
UIOP Manual

UIOP is a part of ASDF (https://common-lisp.net/project/asdf/), which is released
under an MIT style License:

Copyright c© 2001-2019 Daniel Barlow and contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

https://common-lisp.net/project/asdf/

i

Table of Contents

1 Introduction . 1

2 UIOP/PACKAGE . 2

3 UIOP/COMMON-LISP . 4

4 UIOP/UTILITY . 5

5 UIOP/VERSION . 10

6 UIOP/OS . 11

7 UIOP/PATHNAME . 13

8 UIOP/FILESYSTEM . 20

9 UIOP/STREAM . 23

10 UIOP/IMAGE . 29

11 UIOP/LISP-BUILD . 32

12 UIOP/LAUNCH-PROGRAM 36

13 UIOP/RUN-PROGRAM . 39

14 UIOP/CONFIGURATION 42

15 UIOP/BACKWARD-DRIVER 46

16 UIOP/DRIVER . 47

1

1 Introduction

UIOP is the portability layer of ASDF. It provides utilities that abstract over discrepan-
cies between implementations, between operating systems, and between what the standard
provides and what programmers actually need, to write portable Common Lisp programs.

It is organized by topic in many files, each of which defines its own package according to
its topic: e.g pathname.lisp will define package uiop/pathname and contain utilities related
to the handling of pathname objects. All exported symbols are reexported in a convenience
package uiop, except for those from uiop/common-lisp. We recommend package uiop be
used to access all the symbols.

The following API reference is auto-generated from the docstrings in the code. The
chapters are arranged in dependency order.

2

2 UIOP/PACKAGE

[Function]find-package* package-designator &optional errorp
Like cl:find-package, but by default raises a uiop:no-such-package-error if the
package is not found.

[Function]find-symbol* name package-designator &optional error
Find a symbol in a package of given string’ified name; unlike cl:find-symbol, work
well with ’modern’ case sensitive syntax by letting you supply a symbol or keyword
for the name; also works well when the package is not present. If optional error
argument is nil, return nil instead of an error when the symbol is not found.

[Function]rehome-symbol symbol package-designator
Changes the home package of a symbol, also leaving it present in its old home if any

[Function]symbol-call package name &rest args
Call a function associated with symbol of given name in given package, with given
args. Useful when the call is read before the package is loaded, or when loading the
package is optional.

[Macro]define-package package &rest clauses
define-package takes a package and a number of clauses, of the form (keyword
. args). define-package supports the following keywords: shadow, shadowing-
import-from, import-from, export, intern, nicknames, documentation -- as per
cl:defpackage. use -- as per cl:defpackage, but if neither use, use-reexport,
mix, nor mix-reexport is supplied, then it is equivalent to specifying (:use :common-

lisp). This is unlike cl:defpackage for which the behavior of a form without use
is implementation-dependent. recycle -- Recycle the package’s exported symbols
from the specified packages, in order. For every symbol scheduled to be exported by
the define-package, either through an :export option or a :reexport option, if
the symbol exists in one of the :recycle packages, the first such symbol is re-homed
to the package being defined. For the sake of idempotence, it is important that the
package being defined should appear in first position if it already exists, and even if
it doesn’t, ahead of any package that is not going to be deleted afterwards and never
created again. In short, except for special cases, always make it the first package
on the list if the list is not empty. mix -- Takes a list of package designators. mix

behaves like (:use pkg1 pkg2 ... PKGn) but additionally uses :shadowing-import-
from to resolve conflicts in favor of the first found symbol. It may still yield an error
if there is a conflict with an explicitly :import-from symbol. reexport -- Takes a
list of package designators. For each package, p, in the list, export symbols with the
same name as those exported from p. Note that in the case of shadowing, etc. the
symbols with the same name may not be the same symbols. unintern -- Remove
symbols here from package. Note that this is primarily useful when *redefining*
a previously-existing package in the current image (e.g., when upgrading ASDF).
Most programmers will have no use for this option. local-nicknames -- If the host
implementation supports package local nicknames (check for the :package-local-

nicknames feature), then this should be a list of nickname and package name pairs.
Using this option will cause an error if the host CL implementation does not support

Chapter 2: UIOP/PACKAGE 3

it. use-reexport, mix-reexport -- Use or mix the specified packages as per the use
or mix directives, and reexport their contents as per the reexport directive.

4

3 UIOP/COMMON-LISP

uiop/common-lisp lets you paper over various sub-standard implementations.

This package reexports all the symbols in common-lisp package.

5

4 UIOP/UTILITY

[Function]access-at-count at
From an at specification, extract a count of maximum number of sub-objects to read
as per access-at

[Function]access-at object at
Given an object and an at specifier, list of successive accessors, call each accessor
on the result of the previous calls. An accessor may be an integer, meaning a call to
elt, a keyword, meaning a call to getf, nil, meaning identity, a function or other
symbol, meaning itself, or a list of a function designator and arguments, interpreted
as per ensure-function. As a degenerate case, the at specifier may be an atom of
a single such accessor instead of a list.

[Function]base-string-p string
Does the string only contain BASE-CHARs?

[Function]boolean-to-feature-expression value
Converts a boolean value to a form suitable for testing with #+.

[Function]call-function function-spec &rest arguments
Call the function designated by function-spec as per ensure-function, with the
given arguments

[Function]call-functions function-specs
For each function in the list function-specs, in order, call the function as per call-
function

[Function]call-with-muffled-conditions thunk conditions
calls the thunk in a context where the conditions are muffled

[Function]coerce-class class &key package super error
Coerce class to a class that is subclass of super if specified, or invoke error handler
as per call-function.

A keyword designates the name a symbol, which when found in either package,
designates a class. -- for backward compatibility, *package* is also accepted for
now, but this may go in the future. A string is read as a symbol while in package,
the symbol designates a class.

A class object designates itself. nil designates itself (no class). A symbol otherwise
designates a class by name.

[Function]emptyp x
Predicate that is true for an empty sequence

[Function]ensure-function fun &key package
Coerce the object fun into a function.

If fun is a function, return it. If the fun is a non-sequence literal constant, return
constantly that, i.e. for a boolean keyword character number or pathname. Otherwise
if fun is a non-literally constant symbol, return its fdefinition. If fun is a cons,

Chapter 4: UIOP/UTILITY 6

return the function that applies its car to the appended list of the rest of its cdr and
the arguments, unless the car is lambda, in which case the expression is evaluated. If
fun is a string, read a form from it in the specified package (default: CL) and eval

that in a (function ...) context.

[Function]ensure-gethash key table default
Lookup the table for a key as by gethash, but if not present, call the (possibly
constant) function designated by default as per call-function, set the correspond-
ing entry to the result in the table. Return two values: the entry after its optional
computation, and whether it was found

[Function]find-standard-case-symbol name-designator package-designator
&optional error

Find a symbol designated by name-designator in a package designated by package-

designator, where standard-case-symbol-name is used to transform them if these
designators are strings. If optional error argument is nil, return nil instead of an
error when the symbol is not found.

[Function]first-char s
Return the first character of a non-empty string s, or nil

[Function]frob-substrings string substrings &optional frob
for each substring in substrings, find occurrences of it within string that don’t
use parts of matched occurrences of previous strings, and frob them, that is to say,
remove them if frob is nil, replace by frob if frob is a string, or if frob is a
function, call frob with the match and a function that emits a string in the output.
Return a string made of the parts not omitted or emitted by frob.

[Function]last-char s
Return the last character of a non-empty string s, or nil

[Function]lexicographic<= element< x y
Lexicographically compare two lists of using the function element< to compare el-
ements. element< is a strict total order; the resulting order on x and y will be a
non-strict total order.

[Function]lexicographic< element< x y
Lexicographically compare two lists of using the function element< to compare ele-
ments. element< is a strict total order; the resulting order on x and y will also be
strict.

[Function]list-to-hash-set list &aux (h (make-hash-table test (quote
equal)))

Convert a list into hash-table that has the same elements when viewed as a set, up
to the given equality test

[Function]load-uiop-debug-utility &key package utility-file
Load the uiop debug utility in given package (default *package*). Beware: The
utility is located by eval’uating the utility-file form (default *uiop-debug-

utility*).

Chapter 4: UIOP/UTILITY 7

[Function]match-any-condition-p condition conditions
match condition against any of the patterns of conditions supplied

[Function]match-condition-p x condition
Compare received condition to some pattern x: a symbol naming a condition class,
a simple vector of length 2, arguments to find-symbol* with result as above, or a
string describing the format-control of a simple-condition.

[Function]not-implemented-error functionality &optional format-control
&rest format-arguments

Signal an error because some functionality is not implemented in the current ver-
sion of the software on the current platform; it may or may not be implemented
in different combinations of version of the software and of the underlying platform.
Optionally, report a formatted error message.

[Function]parameter-error format-control functionality &rest
format-arguments

Signal an error because some functionality or its specific implementation on a given
underlying platform does not accept a given parameter or combination of parameters.
Report a formatted error message, that takes the functionality as its first argument
(that can be skipped with ~*).

[Function]parse-body body &key documentation whole
Parses body into (values remaining-forms declarations doc-string). Documentation
strings are recognized only if documentation is true. Syntax errors in body are
signalled and whole is used in the signal arguments when given.

[Function]reduce/strcat strings &key key start end
Reduce a list as if by strcat, accepting key start and end keywords like reduce.
nil is interpreted as an empty string. A character is interpreted as a string of length
one.

[Function]register-hook-function variable hook &optional call-now-p
Push the hook function (a designator as per ensure-function) onto the hook
variable. When call-now-p is true, also call the function immediately.

