implemented by foo-test. For example:

(defsystem foo

:in-order-to ((test-op (test-op foo-test)))

....)

(defsystem foo-test

:depends-on (foo my-test-library ...)

....)

This procedure will allow you to support users who do not wish to install your test
framework.

One oddity of ASDF is that operate (see Section 6.1 [Operations], page 20) does not
return a value. So in current versions of ASDF there is no reliable programmatic means
of determining whether or not a set of tests has passed, or which tests have failed. The
user must simply read the console output. This limitation has been the subject of much
discussion.

12.5.2 “How can I cater for documentation generation in my
system?”

The ASDF developers are currently working to add a doc-op to the set of predefined
ASDF operations. See Section 6.1.1 [Predefined operations of ASDF], page 21. See also
https://bugs.launchpad.net/asdf/+bug/479470.

12.5.3 “How can I maintain non-Lisp (e.g. C) source files?”

See cffi’s cffi-grovel.

12.5.4 “I want to put my module’s files at the top level. How do I
do this?”

By default, the files contained in an asdf module go in a subdirectory with the same name
as the module. However, this can be overridden by adding a :pathname "" argument to the
module description. For example, here is how it could be done in the spatial-trees ASDF
system definition for ASDF 2:

(asdf:defsystem :spatial-trees

:components

((:module base

:pathname ""

:components

((:file "package")

(:file "basedefs" :depends-on ("package"))

(:file "rectangles" :depends-on ("package"))))

(:module tree-impls

:depends-on (base)

https://bugs.launchpad.net/asdf/+bug/479470

Chapter 12: FAQ 62

:pathname ""

:components

((:file "r-trees")

(:file "greene-trees" :depends-on ("r-trees"))

(:file "rstar-trees" :depends-on ("r-trees"))

(:file "rplus-trees" :depends-on ("r-trees"))

(:file "x-trees" :depends-on ("r-trees" "rstar-trees"))))

(:module viz

:depends-on (base)

:pathname ""

:components

((:static-file "spatial-tree-viz.lisp")))

(:module tests

:depends-on (base)

:pathname ""

:components

((:static-file "spatial-tree-test.lisp")))

(:static-file "LICENCE")

(:static-file "TODO")))

All of the files in the tree-impls module are at the top level, instead of in a
‘tree-impls/’ subdirectory.

Note that the argument to :pathname can be either a pathname object or a string.
A pathname object can be constructed with the ‘#p"foo/bar/"’ syntax, but this is dis-
couraged because the results of parsing a namestring are not portable. A pathname
can only be portably constructed with such syntax as #.(make-pathname :directory

’(:relative "foo" "bar")), and similarly the current directory can only be portably spec-
ified as #.(make-pathname :directory ’(:relative)). However, as of ASDF 2, you can
portably use a string to denote a pathname. The string will be parsed as a /-separated
path from the current directory, such that the empty string "" denotes the current direc-
tory, and "foo/bar" (no trailing / required in the case of modules) portably denotes the
same subdirectory as above. When files are specified, the last /-separated component is
interpreted either as the name component of a pathname (if the component class specifies
a pathname type), or as a name component plus optional dot-separated type component (if
the component class doesn’t specifies a pathname type).

12.5.5 How do I create a system definition where all the source
files have a .cl extension?

Starting with ASDF 2.014.14, you may just pass the builtin class cl-source-file.cl as
the :default-component-class argument to defsystem:

(defsystem my-cl-system

:default-component-class cl-source-file.cl

...)

Another builtin class cl-source-file.lsp is offered for files ending in ‘.lsp’.

If you want to use a different extension for which ASDF doesn’t provide builtin support,
or want to support versions of ASDF earlier than 2.014.14 (but later than 2.000), you can
define a class as follows:

Chapter 12: FAQ 63

;; Prologue: make sure we’re using a sane package.

(defpackage :my-asdf-extension

(:use :asdf :common-lisp)

(:export #:cl-source-file.lis))

(in-package :my-asdf-extension)

(defclass cl-source-file.lis (cl-source-file)

((type :initform "lis")))

Then you can use it as follows:

(defsystem my-cl-system

:default-component-class my-asdf-extension:cl-source-file.lis

...)

Of course, if you’re in the same package, e.g. in the same file, you won’t need to use the
package qualifier before cl-source-file.lis. Actually, if all you’re doing is defining this
class and using it in the same file without other fancy definitions, you might skip package
complications:

(in-package :asdf)

(defclass cl-source-file.lis (cl-source-file)

((type :initform "lis")))

(defsystem my-cl-system

:default-component-class cl-source-file.lis

...)