[Function]remove-plist-key key plist
Remove a single key from a plist

[Function]remove-plist-keys keys plist
Remove a list of keys from a plist

[Function]split-string string &key max separator
Split string into a list of components separated by any of the characters in the se-
quence separator. If max is specified, then no more than max(1,max) components will
be returned, starting the separation from the end, e.g. when called with arguments
"a.b.c.d.e" :max 3 :separator "." it will return ("a.b.c" "d" "e").

[Function]standard-case-symbol-name name-designator
Given a name-designator for a symbol, if it is a symbol, convert it to a string using
string; if it is a string, use string-upcase on an ANSI CL platform, or string on
a so-called "modern" platform such as Allegro with modern syntax.

Chapter 4: UIOP/UTILITY 8

[Function]strcat &rest strings
Concatenate strings. nil is interpreted as an empty string, a character as a string of
length one.

[Function]string-enclosed-p prefix string suffix
Does string begin with prefix and end with suffix?

[Function]string-prefix-p prefix string
Does string begin with prefix?

[Function]string-suffix-p string suffix
Does string end with suffix?

[Function]strings-common-element-type strings
What least subtype of character can contain all the elements of all the strings?

[Function]stripln x
Strip a string x from any ending CR, LF or CRLF. Return two values, the stripped
string and the ending that was stripped, or the original value and nil if no stripping
took place. Since our strcat accepts nil as empty string designator, the two results
passed to strcat always reconstitute the original string

[Function]symbol-test-to-feature-expression name package
Check if a symbol with a given name exists in package and returns a form suitable
for testing with #+.

[Macro]appendf place &rest args
Append onto list

[Macro]nest &rest things
Macro to keep code nesting and indentation under control.

[Macro]uiop-debug &rest keys
Load the uiop debug utility at compile-time as well as runtime

[Macro]while-collecting (&rest collectors) &body body
collectors should be a list of names for collections. A collector defines a function
that, when applied to an argument inside body, will add its argument to the corre-
sponding collection. Returns multiple values, a list for each collection, in order. e.g.,
(while-collecting (foo bar) (dolist (x ’((a 1) (b 2) (c 3))) (foo (first x)) (bar (second
x)))) Returns two values: (A b c) and (1 2 3).

[Macro]with-muffled-conditions (conditions) &body body
Shorthand syntax for call-with-muffled-conditions

[Macro]with-upgradability (&optional) &body body
Evaluate body at compile- load- and run- times, with defun and defgeneric modified
to also declare the functions notinline and to accept a wrapping the function name
specification into a list with keyword argument supersede (which defaults to t if the
name is not wrapped, and nil if it is wrapped). If supersede is true, call undefine-
function to supersede any previous definition.

Chapter 4: UIOP/UTILITY 9

[Variable]*uiop-debug-utility*
form that evaluates to the pathname to your favorite debugging utilities

10

5 UIOP/VERSION

[Function]next-version version
When version is not nil, it is a string, then parse it as a version, compute the next
version and return it as a string.

[Function]parse-version version-string &optional on-error
Parse a version-string as a series of natural numbers separated by dots. Return a
(non-null) list of integers if the string is valid; otherwise return nil.

When invalid, on-error is called as per call-function before to return nil, with
format arguments explaining why the version is invalid. on-error is also called if the
version is not canonical in that it doesn’t print back to itself, but the list is returned
anyway.

[Function]unparse-version version-list
From a parsed version (a list of natural numbers), compute the version string

[Function]version-deprecation version &key style-warning warning error
delete

Given a version string, and the starting versions for notifying the programmer of
various levels of deprecation, return the current level of deprecation as per with-

deprecation that is the highest level that has a declared version older than the
specified version. Each start version for a level of deprecation can be specified by a
keyword argument, or if left unspecified, will be the next-version of the immediate
lower level of deprecation.

[Function]version= version1 version2
Given two version strings, return t if the first is newer or the same and the second is
also newer or the same.

[Function]version<= version1 version2
Given two version strings, return t if the second is newer or the same

[Function]version< version1 version2
Given two version strings, return t if the second is strictly newer

[Macro]with-deprecation (level) &body definitions
Given a deprecation level (a form to be eval’ed at macro-expansion time), instru-
ment the defun and defmethod forms in definitions to notify the programmer of
the deprecation of the function when it is compiled or called.

Increasing levels (as result from evaluating level) are: nil (not deprecated yet),
:style-warning (a style warning is issued when used), :warning (a full warning is
issued when used), :error (a continuable error instead), and :delete (it’s an error
if the code is still there while at that level).

Forms other than defun and defmethod are not instrumented, and you can protect
a defun or defmethod from instrumentation by enclosing it in a progn.

11

6 UIOP/OS

[Function]architecture
The CPU architecture of the current host

[Function]chdir x
Change current directory, as per POSIX chdir(2), to a given pathname object

[Function]detect-os
Detects the current operating system. Only needs be run at compile-time, except on
ABCL where it might change between FASL compilation and runtime.

[Function]featurep x &optional *features*
Checks whether a feature expression x is true with respect to the *features* set, as
per the CLHS standard for #+ and #-. Beware that just like the CLHS, we assume
symbols from the keyword package are used, but that unless you’re using #+/#-
your reader will not have magically used the keyword package, so you need specify
keywords explicitly.

[Function]getcwd
Get the current working directory as per POSIX getcwd(3), as a pathname object

[Function]getenv x
Query the environment, as in c getenv. Beware: may return empty string if a variable
is present but empty; use getenvp to return nil in such a case.

[Function]getenvp x
Predicate that is true if the named variable is present in the libc environment, then
returning the non-empty string value of the variable

[Function]hostname
return the hostname of the current host

[Function]implementation-identifier
Return a string that identifies the abi of the current implementation, suitable for use
as a directory name to segregate Lisp FASLs, c dynamic libraries, etc.

[Function]implementation-type
The type of Lisp implementation used, as a short UIOP-standardized keyword

[Function]lisp-version-string
return a string that identifies the current Lisp implementation version

[Function]operating-system
The operating system of the current host

[Function]os-genera-p
Is the underlying operating system Genera (running on a Symbolics Lisp Machine)?

[Function]os-macosx-p
Is the underlying operating system MacOS x?

Chapter 6: UIOP/OS 12

[Function]os-unix-p
Is the underlying operating system some Unix variant?

[Function]os-windows-p
Is the underlying operating system Microsoft Windows?

[Function]parse-file-location-info s
helper to parse-windows-shortcut

[Function]parse-windows-shortcut pathname
From a .lnk windows shortcut, extract the pathname linked to

[Function]read-little-endian s &optional bytes
Read a number in little-endian format from an byte (octet) stream s, the number
having bytes octets (defaulting to 4).

[Function]read-null-terminated-string s
Read a null-terminated string from an octet stream s

[Setf Expander]getenv x
Set an environment variable.

[Variable]*implementation-type*
The type of Lisp implementation used, as a short UIOP-standardized keyword

13

7 UIOP/PATHNAME

[Function]absolute-pathname-p pathspec
If pathspec is a pathname or namestring object that parses as a pathname possessing
an :absolute directory component, return the (parsed) pathname. Otherwise return
nil

[Function]call-with-enough-pathname maybe-subpath defaults-pathname
thunk

In a context where *default-pathname-defaults* is bound to defaults-pathname

(if not null, or else to its current value), call thunk with enough-pathname for maybe-
subpath given defaults-pathname as a base pathname.

[Function]denormalize-pathname-directory-component directory-component
Convert the directory-component from a CLHS-standard format to a format usable
by the underlying implementation’s make-pathname and other primitives

[Function]directorize-pathname-host-device pathname
Given a pathname, return a pathname that has representations of its host and device

components added to its directory component. This is useful for output translations.

[Function]directory-pathname-p pathname
Does pathname represent a directory?

A directory-pathname is a pathname without a filename. The three ways that the
filename components can be missing are for it to be nil, :unspecific or the empty
string.

Note that this does not check to see that pathname points to an actually-existing
directory.

[Function]directory-separator-for-host &optional pathname
Given a pathname, return the character used to delimit directory names on this host
and device.

[Function]enough-pathname maybe-subpath base-pathname
if maybe-subpath is a pathname that is under base-pathname, return a pathname
object that when used with merge-pathnames* with defaults base-pathname, returns
maybe-subpath.

[Function]ensure-absolute-pathname path &optional defaults on-error
Given a pathname designator path, return an absolute pathname as specified by path

considering the defaults, or, if not possible, use call-function on the specified on-

error behavior, with a format control-string and other arguments as arguments

[Function]ensure-directory-pathname pathspec &optional on-error
Converts the non-wild pathname designator pathspec to directory form.

Chapter 7: UIOP/PATHNAME 14

[Function]ensure-pathname pathname &key on-error defaults type dot-dot
namestring empty-is-nil want-pathname want-logical want-physical
ensure-physical want-relative want-absolute ensure-absolute
ensure-subpath want-non-wild want-wild wilden want-file want-directory
ensure-directory want-existing ensure-directories-exist truename
resolve-symlinks truenamize &aux p

Coerces its argument into a pathname, optionally doing some transformations and
checking specified constraints.

If the argument is nil, then nil is returned unless the want-pathname constraint is
specified.

If the argument is a string, it is first converted to a pathname via parse-unix-

namestring, parse-namestring or parse-native-namestring respectively depend-
ing on the namestring argument being :unix, :lisp or :native respectively, or else
by using call-function on the namestring argument; if :unix is specified (or nil,
the default, which specifies the same thing), then parse-unix-namestring it is called
with the keywords defaults type dot-dot ensure-directory want-relative, and
the result is optionally merged into the defaults if ensure-absolute is true.

The pathname passed or resulting from parsing the string is then subjected to all the
checks and transformations below are run.