It is possible to achieve the same effect in a way that supports both ASDF 1 and ASDF
2, but really, friends don’t let friends use ASDF 1. Please upgrade to ASDF 3. In short,
though: do same as above, but before you use the class in a defsystem, you also define the
following method:

(defmethod source-file-type ((f cl-source-file.lis) (s system))

(declare (ignorable f s))

"lis")

Chapter 13: TODO list 64

13 TODO list

Here is an old list of things to do, in addition to the bugs that are now tracked on launchpad:
https://launchpad.net/asdf.

13.1 Outstanding spec questions, things to add

** packaging systems

*** manual page component?

** style guide for .asd files

You should either use keywords or be careful with the package that you evaluate
defsystem forms in. Otherwise (defsystem partition ...) being read in the cl-user

package will intern a cl-user:partition symbol, which will then collide with the
partition:partition symbol.

Actually there’s a hairier packages problem to think about too. in-order-to is not a
keyword: if you read defsystem forms in a package that doesn’t use ASDF, odd things
might happen.

** extending defsystem with new options

You might not want to write a whole parser, but just to add options to the existing
syntax. Reinstate parse-option or something akin.

** Diagnostics

A “dry run” of an operation can be made with the following form:

(let ((asdf::*verbose-out* *standard-output*))

(loop :for (op . comp) :in

(asdf::traverse (make-instance ’<operation-name> :force t)

(asdf:find-system <system-name>))

:do (asdf:explain op comp)))

This uses unexported symbols. What would be a nice interface for this functionality?

13.2 Missing bits in implementation

** reuse the same scratch package whenever a system is reloaded from disk

Have a package ASDF-USER instead of all these temporary packages?

** proclamations probably aren’t

** A revert function

Other possible interface: have a “revert” function akin to make clean.

(asdf:revert ’asdf:compile-op ’araneida)

would delete any files produced by (compile-system :araneida). Of course, it wouldn’t
be able to do much about stuff in the image itself.

How would this work?

traverse

There’s a difference between a module’s dependencies (peers) and its components
(children). Perhaps there’s a similar difference in operations? For example, (load "use")

depends-on (load "macros") is a peer, whereas (load "use") depends-on (compile

"use") is more of a “subservient” relationship.

https://launchpad.net/asdf

Chapter 14: Inspiration 65

14 Inspiration

14.1 mk-defsystem (defsystem-3.x)

We aim to solve basically the same problems as mk-defsystem does. However, our ar-
chitecture for extensibility better exploits CL language features (and is documented), and
we intend to be portable rather than just widely-ported. No slight on the mk-defsystem

authors and maintainers is intended here; that implementation has the unenviable task of
supporting pre-ANSI implementations, which is no longer necessary.

The surface defsystem syntax of asdf is more-or-less compatible with mk-defsystem,
except that we do not support the source-foo and binary-foo prefixes for separating
source and binary files, and we advise the removal of all options to specify pathnames.

The mk-defsystem code for topologically sorting a module’s dependency list was very
useful.

14.2 defsystem-4 proposal

Marco and Peter’s proposal for defsystem 4 served as the driver for many of the features in
here. Notable differences are:

• We don’t specify output files or output file extensions as part of the system.

If you want to find out what files an operation would create, ask the operation.

• We don’t deal with CL packages

If you want to compile in a particular package, use an in-package form in that file
(ilisp / SLIME will like you more if you do this anyway)

• There is no proposal here that defsystem does version control.

A system has a given version which can be used to check dependencies, but that’s all.

The defsystem 4 proposal tends to look more at the external features, whereas this one
centres on a protocol for system introspection.

14.3 kmp’s “The Description of Large Systems”, MIT AI
Memo 801

Available in updated-for-CL form on the web at http://nhplace.com/kent/Papers/Large-Systems.html

In our implementation we borrow kmp’s overall PROCESS-OPTIONS and concept to deal
with creating component trees from defsystem surface syntax. [this is not true right now,
though it used to be and probably will be again soon]

http://nhplace.com/kent/Papers/Large-Systems.html

Concept Index 66

Concept Index

:
:around-compile . 46
:asdf . 1
:asdf2 . 1
:asdf3 . 1
:compile-check . 46
:defsystem-depends-on . 15
:version . 12, 16, 26
:weakly-depends-on . 15

A
around-compile keyword . 46
ASDF versions . 1
ASDF-BINARY-LOCATIONS compatibility . . . 40
asdf-output-translations . 39
ASDF-related features . 1

C
compile-check keyword . 46
component . 25
component designator . 25

L
link farm . 2
logical pathnames . 16

O
operation . 20

P
pathname specifiers . 15

S
serial dependencies . 17
system . 25
system designator . 25
system directory designator . 2

T
Testing for ASDF . 1

V
version specifiers . 16

Function and Class Index 67

Function and Class Index

A
already-loaded-systems . 9
apply-output-translations 44

C
clear-configuration . 8
clear-output-translations 6, 44
clear-source-registry . 37
clear-system . 49
compile-file* . 46
compile-op . 21
compile-system . 2
concatenate-source-op, . 23