Each non-nil constraint argument can be one of the symbols t, error, cerror or
ignore. The boolean t is an alias for error. error means that an error will be
raised if the constraint is not satisfied. cerror means that an continuable error will
be raised if the constraint is not satisfied. ignore means just return nil instead of
the pathname.

The on-error argument, if not nil, is a function designator (as per call-function)
that will be called with the the following arguments: a generic format string for ensure
pathname, the pathname, the keyword argument corresponding to the failed check
or transformation, a format string for the reason ensure-pathname failed, and a list
with arguments to that format string. If on-error is nil, error is used instead,
which does the right thing. You could also pass (cerror "continue despite failed

check").

The transformations and constraint checks are done in this order, which is also the
order in the lambda-list:

empty-is-nil returns nil if the argument is an empty string. want-pathname

checks that pathname (after parsing if needed) is not null. Otherwise, if the
pathname is nil, ensure-pathname returns nil. want-logical checks that
pathname is a logical-pathname want-physical checks that pathname is not
a logical-pathname ensure-physical ensures that pathname is physical via
translate-logical-pathname want-relative checks that pathname has a relative
directory component want-absolute checks that pathname does have an absolute
directory component ensure-absolute merges with the defaults, then checks again
that the result absolute is an absolute pathname indeed. ensure-subpath checks
that the pathname is a subpath of the defaults. want-file checks that pathname
has a non-nil file component want-directory checks that pathname has nil file
and type components ensure-directory uses ensure-directory-pathname to

Chapter 7: UIOP/PATHNAME 15

interpret any file and type components as being actually a last directory component.
want-non-wild checks that pathname is not a wild pathname want-wild checks
that pathname is a wild pathname wilden merges the pathname with **/*.*.*
if it is not wild want-existing checks that a file (or directory) exists with
that pathname. ensure-directories-exist creates any parent directory with
ensure-directories-exist. truename replaces the pathname by its truename, or
errors if not possible. resolve-symlinks replaces the pathname by a variant with
symlinks resolved by resolve-symlinks. truenamize uses truenamize to resolve
as many symlinks as possible.

[Function]file-pathname-p pathname
Does pathname represent a file, i.e. has a non-null name component?

Accepts nil, a string (converted through parse-namestring) or a pathname.

Note that this does not check to see that pathname points to an actually-existing
file.

Returns the (parsed) pathname when true

[Function]hidden-pathname-p pathname
Return a boolean that is true if the pathname is hidden as per Unix style, i.e. its
name starts with a dot.

[Function]logical-pathname-p x
is x a logical-pathname?

[Function]make-pathname-component-logical x
Make a pathname component suitable for use in a logical-pathname

[Function]make-pathname-logical pathname host
Take a pathname’s directory, name, type and version components, and make a new
pathname with corresponding components and specified logical host

[Function]make-pathname* &rest keys &key directory host device name type
version defaults

Takes arguments like cl:make-pathname in the CLHS, and tries hard to make a
pathname that will actually behave as documented, despite the peculiarities of each
implementation. deprecated: just use make-pathname.

[Function]merge-pathname-directory-components specified defaults
Helper for merge-pathnames* that handles directory components

[Function]merge-pathnames* specified &optional defaults
merge-pathnames* is like merge-pathnames except that if the specified pathname
does not have an absolute directory, then the host and device both come from the
defaults, whereas if the specified pathname does have an absolute directory, then
the host and device both come from the specified pathname. This is what users
want on a modern Unix or Windows operating system, unlike the merge-pathnames
behavior. Also, if either argument is nil, then the other argument is returned un-
modified; this is unlike merge-pathnames which always merges with a pathname, by
default *default-pathname-defaults*, which cannot be nil.

Chapter 7: UIOP/PATHNAME 16

[Function]nil-pathname &optional defaults
A pathname that is as neutral as possible for use as defaults when merging, making
or parsing pathnames

[Function]normalize-pathname-directory-component directory
Convert the directory component from a format usable by the underlying imple-
mentation’s make-pathname and other primitives to a CLHS-standard format that is
a list and not a string.

[Function]parse-unix-namestring name &rest keys &key type defaults
dot-dot ensure-directory &allow-other-keys

Coerce name into a pathname using standard Unix syntax.

Unix syntax is used whether or not the underlying system is Unix; on such non-Unix
systems it is reliably usable only for relative pathnames. This function is especially
useful to manipulate relative pathnames portably, where it is crucial to possess a
portable pathname syntax independent of the underlying OS. This is what parse-

unix-namestring provides, and why we use it in ASDF.

When given a pathname object, just return it untouched. When given nil, just return
nil. When given a non-null symbol, first downcase its name and treat it as a string.
When given a string, portably decompose it into a pathname as below.

#\/ separates directory components.

The last #\/-separated substring is interpreted as follows: 1- If type is :directory
or ensure-directory is true, the string is made the last directory component, and
name and type are nil. if the string is empty, it’s the empty pathname with all slots
nil. 2- If type is nil, the substring is a file-namestring, and its name and type are
separated by split-name-type. 3- If type is a string, it is the given type, and the
whole string is the name.

Directory components with an empty name or the name "." are removed. Any direc-
tory named ".." is read as dot-dot, which must be one of :back or :up and defaults
to :back.

host, device and version components are taken from defaults, which itself defaults
to *nil-pathname*, also used if defaults is nil. No host or device can be specified
in the string itself, which makes it unsuitable for absolute pathnames outside Unix.

For relative pathnames, these components (and hence the defaults) won’t matter if
you use merge-pathnames* but will matter if you use merge-pathnames, which is an
important reason to always use merge-pathnames*.

Arbitrary keys are accepted, and the parse result is passed to ensure-pathname

with those keys, removing type defaults and dot-dot. When you’re manipulating
pathnames that are supposed to make sense portably even though the OS may not be
Unixish, we recommend you use :want-relative t to throw an error if the pathname
is absolute

[Function]pathname-directory-pathname pathname
Returns a new pathname with same host, device, directory as pathname, and nil

name, type and version components

Chapter 7: UIOP/PATHNAME 17

[Function]pathname-equal p1 p2
Are the two pathnames p1 and p2 reasonably equal in the paths they denote?

[Function]pathname-host-pathname pathname
return a pathname with the same host as given pathname, and all other fields nil

[Function]pathname-parent-directory-pathname pathname
Returns a new pathname that corresponds to the parent of the current pathname’s
directory, i.e. removing one level of depth in the directory component. e.g. if
pathname is Unix pathname /foo/bar/baz/file.type then return /foo/bar/

[Function]pathname-root pathname
return the root directory for the host and device of given pathname

[Function]physical-pathname-p x
is x a pathname that is not a logical-pathname?

[Function]physicalize-pathname x
if x is a logical pathname, use translate-logical-pathname on it.

[Function]relative-pathname-p pathspec
If pathspec is a pathname or namestring object that parses as a pathname possessing
a :relative or nil directory component, return the (parsed) pathname. Otherwise
return nil

[Function]relativize-directory-component directory-component
Given the directory-component of a pathname, return an otherwise similar relative
directory component

[Function]relativize-pathname-directory pathspec
Given a pathname, return a relative pathname with otherwise the same components

[Function]split-name-type filename
Split a filename into two values name and type that are returned. We assume file-
name has no directory component. The last . if any separates name and type from
from type, except that if there is only one . and it is in first position, the whole
filename is the name with an empty type. name is always a string. For an empty type,
unspecific-pathname-type is returned.

[Function]split-unix-namestring-directory-components unix-namestring
&key ensure-directory dot-dot

Splits the path string unix-namestring, returning four values: A flag that is either
:absolute or :relative, indicating how the rest of the values are to be interpreted. A
directory path --- a list of strings and keywords, suitable for use with make-pathname

when prepended with the flag value. Directory components with an empty name or
the name . are removed. Any directory named .. is read as dot-dot, or :back if it’s
nil (not :up). A last-component, either a file-namestring including type extension, or
nil in the case of a directory pathname. A flag that is true iff the unix-style-pathname
was just a file-namestring without / path specification. ensure-directory forces the
namestring to be interpreted as a directory pathname: the third return value will be

Chapter 7: UIOP/PATHNAME 18

nil, and final component of the namestring will be treated as part of the directory
path.

An empty string is thus read as meaning a pathname object with all fields nil.

Note that colon characters #: will not be interpreted as host specification. Absolute
pathnames are only appropriate on Unix-style systems.

The intention of this function is to support structured component names, e.g., (:file
"foo/bar"), which will be unpacked to relative pathnames.

[Function]subpathname* pathname subpath &key type
returns nil if the base pathname is nil, otherwise like subpathname.

[Function]subpathname pathname subpath &key type
This function takes a pathname and a subpath and a type. If subpath is already a
pathname object (not namestring), and is an absolute pathname at that, it is returned
unchanged; otherwise, subpath is turned into a relative pathname with given type as
per parse-unix-namestring with :want-relative t :type type, then it is merged
with the pathname-directory-pathname of pathname.

[Function]subpathp maybe-subpath base-pathname
if maybe-subpath is a pathname that is under base-pathname, return a pathname
object that when used with merge-pathnames* with defaults base-pathname, returns
maybe-subpath.

[Function]translate-pathname* path absolute-source destination &optional
root source

A wrapper around translate-pathname to be used by the ASDF output-translations
facility. path is the pathname to be translated. absolute-source is an absolute
pathname to use as source for translate-pathname, destination is either a function,
to be called with path and absolute-source, or a relative pathname, to be merged
with root and used as destination for translate-pathname or an absolute pathname,
to be used as destination for translate-pathname. In that last case, if root is non-NIL,
path is first transformated by directorize-pathname-host-device.

[Function]unix-namestring pathname
Given a non-wild pathname, return a Unix-style namestring for it. If the pathname is
nil or a string, return it unchanged.

This only considers the directory, name and type components of the pathname. This
is a portable solution for representing relative pathnames, But unless you are running
on a Unix system, it is not a general solution to representing native pathnames.

An error is signaled if the argument is not null, a string or a pathname, or if it is
a pathname but some of its components are not recognized.

[Function]wilden path
From a pathname, return a wildcard pathname matching any file in any subdirectory
of given pathname’s directory

[Macro]with-enough-pathname (pathname-var &key pathname defaults)
&body body

Shorthand syntax for call-with-enough-pathname

Chapter 7: UIOP/PATHNAME 19

[Macro]with-pathname-defaults (&optional defaults) &body body
Execute body in a context where the *default-pathname-defaults* is as speci-
fied, where leaving the defaults nil or unspecified means a (nil-pathname), except
on ABCL, Genera and XCL, where it remains unchanged for it doubles as current-
directory.

[Variable]*nil-pathname*
A pathname that is as neutral as possible for use as defaults when merging, making
or parsing pathnames

[Variable]*output-translation-function*
Hook for output translations.

This function needs to be idempotent, so that actions can work whether their inputs
were translated or not, which they will be if we are composing operations. e.g. if
some create-lisp-op creates a lisp file from some higher-level input, you need to still
be able to use compile-op on that lisp file.

[Variable]*unspecific-pathname-type*
Unspecific type component to use with the underlying implementation’s
make-pathname

[Variable]*wild-directory*
A pathname object with wildcards for matching any subdirectory

[Variable]*wild-file-for-directory*
A pathname object with wildcards for matching any file with directory

[Variable]*wild-file*
A pathname object with wildcards for matching any file with translate-pathname

[Variable]*wild-inferiors*
A pathname object with wildcards for matching any recursive subdirectory

[Variable]*wild-path*
A pathname object with wildcards for matching any file in any recursive subdirectory

[Variable]*wild*
Wild component for use with make-pathname

20

8 UIOP/FILESYSTEM

[Function]call-with-current-directory dir thunk
call the thunk in a context where the current directory was changed to dir, if not
nil. Note that this operation is usually not thread-safe.

[Function]collect-sub*directories directory collectp recursep collector
Given a directory, when collectp returns true when call-function’ed with the di-
rectory, call-function the collector function designator on the directory, and recurse
each of its subdirectories on which the recursep returns true when call-function’ed
with them. This function will thus let you traverse a filesystem hierarchy, superseding
the functionality of cl-fad:walk-directory. The behavior in presence of symlinks
is not portable. Use IOlib to handle such situations.

[Function]delete-directory-tree directory-pathname &key validate
if-does-not-exist

Delete a directory including all its recursive contents, aka rm -rf.

To reduce the risk of infortunate mistakes, directory-pathname must be a physical
non-wildcard directory pathname (not namestring).

If the directory does not exist, the if-does-not-exist argument specifies what hap-
pens: if it is :error (the default), an error is signaled, whereas if it is :ignore,
nothing is done.

Furthermore, before any deletion is attempted, the directory-pathname must pass
the validation function designated (as per ensure-function) by the validate key-
word argument which in practice is thus compulsory, and validates by returning a
non-NIL result. If you’re suicidal or extremely confident, just use :validate t.

[Function]delete-empty-directory directory-pathname
Delete an empty directory

[Function]delete-file-if-exists x
Delete a file x if it already exists

[Function]directory-exists-p x
Is x the name of a directory that exists on the filesystem?

[Function]directory-files directory &optional pattern
Return a list of the files in a directory according to the pattern. Subdirectories
should not be returned. pattern defaults to a pattern carefully chosen based on the
implementation; override the default at your own risk. directory-files tries not

to resolve symlinks if the implementation permits this, but the behavior in presence
of symlinks is not portable. Use IOlib to handle such situations.

[Function]directory* pathname-spec &rest keys &key &allow-other-keys
Return a list of the entries in a directory by calling directory. Try to override the
defaults to not resolving symlinks, if implementation allows.

[Function]ensure-all-directories-exist pathnames
Ensure that for every pathname in pathnames, we ensure its directories exist

Chapter 8: UIOP/FILESYSTEM 21

[Function]file-exists-p x
Is x the name of a file that exists on the filesystem?

[Function]filter-logical-directory-results directory entries merger
If directory isn’t a logical pathname, return entries. If it is, given entries in the
directory, remove the entries which are physical yet when transformed by merger

have a different truename. Also remove duplicates as may appear with some trans-
lation rules. This function is used as a helper to directory-files to avoid invalid
entries when using logical-pathnames.

[Function]get-pathname-defaults &optional defaults
Find the actual defaults to use for pathnames, including resolving them with respect
to getcwd if the defaults were relative

[Function]getenv-absolute-directories x
Extract a list of absolute directories from a user-configured environment variable, as
per native OS. Any empty entries in the environment variable x will be returned as
NILs.

[Function]getenv-absolute-directory x
Extract an absolute directory pathname from a user-configured environment variable,
as per native OS

[Function]getenv-pathname x &rest constraints &key ensure-directory
want-directory on-error &allow-other-keys

Extract a pathname from a user-configured environment variable, as per native OS,
check constraints and normalize as per ensure-pathname.

[Function]getenv-pathnames x &rest constraints &key on-error
&allow-other-keys

Extract a list of pathname from a user-configured environment variable, as per native
OS, check constraints and normalize each one as per ensure-pathname. Any empty
entries in the environment variable x will be returned as NILs.

[Function]inter-directory-separator
What character does the current OS conventionally uses to separate directories?

[Function]lisp-implementation-directory &key truename
Where are the system files of the current installation of the CL implementation?

[Function]lisp-implementation-pathname-p pathname
Is the pathname under the current installation of the CL implementation?

[Function]native-namestring x
From a non-wildcard CL pathname, a return namestring suitable for passing to the
operating system

[Function]parse-native-namestring string &rest constraints &key
ensure-directory &allow-other-keys

From a native namestring suitable for use by the operating system, return a CL
pathname satisfying all the specified constraints as per ensure-pathname

Chapter 8: UIOP/FILESYSTEM 22

[Function]probe-file* p &key truename
when given a pathname p (designated by a string as per parse-namestring), probes
the filesystem for a file or directory with given pathname. If it exists, return its
truename if truename is true, or the original (parsed) pathname if it is false (the
default).

[Function]rename-file-overwriting-target source target
Rename a file, overwriting any previous file with the target name, in an atomic way
if the implementation allows.

[Function]resolve-symlinks* path
resolve-symlinks in path iff *resolve-symlinks* is t (the default).

[Function]resolve-symlinks path
Do a best effort at resolving symlinks in path, returning a partially or totally resolved
path.

[Function]safe-file-write-date pathname
Safe variant of file-write-date that may return nil rather than raise an error.

[Function]split-native-pathnames-string string &rest constraints &key
&allow-other-keys

Given a string of pathnames specified in native OS syntax, separate them in a list,
check constraints and normalize each one as per ensure-pathname, where an empty
string denotes nil.

[Function]subdirectories directory
Given a directory pathname designator, return a list of the subdirectories under
it. The behavior in presence of symlinks is not portable. Use IOlib to handle such
situations.

[Function]truename* p
Nicer variant of truename that plays well with nil, avoids logical pathname contexts,
and tries both files and directories

[Function]truenamize pathname
Resolve as much of a pathname as possible

[Macro]with-current-directory (&optional dir) &body body
Call body while the POSIX current working directory is set to dir

[Variable]*resolve-symlinks*
Determine whether or not ASDF resolves symlinks when defining systems. Defaults
to t.

23

9 UIOP/STREAM

[Function]add-pathname-suffix pathname suffix &rest keys
Add a suffix to the name of a pathname, return a new pathname. Further keys can
be passed to make-pathname.

[Function]always-default-encoding pathname
Trivial function to use as *encoding-detection-hook*, always ’detects’ the *default-
encoding*

[Function]call-with-input-file pathname thunk &key element-type
external-format if-does-not-exist

Open file for input with given recognizes options, call thunk with the resulting
stream. Other keys are accepted but discarded.

[Function]call-with-null-input fun &key element-type external-format
if-does-not-exist

Call fun with an input stream that always returns end of file. The keyword arguments
are allowed for backward compatibility, but are ignored.

[Function]call-with-null-output fun &key element-type external-format
if-exists if-does-not-exist

Call fun with an output stream that discards all output. The keyword arguments are
allowed for backward compatibility, but are ignored.

[Function]call-with-output-file pathname thunk &key element-type
external-format if-exists if-does-not-exist

Open file for input with given recognizes options, call thunk with the resulting
stream. Other keys are accepted but discarded.

[Function]call-with-staging-pathname pathname fun
Calls fun with a staging pathname, and atomically renames the staging pathname to
the pathname in the end. nb: this protects only against failure of the program, not
against concurrent attempts. For the latter case, we ought pick a random suffix and
atomically open it.

[Function]call-with-temporary-file thunk &key want-stream-p
want-pathname-p direction keep after directory type prefix suffix
element-type external-format

Call a thunk with stream and/or pathname arguments identifying a temporary file.

The temporary file’s pathname will be based on concatenating prefix (or "tmp" if
it’s nil), a random alphanumeric string, and optional suffix (defaults to "-tmp" if
a type was provided) and type (defaults to "tmp", using a dot as separator if not
nil), within directory (defaulting to the temporary-directory) if the prefix isn’t
absolute.