D
disable-output-translations 44

E
enable-asdf-binary-locations-compatibility

. 40
ensure-output-translations 44
ensure-source-registry . 37

F
fasl-op, . 22
find-component . 26
find-system . 25

I
initialize-output-translations 44
initialize-source-registry 36

L
load-op . 21
load-source-op, . 21
load-system . 2

M
merge-pathnames* . 51
module . 29

O
oos . 2
oos . 20
operate . 2
operate . 20
OPERATION-ERROR . 45

P
parse-unix-namestring . 50
prepare-op . 21

R
register-preloaded-system 49
require-system . 2
run-program . 51
run-shell-command . 49

S
slurp-input-stream . 52
source-file . 28
source-file-type . 58
subpathname . 51
subpathname* . 51
system . 29
SYSTEM-DEFINITION-ERROR . 45
system-relative-pathname 48
system-source-directory . 49

T
test-op . 22
test-system . 2

V
version . 30
version-satisfies . 26, 30

Variable Index 68

Variable Index

*
central-registry . 2

compile-file-errors-behavior 45

compile-file-warnings-behaviour 45

default-source-registry-exclusions 36

features . 1
system-definition-search-functions 25

A
ASDF_OUTPUT_TRANSLATIONS 39

	Introduction
	Loading ASDF
	Loading a pre-installed ASDF
	Checking whether ASDF is loaded
	Upgrading ASDF
	Loading an otherwise installed ASDF

	Configuring ASDF
	Configuring ASDF to find your systems
	Configuring ASDF to find your systems --- old style
	Configuring where ASDF stores object files
	Resetting Configuration

	Using ASDF
	Loading a system
	Other Operations
	Summary
	Moving on

	Defining systems with defsystem
	The defsystem form
	A more involved example
	The defsystem grammar
	Component names
	Component types
	System class names
	Defsystem depends on
	Weakly depends on
	Pathname specifiers
	Version specifiers
	Using logical pathnames
	Serial dependencies
	Source location
	if-feature option
	if-component-dep-fails option

	Other code in .asd files

	The object model of ASDF
	Operations
	Predefined operations of ASDF
	Creating new operations

	Components
	Common attributes of components
	Name
	Version identifier
	Required features
	Dependencies
	pathname
	properties

	Pre-defined subclasses of component
	Creating new component types

	Functions

	Controlling where ASDF searches for systems
	Configurations
	Truenames and other dangers
	XDG base directory
	Backward Compatibility
	Configuration DSL
	Configuration Directories
	The :here directive

	Shell-friendly syntax for configuration
	Search Algorithm
	Caching Results
	Configuration API
	Status
	Rejected ideas
	TODO
	Credits for the source-registry

	Controlling where ASDF saves compiled files
	Configurations
	Backward Compatibility
	Configuration DSL
	Configuration Directories
	Shell-friendly syntax for configuration
	Semantics of Output Translations
	Caching Results
	Output location API
	Credits for output translations

	Error handling
	ASDF errors
	Compilation error and warning handling

	Miscellaneous additional functionality
	Controlling file compilation
	Controlling source file character encoding
	Miscellaneous Functions
	Some Utility Functions

	Getting the latest version
	FAQ
	``Where do I report a bug?''
	``What has changed between ASDF 1 and ASDF 2?''
	What are ASDF 1 and ASDF 2?
	ASDF can portably name files in subdirectories
	Output translations
	Source Registry Configuration
	Usual operations are made easier to the user
	Many bugs have been fixed
	ASDF itself is versioned
	ASDF can be upgraded
	Decoupled release cycle
	Pitfalls of the transition to ASDF 2

	Issues with installing the proper version of ASDF
	``My Common Lisp implementation comes with an outdated version of ASDF. What to do?''
	``I'm a Common Lisp implementation vendor. When and how should I upgrade ASDF?''

	Issues with configuring ASDF
	``How can I customize where fasl files are stored?''
	``How can I wholly disable the compiler output cache?''

	Issues with using and extending ASDF to define systems
	``How can I cater for unit-testing in my system?''
	``How can I cater for documentation generation in my system?''
	``How can I maintain non-Lisp (e.g. C) source files?''
	``I want to put my module's files at the top level. How do I do this?''
	How do I create a system definition where all the source files have a .cl extension?

	TODO list
	Outstanding spec questions, things to add
	Missing bits in implementation

	Inspiration
	mk-defsystem (defsystem-3.x)
	defsystem-4 proposal
	kmp's ``The Description of Large Systems'', MIT AI Memo 801

	Concept Index
	Function and Class Index
	Variable Index