The file will be open with specified direction (defaults to :io), element-type

(defaults to *default-stream-element-type*) and external-format (defaults to
utf-8-external-format). If want-stream-p is true (the defaults to t), then

Chapter 9: UIOP/STREAM 24

thunk will then be call-function’ed with the stream and the pathname (if want-
pathname-p is true, defaults to t), and stream will be closed after the thunk exits
(either normally or abnormally). If want-stream-p is false, then want-pathame-p

must be true, and then thunk is only call-function’ed after the stream is closed,
with the pathname as argument. Upon exit of thunk, the after thunk if defined is
call-function’ed with the pathname as argument. If after is defined, its results
are returned, otherwise, the results of thunk are returned. Finally, the file will be
deleted, unless the keep argument when call-function’ed returns true.

[Function]concatenate-files inputs output
create a new output file the contents of which a the concatenate of the inputs files.

[Function]copy-file input output
Copy contents of the input file to the output file

[Function]copy-stream-to-stream input output &key element-type buffer-size
linewise prefix

Copy the contents of the input stream into the output stream. If linewise is true,
then read and copy the stream line by line, with an optional prefix. Otherwise,
using write-sequence using a buffer of size buffer-size.

[Function]default-encoding-external-format encoding
Default, ignorant, function to transform a character encoding as a portable keyword
to an implementation-dependent external-format specification. Load system asdf-

encodings to hook in a better one.

[Function]default-temporary-directory
Return a default directory to use for temporary files

[Function]detect-encoding pathname
Detects the encoding of a specified file, going through user-configurable hooks

[Function]encoding-external-format encoding
Transform a portable encoding keyword to an implementation-dependent external-
format, going through all the proper hooks.

[Function]eval-input input
Portably read and evaluate forms from input, return the last values.

[Function]eval-thunk thunk
Evaluate a thunk of code: If a function, funcall it without arguments. If a constant
literal and not a sequence, return it. If a cons or a symbol, eval it. If a string,
repeatedly read and evaluate from it, returning the last values.

[Function]finish-outputs &rest streams
Finish output on the main output streams as well as any specified one. Useful for
portably flushing I/O before user input or program exit.

[Function]format! stream format &rest args
Just like format, but call finish-outputs before and after the output.

Chapter 9: UIOP/STREAM 25

[Function]input-string &optional input
If the desired input is a string, return that string; otherwise slurp the input into a
string and return that

[Function]null-device-pathname
Pathname to a bit bucket device that discards any information written to it and
always returns eof when read from

[Function]output-string string &optional output
If the desired output is not nil, print the string to the output; otherwise return the
string

[Function]println x &optional stream
Variant of princ that also calls terpri afterwards

[Function]read-file-form file &rest keys &key at &allow-other-keys
Open input file with option keys (except at), and read its contents as per slurp-
stream-form with given at specifier. beware: be sure to use with-safe-io-syntax,
or some variant thereof

[Function]read-file-forms file &rest keys &key count &allow-other-keys
Open input file with option keys (except count), and read its contents as per
slurp-stream-forms with given count. If count is null, read to the end of the
stream; if count is an integer, stop after count forms were read. beware: be sure to
use with-safe-io-syntax, or some variant thereof

[Function]read-file-line file &rest keys &key at &allow-other-keys
Open input file with option keys (except at), and read its contents as per slurp-
stream-line with given at specifier. beware: be sure to use with-safe-io-syntax,
or some variant thereof

[Function]read-file-lines file &rest keys
Open file with option keys, read its contents as a list of lines beware: be sure to
use with-safe-io-syntax, or some variant thereof

[Function]read-file-string file &rest keys
Open file with option keys, read its contents as a string

[Function]safe-format! stream format &rest args
Variant of format that is safe against both dangerous syntax configuration and errors
while printing.

[Function]safe-read-file-form pathname &rest keys &key package
&allow-other-keys

Reads the specified form from the top of a file using a safe standardized syntax.
Extracts the form using read-file-form, within an with-safe-io-syntax using
the specified package.

[Function]safe-read-file-line pathname &rest keys &key package
&allow-other-keys

Reads the specified line from the top of a file using a safe standardized syntax. Ex-
tracts the line using read-file-line, within an with-safe-io-syntax using the
specified package.

Chapter 9: UIOP/STREAM 26

[Function]safe-read-from-string string &key package eof-error-p eof-value
start end preserve-whitespace

Read from string using a safe syntax, as per with-safe-io-syntax

[Function]setup-temporary-directory
Configure a default temporary directory to use.

[Function]slurp-stream-form input &key at
Read the contents of the input stream as a list of forms, then return the access-at
of these forms following the at. at defaults to 0, i.e. return the first form. at is
typically a list of integers. If at is nil, it will return all the forms in the file.

The stream will not be read beyond the Nth form, where n is the index specified by
path, if path is either an integer or a list that starts with an integer.

beware: be sure to use with-safe-io-syntax, or some variant thereof

[Function]slurp-stream-forms input &key count
Read the contents of the input stream as a list of forms, and return those forms.

If count is null, read to the end of the stream; if count is an integer, stop after count
forms were read.

beware: be sure to use with-safe-io-syntax, or some variant thereof

[Function]slurp-stream-line input &key at
Read the contents of the input stream as a list of lines, then return the access-at

of that list of lines using the at specifier. path defaults to 0, i.e. return the first line.
path is typically an integer, or a list of an integer and a function. If path is nil, it
will return all the lines in the file.

The stream will not be read beyond the Nth lines, where n is the index specified by
path if path is either an integer or a list that starts with an integer.

[Function]slurp-stream-lines input &key count
Read the contents of the input stream as a list of lines, return those lines.

Note: relies on the Lisp’s read-line, but additionally removes any remaining CR
from the line-ending if the file or stream had CR+LF but Lisp only removed LF.

Read no more than count lines.

[Function]slurp-stream-string input &key element-type stripped
Read the contents of the input stream as a string

[Function]standard-eval-thunk thunk &key package
Like eval-thunk, but in a more standardized evaluation context.

[Function]temporary-directory
Return a directory to use for temporary files

[Function]tmpize-pathname x
Return a new pathname modified from x by adding a trivial random suffix. A new
empty file with said temporary pathname is created, to ensure there is no clash with
any concurrent process attempting the same thing.

Chapter 9: UIOP/STREAM 27

[Function]writeln x &rest keys &key stream &allow-other-keys
Variant of write that also calls terpri afterwards

[Macro]with-input (input-var &optional value) &body body
Bind input-var to an input stream, coercing value (default: previous binding of
input-var) as per call-with-input, and evaluate body within the scope of this
binding.

[Macro]with-null-input (var &rest keys &key element-type external-format
if-does-not-exist) &body body

Evaluate body in a context when var is bound to an input stream that always returns
end of file. The keyword arguments are allowed for backward compatibility, but are
ignored.

[Macro]with-null-output (var &rest keys &key element-type external-format
if-does-not-exist if-exists) &body body

Evaluate body in a context when var is bound to an output stream that discards
all output. The keyword arguments are allowed for backward compatibility, but are
ignored.

[Macro]with-output (output-var &optional value &key element-type) &body
body

Bind output-var to an output stream obtained from value (default: previous binding
of output-var) treated as a stream designator per call-with-output. Evaluate body
in the scope of this binding.

[Macro]with-safe-io-syntax (&key package) &body body
Establish safe CL reader options around the evaluation of body

[Macro]with-staging-pathname (pathname-var &optional pathname-value)
&body body

Trivial syntax wrapper for call-with-staging-pathname

[Macro]with-temporary-file (&key stream pathname directory prefix suffix
type keep direction element-type external-format) &body body

Evaluate body where the symbols specified by keyword arguments stream and
pathname (if respectively specified) are bound corresponding to a newly created
temporary file ready for I/O, as per call-with-temporary-file. At least one of
stream or pathname must be specified. If the stream is not specified, it will be
closed before the body is evaluated. If stream is specified, then the :close-stream

label if it appears in the body, separates forms run before and after the stream
is closed. The values of the last form of the body (not counting the separating
:close-stream) are returned. Upon success, the keep form is evaluated and the file
is is deleted unless it evaluates to true.

[Variable]*default-encoding*
Default encoding for source files. The default value :utf-8 is the portable thing. The
legacy behavior was :default. If you (asdf:load-system :asdf-encodings) then you will
have autodetection via *encoding-detection-hook* below, reading emacs-style -*-

coding: utf-8 -*- specifications, and falling back to utf-8 or latin1 if nothing is
specified.

Chapter 9: UIOP/STREAM 28

[Variable]*default-stream-element-type*
default element-type for open (depends on the current CL implementation)

[Variable]*encoding-detection-hook*
Hook for an extension to define a function to automatically detect a file’s encoding

[Variable]*encoding-external-format-hook*
Hook for an extension (e.g. asdf-encodings) to define a better mapping from non-
default encodings to and implementation-defined external-format’s

[Variable]*stderr*
the original error output stream at startup

[Variable]*stdin*
the original standard input stream at startup

[Variable]*stdout*
the original standard output stream at startup

[Variable]*temporary-directory*
User-configurable location for temporary files

[Variable]*utf-8-external-format*
Default :external-format argument to pass to cl:open and also cl:load or
cl:compile-file to best process a utf-8 encoded file. On modern imple-
mentations, this will decode utf-8 code points as CL characters. On legacy
implementations, it may fall back on some 8-bit encoding, with non-ASCII code
points being read as several CL characters; hopefully, if done consistently, that won’t
affect program behavior too much.

29

10 UIOP/IMAGE

[Function]argv0
On supported implementations (most that matter), or when invoked by a proper
wrapper script, return a string that for the name with which the program was invoked,
i.e. argv[0] in c. Otherwise, return nil.

[Function]call-image-dump-hook
Call the hook functions registered to be run before to dump an image

[Function]call-image-restore-hook
Call the hook functions registered to be run when restoring a dumped image

[Function]call-with-fatal-condition-handler thunk
Call thunk in a context where fatal conditions are appropriately handled

[Function]command-line-arguments &optional arguments
Extract user arguments from command-line invocation of current process. Assume
the calling conventions of a generated script that uses -- if we are not called from a
directly executable image.

[Function]create-image destination lisp-object-files &key kind output-name
prologue-code epilogue-code extra-object-files prelude postlude
entry-point build-args no-uiop

On ECL, create an executable at pathname destination from the specified object-

files and options

[Function]die code format &rest arguments
Die in error with some error message

[Function]dump-image filename &key output-name executable postlude
dump-hook compression

Dump an image of the current Lisp environment at pathname filename, with various
options.

First, finalize the image, by evaluating the postlude as per eval-input, then calling
each of the functions in dump-hook, in reverse order of registration by register-

image-dump-hook.

If executable is true, create an standalone executable program that calls restore-
image on startup.

Pass various implementation-defined options, such as prepend-symbols and purity

on CCL, or compression on SBCL, and application-type on SBCL/Windows.

[Function]fatal-condition-p condition
Is the condition fatal?

[Function]handle-fatal-condition condition
Handle a fatal condition: depending on whether *lisp-interaction* is set, enter
debugger or die

Chapter 10: UIOP/IMAGE 30

[Function]print-backtrace &rest keys &key stream count condition
Print a backtrace

[Function]print-condition-backtrace condition &key stream count
Print a condition after a backtrace triggered by that condition

[Function]quit &optional code finish-output
Quits from the Lisp world, with the given exit status if provided. This is designed to
abstract away the implementation specific quit forms.

[Function]raw-command-line-arguments
Find what the actual command line for this process was.

[Function]raw-print-backtrace &key stream count condition
Print a backtrace, directly accessing the implementation

[Function]register-image-dump-hook hook &optional call-now-p
Register a the hook function to be run before to dump an image

[Function]register-image-restore-hook hook &optional call-now-p
Regiter a hook function to be run when restoring a dumped image

[Function]restore-image &key lisp-interaction restore-hook prelude
entry-point if-already-restored

From a freshly restarted Lisp image, restore the saved Lisp environment by setting
appropriate variables, running various hooks, and calling any specified entry point.

If the image has already been restored or is already being restored, as per *image-
restored-p*, call the if-already-restored error handler (by default, a continuable
error), and do return immediately to the surrounding restore process if allowed to
continue.

Then, comes the restore process itself: First, call each function in the restore-

hook, in the order they were registered with register-image-restore-hook. Second,
evaluate the prelude, which is often Lisp text that is read, as per eval-input. Third,
call the entry-point function, if any is specified, with no argument.

The restore process happens in a with-fatal-condition-handler, so that if lisp-
interaction is nil, any unhandled error leads to a backtrace and an exit with
an error status. If lisp-interaction is nil, the process also exits when no error
occurs: if neither restart nor entry function is provided, the program will exit with
status 0 (success); if a function was provided, the program will exit after the function
returns (if it returns), with status 0 if and only if the primary return value of result
is generalized boolean true, and with status 1 if this value is nil.

If lisp-interaction is true, unhandled errors will take you to the debugger, and the
result of the function will be returned rather than interpreted as a boolean designating
an exit code.

[Function]shell-boolean-exit x
Quit with a return code that is 0 iff argument x is true

[Macro]with-fatal-condition-handler (&optional) &body body
Execute body in a context where fatal conditions are appropriately handled

Chapter 10: UIOP/IMAGE 31

[Variable]*command-line-arguments*
Command-line arguments

[Variable]*image-dump-hook*
Functions to call (in order) before an image is dumped

[Variable]*image-dumped-p*
Is this a dumped image? As a standalone executable?

[Variable]*image-entry-point*
a function with which to restart the dumped image when execution is restored from
it.

[Variable]*image-postlude*
a form to evaluate, or string containing forms to read and evaluate before the image
dump hooks are called and before the image is dumped.

[Variable]*image-prelude*
a form to evaluate, or string containing forms to read and evaluate when the image
is restarted, but before the entry point is called.

[Variable]*image-restore-hook*
Functions to call (in reverse order) when the image is restored

[Variable]*lisp-interaction*
Is this an interactive Lisp environment, or is it batch processing?

32

11 UIOP/LISP-BUILD

[Function]call-around-hook hook function
Call a hook around the execution of function

[Function]call-with-muffled-compiler-conditions thunk
Call given thunk in a context where uninteresting conditions and compiler conditions
are muffled

[Function]call-with-muffled-loader-conditions thunk
Call given thunk in a context where uninteresting conditions and loader conditions
are muffled

[Function]check-deferred-warnings files &optional context-format
context-arguments

Given a list of files containing deferred warnings saved by call-with-saved-

deferred-warnings, re-intern and raise any warnings that are still meaningful.

[Function]check-lisp-compile-results output warnings-p failure-p
&optional context-format context-arguments

Given the results of compile-file, raise an error or warning as appropriate

[Function]check-lisp-compile-warnings warnings-p failure-p &optional
context-format context-arguments

Given the warnings or failures as resulted from compile-file or checking deferred
warnings, raise an error or warning as appropriate

[Function]combine-fasls inputs output
Combine a list of FASLs inputs into a single FASL output

[Function]compile-file-pathname* input-file &rest keys &key output-file
&allow-other-keys

Variant of compile-file-pathname that works well with compile-file*

[Function]compile-file* input-file &rest keys &key compile-check output-file
warnings-file emit-cfasl &allow-other-keys

This function provides a portable wrapper around compile-file. It ensures that the
output-file value is only returned and the file only actually created if the compila-
tion was successful, even though your implementation may not do that. It also checks
an optional user-provided consistency function compile-check to determine success;
it will call this function if not nil at the end of the compilation with the arguments
sent to compile-file*, except with :output-file tmp-file where tmp-file is the
name of a temporary output-file. It also checks two flags (with legacy british spelling
from asdf1), *compile-file-failure-behaviour* and *compile-file-warnings-

behaviour* with appropriate implementation-dependent defaults, and if a failure
(respectively warnings) are reported by compile-file, it will consider that an error
unless the respective behaviour flag is one of :success :warn :ignore. If warnings-
file is defined, deferred warnings are saved to that file. On ECL or MKCL, it creates
both the linkable object and loadable fasl files. On implementations that erroneously
do not recognize standard keyword arguments, it will filter them appropriately.

Chapter 11: UIOP/LISP-BUILD 33

[Function]compile-file-type &rest keys
pathname type for lisp FASt Loading files

[Function]current-lisp-file-pathname
Portably return the pathname of the current Lisp source file being compiled or loaded

[Function]disable-deferred-warnings-check
Disable the saving of deferred warnings

[Function]enable-deferred-warnings-check
Enable the saving of deferred warnings

[Function]lispize-pathname input-file
From a input-file pathname, return a corresponding .lisp source pathname

[Function]load-from-string string
Portably read and evaluate forms from a string.

[Function]load-pathname
Portably return the load-pathname of the current source file or fasl. May return a
relative pathname.

[Function]load* x &rest keys &key &allow-other-keys
Portable wrapper around load that properly handles loading from a stream.

[Function]reify-deferred-warnings
return a portable S-expression, portably readable and writeable in any Common Lisp
implementation using read within a with-safe-io-syntax, that represents the warn-
ings currently deferred by with-compilation-unit. One of three functions required
for deferred-warnings support in ASDF.

[Function]reify-simple-sexp sexp
Given a simple sexp, return a representation of it as a portable sexp. Simple means
made of symbols, numbers, characters, simple-strings, pathnames, cons cells.

[Function]reset-deferred-warnings
Reset the set of deferred warnings to be handled at the end of the current with-

compilation-unit. One of three functions required for deferred-warnings support in
ASDF.

[Function]save-deferred-warnings warnings-file
Save forward reference conditions so they may be issued at a latter time, possibly in
a different process.

[Function]unreify-deferred-warnings reified-deferred-warnings
given a S-expression created by reify-deferred-warnings, reinstantiate the cor-
responding deferred warnings as to be handled at the end of the current with-

compilation-unit. Handle any warning that has been resolved already, such as
an undefined function that has been defined since. One of three functions required
for deferred-warnings support in ASDF.

Chapter 11: UIOP/LISP-BUILD 34

[Function]unreify-simple-sexp sexp
Given the portable output of reify-simple-sexp, return the simple sexp it repre-
sents

[Function]warnings-file-p file &optional implementation-type
Is file a saved warnings file for the given implementation-type? If that given type
is nil, use the currently configured *warnings-file-type* instead.

[Function]warnings-file-type &optional implementation-type
The pathname type for warnings files on given implementation-type, where nil

designates the current one

[Macro]with-muffled-compiler-conditions (&optional) &body body
Trivial syntax for call-with-muffled-compiler-conditions

[Macro]with-muffled-loader-conditions (&optional) &body body
Trivial syntax for call-with-muffled-loader-conditions

[Macro]with-saved-deferred-warnings (warnings-file &key
source-namestring) &body body

Trivial syntax for call-with-saved-deferred-warnings

[Variable]*base-build-directory*
When set to a non-null value, it should be an absolute directory pathname, which
will serve as the *default-pathname-defaults* around a compile-file, what more
while the input-file is shortened if possible to enough-pathname relative to it. This
can help you produce more deterministic output for FASLs.

[Variable]*compile-check*
A hook for user-defined compile-time invariants

[Variable]*compile-file-failure-behaviour*
How should ASDF react if it encounters a failure (per the ANSI spec of compile-
file) when compiling a file, which includes any non-style-warning warning. Valid
values are :error, :warn, and :ignore. Note that ASDF always raises an error if it fails
to create an output file when compiling.

[Variable]*compile-file-warnings-behaviour*
How should ASDF react if it encounters a warning when compiling a file? Valid values
are :error, :warn, and :ignore.

[Variable]*output-translation-function*
Hook for output translations.

This function needs to be idempotent, so that actions can work whether their inputs
were translated or not, which they will be if we are composing operations. e.g. if
some create-lisp-op creates a lisp file from some higher-level input, you need to still
be able to use compile-op on that lisp file.

[Variable]*uninteresting-compiler-conditions*
Additional conditions that may be skipped while compiling Lisp code.

Chapter 11: UIOP/LISP-BUILD 35

[Variable]*uninteresting-conditions*
Conditions that may be skipped while compiling or loading Lisp code.

[Variable]*uninteresting-loader-conditions*
Additional conditions that may be skipped while loading Lisp code.

[Variable]*usual-uninteresting-conditions*
A suggested value to which to set or bind *uninteresting-conditions*.

[Variable]*warnings-file-type*
Pathname type for warnings files, or nil if disabled

36

12 UIOP/LAUNCH-PROGRAM

uiop/launch-program semi-portably launches a program as an asynchronous external sub-
process. Available functionality may depend on the underlying implementation.

[Class]process-info
Class precedence list: process-info, standard-object, t

This class should be treated as opaque by programmers, except for the
exported process-info-* functions. It should never be directly instantiated by
make-instance. Primarily, it is being made available to enable type-checking.

[Function]close-streams process-info
Close any stream that the process might own. Needs to be run whenever streams
were requested by passing :stream to :input, :output, or :error-output.

[Function]easy-sh-character-p x
Is x an "easy" character that does not require quoting by the shell?

[Function]escape-command command &optional s escaper
Given a command as a list of tokens, return a string of the spaced, escaped tokens,
using escaper to escape.

[Function]escape-sh-command command &optional s
Escape a list of command-line arguments into a string suitable for parsing by /bin/sh
in POSIX

[Function]escape-sh-token token &optional s
Escape a string token within double-quotes if needed for use within a POSIX Bourne
shell, outputing to s.

[Function]escape-shell-command command &optional stream
Escape a command for the current operating system’s shell

[Function]escape-shell-token token &optional s
Escape a token for the current operating system shell

[Function]escape-token token &key stream quote good-chars bad-chars
escaper

Call the escaper function on token string if it needs escaping as per requires-

escaping-p using good-chars and bad-chars, otherwise output token, using stream
as output (or returning result as a string if nil)

[Function]escape-windows-command command &optional s
Escape a list of command-line arguments into a string suitable for parsing by Com-
mandLineToArgv in ms Windows

[Function]escape-windows-token token &optional s
Escape a string token within double-quotes if needed for use within a ms Windows
command-line, outputing to s.

Chapter 12: UIOP/LAUNCH-PROGRAM 37

[Function]launch-program command &rest keys &key input
if-input-does-not-exist output if-output-exists error-output
if-error-output-exists element-type external-format directory
&allow-other-keys

Launch program specified by command, either a list of strings specifying a program and
list of arguments, or a string specifying a shell command (/bin/sh on Unix, cmd.exe
on Windows) asynchronously .

If output is a pathname, a string designating a pathname, or nil (the default) des-
ignating the null device, the file at that path is used as output. If it’s :interactive,
output is inherited from the current process; beware that this may be different from
your *standard-output*, and under slime will be on your *inferior-lisp* buffer. If
it’s t, output goes to your current *standard-output* stream. If it’s :stream, a
new stream will be made available that can be accessed via process-info-output

and read from. Otherwise, output should be a value that the underlying lisp imple-
mentation knows how to handle.

if-output-exists, which is only meaningful if output is a string or a pathname,
can take the values :error, :append, and :supersede (the default). The meaning
of these values and their effect on the case where output does not exist, is analogous
to the if-exists parameter to open with :direction :output.

error-output is similar to output. t designates the *error-output*, :output

means redirecting the error output to the output stream, and :stream causes a stream
to be made available via process-info-error-output.

if-error-output-exists is similar to if-output-exist, except that it affects
error-output rather than output.

input is similar to output, except that t designates the *standard-input* and a
stream requested through the :stream keyword would be available through process-

info-input.

if-input-does-not-exist, which is only meaningful if input is a string or a path-
name, can take the values :create and :error (the default). The meaning of these
values is analogous to the if-does-not-exist parameter to open with :direction

:input.

element-type and external-format are passed on to your Lisp implementation,
when applicable, for creation of the output stream.

launch-program returns a process-info object.

launch-program currently does not smooth over all the differences between imple-
mentations. Of particular note is when streams are provided for output or error-
output. Some implementations don’t support this at all, some support only certain
subclasses of streams, and some support any arbitrary stream. Additionally, the im-
plementations that support streams may have differing behavior on how those streams
are filled with data. If data is not periodically read from the child process and sent
to the stream, the child could block because its output buffers are full.

[Function]process-alive-p process-info
Check if a process has yet to exit.

Chapter 12: UIOP/LAUNCH-PROGRAM 38

[Function]terminate-process process-info &key urgent
Cause the process to exit. To that end, the process may or may not be sent a signal,
which it will find harder (or even impossible) to ignore if urgent is t. On some
platforms, it may also be subject to race conditions.

[Function]wait-process process-info
Wait for the process to terminate, if it is still running. Otherwise, return immediately.
An exit code (a number) will be returned, with 0 indicating success, and anything
else indicating failure. If the process exits after receiving a signal, the exit code will
be the sum of 128 and the (positive) numeric signal code. A second value may be
returned in this case: the numeric signal code itself. Any asynchronously spawned
process requires this function to be run before it is garbage-collected in order to free
up resources that might otherwise be irrevocably lost.

39

13 UIOP/RUN-PROGRAM

uiop/run-program fully portably runs a program as a synchronous external subprocess.

[Function]run-program command &rest keys &key ignore-error-status
force-shell input if-input-does-not-exist output if-output-exists
error-output if-error-output-exists element-type external-format
&allow-other-keys

Run program specified by command, either a list of strings specifying a program and
list of arguments, or a string specifying a shell command (/bin/sh on Unix, cmd.exe on
Windows); synchronously process its output as specified and return the processing
results when the program and its output processing are complete.

Always call a shell (rather than directly execute the command when possible) if
force-shell is specified. Similarly, never call a shell if force-shell is specified to
be nil.

Signal a continuable subprocess-error if the process wasn’t successful (exit-code 0),
unless ignore-error-status is specified.

If output is a pathname, a string designating a pathname, or nil (the default) des-
ignating the null device, the file at that path is used as output. If it’s :interactive,
output is inherited from the current process; beware that this may be different from
your *standard-output*, and under slime will be on your *inferior-lisp* buffer. If
it’s t, output goes to your current *standard-output* stream. Otherwise, output
should be a value that is a suitable first argument to slurp-input-stream (qv.), or
a list of such a value and keyword arguments. In this case, run-program will create a
temporary stream for the program output; the program output, in that stream, will
be processed by a call to slurp-input-stream, using output as the first argument
(or the first element of output, and the rest as keywords). The primary value re-
sulting from that call (or nil if no call was needed) will be the first value returned
by run-program. e.g., using :output :string will have it return the entire output
stream as a string. And using :output ’(:string :stripped t) will have it return
the same string stripped of any ending newline.

if-output-exists, which is only meaningful if output is a string or a pathname,
can take the values :error, :append, and :supersede (the default). The meaning
of these values and their effect on the case where output does not exist, is analogous
to the if-exists parameter to open with :direction :output.

error-output is similar to output, except that the resulting value is returned as
the second value of run-program. t designates the *error-output*. Also :output

means redirecting the error output to the output stream, in which case nil is returned.

if-error-output-exists is similar to if-output-exist, except that it affects
error-output rather than output.

input is similar to output, except that vomit-output-stream is used, no value is
returned, and t designates the *standard-input*.

if-input-does-not-exist, which is only meaningful if input is a string or a path-
name, can take the values :create and :error (the default). The meaning of these
values is analogous to the if-does-not-exist parameter to open with :direction

:input.

Chapter 13: UIOP/RUN-PROGRAM 40

element-type and external-format are passed on to your Lisp implementation,
when applicable, for creation of the output stream.

One and only one of the stream slurping or vomiting may or may not happen in
parallel in parallel with the subprocess, depending on options and implementation,
and with priority being given to output processing. Other streams are completely
produced or consumed before or after the subprocess is spawned, using temporary
files.

run-program returns 3 values: 0- the result of the output slurping if any, or nil 1-

the result of the error-output slurping if any, or nil 2- either 0 if the subprocess
exited with success status, or an indication of failure via the exit-code of the process

[Generic Function]slurp-input-stream processor input-stream &key linewise
prefix element-type buffer-size external-format if-exists if-does-not-exist
at count stripped &allow-other-keys

slurp-input-stream is a generic function with two positional arguments processor
and input-stream and additional keyword arguments, that consumes (slurps) the
contents of the input-stream and processes them according to a method specified
by processor.

Built-in methods include the following:

• if processor is a function, it is called with the input-stream as its argument

• if processor is a list, its first element should be a function. It will be applied
to a cons of the input-stream and the rest of the list. That is (x . y) will be
treated as (apply x <stream> y)

• if processor is an output-stream, the contents of input-stream is copied to the
output-stream, per copy-stream-to-stream, with appropriate keyword arguments.

• if processor is the symbol cl:string or the keyword :string, then the contents
of input-stream are returned as a string, as per slurp-stream-string.

• if processor is the keyword :lines then the input-stream will be handled by
slurp-stream-lines.

• if processor is the keyword :line then the input-stream will be handled by
slurp-stream-line.

• if processor is the keyword :forms then the input-stream will be handled by
slurp-stream-forms.

• if processor is the keyword :form then the input-stream will be handled by
slurp-stream-form.

• if processor is t, it is treated the same as *standard-output*. If it is nil, nil
is returned.

Programmers are encouraged to define their own methods for this generic function.

[Generic Function]vomit-output-stream processor output-stream &key
linewise prefix element-type buffer-size external-format if-exists
if-does-not-exist fresh-line terpri &allow-other-keys

vomit-output-stream is a generic function with two positional arguments processor
and output-stream and additional keyword arguments, that produces (vomits) some
content onto the output-stream, according to a method specified by processor.

Chapter 13: UIOP/RUN-PROGRAM 41

Built-in methods include the following:

• if processor is a function, it is called with the output-stream as its argument

• if processor is a list, its first element should be a function. It will be applied
to a cons of the output-stream and the rest of the list. That is (x . y) will be
treated as (apply x <stream> y)

• if processor is an input-stream, its contents will be copied the output-stream,
per copy-stream-to-stream, with appropriate keyword arguments.

• if processor is a string, its contents will be printed to the output-stream.

• if processor is t, it is treated the same as *standard-input*. If it is nil, nothing
is done.

Programmers are encouraged to define their own methods for this generic function.

42

14 UIOP/CONFIGURATION

[Function]clear-configuration
Call the functions in *clear-configuration-hook*

[Function]configuration-inheritance-directive-p x
Is x a configuration inheritance directive?

[Function]filter-pathname-set dirs
Parse strings as unix namestrings and remove duplicates and non absolute-pathnames
in a list.

[Function]find-preferred-file files &key direction
Find first file in the list of files that exists (for direction :input or :probe) or just
the first one (for direction :output or :io). Note that when we say "file" here, the files
in question may be directories.

[Function]get-folder-path folder
Semi-portable implementation of a subset of LispWorks’ sys:get-folder-path, this func-
tion tries to locate the Windows folder for one of :local-appdata, :appdata or
:common-appdata. Returns nil when the folder is not defined (e.g., not on Win-
dows).

[Function]in-first-directory dirs x &key direction
Finds the first appropriate file named x in the list of dirs for I/O in direction

(which may be :input, :output, :io, or :probe). If direction is :input or :probe,
will return the first extant file named x in one of the dirs. If direction is :output
or :io, will simply return the file named x in the first element of dirs that exists.
deprecated.

[Function]in-system-configuration-directory x &key direction
Return the pathname for the file named x under the system configuration directory
for common-lisp. deprecated.

[Function]in-user-configuration-directory x &key direction
Return the file named x in the user configuration directory for common-lisp.
deprecated.

[Function]location-designator-p x
Is x a designator for a location?

[Function]location-function-p x
Is x the specification of a location function?

[Function]register-clear-configuration-hook hook-function &optional
call-now-p

Register a function to be called when clearing configuration

[Function]report-invalid-form reporter &rest args
Report an invalid form according to reporter and various args

Chapter 14: UIOP/CONFIGURATION 43

[Function]resolve-absolute-location x &key ensure-directory wilden
Given a designator x for an absolute location, resolve it to a pathname

[Function]resolve-location x &key ensure-directory wilden directory
Resolve location designator x into a pathname

[Function]resolve-relative-location x &key ensure-directory wilden
Given a designator x for an relative location, resolve it to a pathname.

[Function]system-config-pathnames &rest more
Return a list of directories where are stored the system’s default user configuration
information. more may contain specifications for a subpath relative to these directo-
ries: a subpathname specification and keyword arguments as per resolve-location
(see also "Configuration DSL") in the ASDF manual.

[Function]system-configuration-directories
Return the list of system configuration directories for common-lisp. deprecated. Use
uiop:system-config-pathnames (with argument "common-lisp"), instead.

[Function]uiop-directory
Try to locate the uiop source directory at runtime

[Function]upgrade-configuration
If a previous version of ASDF failed to read some configuration, try again now.

[Function]user-configuration-directories
Return the current user’s list of user configuration directories for configuring common-
lisp. deprecated. Use uiop:xdg-config-pathnames instead.

[Function]validate-configuration-directory directory tag validator &key
invalid-form-reporter

Map the validator across the .conf files in directory, the tag will be applied to the
results to yield a configuration form. Current values of tag include :source-registry
and :output-translations.

[Function]validate-configuration-file file validator &key description
Validate a configuration file. The configuration file should have only one s-expression
in it, which will be checked with the validator form. description argument used
for error reporting.

[Function]validate-configuration-form form tag directive-validator &key
location invalid-form-reporter

Validate a configuration form. By default it will raise an error if the form is not valid.
Otherwise it will return the validated form. Arguments control the behavior: The
configuration form should be of the form (tag . <rest>) Each element of <rest> will be
checked by first seeing if it’s a configuration inheritance directive (see configuration-
inheritance-directive-p) then invoking directive-validator on it. In the event
of an invalid form, invalid-form-reporter will be used to control reporting (see
report-invalid-form) with location providing information about where the con-
figuration form appeared.

Chapter 14: UIOP/CONFIGURATION 44

[Function]xdg-cache-home &rest more
The base directory relative to which user specific non-essential data files should be
stored. Returns an absolute directory pathname. more may contain specifications
for a subpath relative to this directory: a subpathname specification and keyword
arguments as per resolve-location (see also "Configuration DSL") in the ASDF
manual.

[Function]xdg-config-dirs &rest more
The preference-ordered set of additional base paths to search for configuration files.
Returns a list of absolute directory pathnames. more may contain specifications
for a subpath relative to these directories: subpathname specification and keyword
arguments as per resolve-location (see also "Configuration DSL") in the ASDF
manual.

[Function]xdg-config-home &rest more
Returns a pathname for the directory containing user-specific configuration files. more
may contain specifications for a subpath relative to this directory: a subpathname
specification and keyword arguments as per resolve-location (see also "Configu-
ration DSL") in the ASDF manual.

[Function]xdg-config-pathnames &rest more
Return a list of pathnames for application configuration. more may contain specifi-
cations for a subpath relative to these directories: a subpathname specification and
keyword arguments as per resolve-location (see also "Configuration DSL") in the
ASDF manual.

[Function]xdg-data-dirs &rest more
The preference-ordered set of additional paths to search for data files. Returns a
list of absolute directory pathnames. more may contain specifications for a subpath
relative to these directories: a subpathname specification and keyword arguments as
per resolve-location (see also "Configuration DSL") in the ASDF manual.

[Function]xdg-data-home &rest more
Returns an absolute pathname for the directory containing user-specific data files.
more may contain specifications for a subpath relative to this directory: a subpath-
name specification and keyword arguments as per resolve-location (see also "Con-
figuration DSL") in the ASDF manual.

[Function]xdg-data-pathnames &rest more
Return a list of absolute pathnames for application data directories. With app, returns
directory for data for that application, without app, returns the set of directories for
storing all application configurations. more may contain specifications for a subpath
relative to these directories: a subpathname specification and keyword arguments as
per resolve-location (see also "Configuration DSL") in the ASDF manual.

[Function]xdg-runtime-dir &rest more
Pathname for user-specific non-essential runtime files and other file objects, such
as sockets, named pipes, etc. Returns an absolute directory pathname. more may

Chapter 14: UIOP/CONFIGURATION 45

contain specifications for a subpath relative to this directory: a subpathname speci-
fication and keyword arguments as per resolve-location (see also "Configuration
DSL") in the ASDF manual.

[Variable]*here-directory*
This special variable is bound to the currect directory during calls to process-

source-registry in order that we be able to interpret the :here directive.

[Variable]*ignored-configuration-form*
Have configuration forms been ignored while parsing the configuration?

[Variable]*user-cache*
A specification as per resolve-location of where the user keeps his FASL cache

46

15 UIOP/BACKWARD-DRIVER

uiop/backward-driver provides backward-compatibility with earlier incarnations of this
library.

[Function]coerce-pathname name &key type defaults
deprecated. Please use uiop:parse-unix-namestring instead.

[Function]in-first-directory dirs x &key direction
Finds the first appropriate file named x in the list of dirs for I/O in direction

(which may be :input, :output, :io, or :probe). If direction is :input or :probe,
will return the first extant file named x in one of the dirs. If direction is :output
or :io, will simply return the file named x in the first element of dirs that exists.
deprecated.

[Function]in-system-configuration-directory x &key direction
Return the pathname for the file named x under the system configuration directory
for common-lisp. deprecated.

[Function]in-user-configuration-directory x &key direction
Return the file named x in the user configuration directory for common-lisp.
deprecated.

[Function]system-configuration-directories
Return the list of system configuration directories for common-lisp. deprecated. Use
uiop:system-config-pathnames (with argument "common-lisp"), instead.

[Function]user-configuration-directories
Return the current user’s list of user configuration directories for configuring common-
lisp. deprecated. Use uiop:xdg-config-pathnames instead.

[Function]version-compatible-p provided-version required-version
Is the provided version a compatible substitution for the required-version? If major
versions differ, it’s not compatible. If they are equal, then any later version is compat-
ible, with later being determined by a lexicographical comparison of minor numbers.
deprecated.

47

16 UIOP/DRIVER

uiop/driver doesn’t export any new symbols. It just exists to reexport all the utilities in
a single package uiop.

	1 Introduction
	2 UIOP/PACKAGE
	3 UIOP/COMMON-LISP
	4 UIOP/UTILITY
	5 UIOP/VERSION
	6 UIOP/OS
	7 UIOP/PATHNAME
	8 UIOP/FILESYSTEM
	9 UIOP/STREAM
	10 UIOP/IMAGE
	11 UIOP/LISP-BUILD
	12 UIOP/LAUNCH-PROGRAM
	13 UIOP/RUN-PROGRAM
	14 UIOP/CONFIGURATION
	15 UIOP/BACKWARD-DRIVER
	16 UIOP/DRIVER

