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ITA Software

fare@itasoftware.com

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Abstract
We present ASDF 2, the current state of the art in CL build sys-
tems. From a technical standpoint, ASDF 2 improves upon ASDF
by integrating previous common extensions, making configuration
easy, and fixing bugs. However the overriding concern driving these
changes was social rather than technical: ASDF plays a central role
in the CL community and we wanted to reduce the coordination
costs that it imposed upon CL programmers. We outline ASDF’s
history and architecture, explain the link between the social issues
we faced and the software features we added, and explore the tech-
nical challenges involved and lessons learned, notably involving in-
place code upgrade of ASDF itself, backward compatibility, porta-
bility, testing and other coding best practices.

Keywords Common Lisp, build infrastructure, interaction design,
code evolution, dynamic code update.

1. Introduction
ASDF 2 is the current version of ASDF, “Another System Defini-
tion Facility” [4]. ASDF allows Common Lisp (CL) developers to
specify how their software should be built from components, and
how it should be loaded into the current lisp image. Using CLOS,
ASDF can be extended to accommodate operations other than com-
piling and loading, and components other than CL source files and
modules.

ASDF has become the glue that holds the CL community to-
gether. The vast majority of CL libraries are delivered with ASDF
system descriptions, and assume that ASDF will be present to sat-
isfy their own library dependencies. ASDF has taken that role be-
cause of the way it simplifies not just the building and loading, but
also the installation of CL libraries.

In the past few years, many in the CL community have ex-
pressed a discontent at the current state of ASDF. In November
2009, François-René Rideau, a co-author of this article, while de-
veloping an alternative to ASDF (see 7.2), posted an article [15]
claiming that ASDF could not be salvaged, but was an evolution-
ary dead-end, whatever its many technical achievements and short-
comings. The problem was a software matter that had social impli-
cations: It was impossible to upgrade a system-provided version of
ASDF; therefore before any new feature or bugfix could be consid-
ered universally available and usable by developers, some industry-
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wide synchronization between the many vendors was necessary, at
each release, which seemed impossible, practically speaking.

From that analysis, it paradoxically appeared that ASDF was
fixable after all, if only it was first given the ability to upgrade
from one version to the current version. Shortly after this post,
Gary W. King, who was ASDF maintainer, resigned for lack of time
resources, and François-René Rideau took over the maintainership
of ASDF. With the help of many Lisp hackers (including the second
author), he developed ASDF 2: in addition to many technical bug
fixes, ASDF 2 tries to identify social problems in how Common
Lisp programmers have to interact with the system and with each
other, and to offer technical solutions through an API that reduces
problematic interactions.

In this paper we discuss a number of interesting technical and
social challenges that we had to face while developing the new ver-
sion of ASDF, and the lessons we learned. The social issues arose
from the central role of ASDF — we were determined not to “break
the community” with the introduction of ASDF 2 — and imposed
many technical challenges. One of the most interesting technical
challenges was to develop a portable means to hot upgrade ASDF,
as discussed above.

In the immediately following section, we introduce ASDF, ex-
plaining what it does and how it does it. We believe this material
will be of interest not just to those who have never used ASDF, but
even to seasoned users, since experience has shown us that there
are several aspects of ASDF that run counter to the intuitions of its
users. We begin describing our technical contribution with a section
discussing the hot upgrade of ASDF code, since solving this prob-
lem was the sine qua non for the very existence of ASDF 2. After
that, we discuss the semantic changes we made to the user-visible
API, most of which had to do with improving the way ASDF is
configured so that it can find its input systems and place its out-
put products (notably compiled code). In the following section, we
discuss how software engineering best practices applied to our en-
deavor, after which we discuss one of the most tricky bug fixes
(repairing the cornerstone traverse function). We wrap up with a
discussion of related work, suggestions for future improvements to
ASDF, and a brief conclusion.

2. ASDF
2.1 What ASDF does
As a preliminary to a discussion of our work on ASDF 2, this
section explains the role and function of ASDF. Readers unfamiliar
with ASDF may thus get a sense of what this piece of software is
about. Even experienced ASDF users may learn about some of the
subtleties of ASDF that they might have to deal with.

In the CL tradition, the unit of software organization is called a
system. ASDF allows developers to define systems in a declarative
way, and enables users to load these systems into the current CL
image. ASDF processes system definitions into objects according
to a model implemented using the Common Lisp Object System



(CLOS). This model is exposed to programmers and extensible by
programmers, who may thereby adapt ASDF to their needs.

For most ASDF users, the service that ASDF provides is the
asdf:load-system function. When ASDF is properly configured,
(asdf:load-system "foo") will load the system named "foo"
into the current image; ASDF will first compile the system if
necessary, and it will recurse into declared dependencies to ensure
they are compiled and loaded.

To that end, it will take the following steps: (1) find the defini-
tion of the system foo in the ASDF registry; (2) develop a plan to
compile and load the system foo, first recursing into all its declared
dependencies, and then including all of its components; (3) execute
this plan.

Most developers load and modify existing systems. Advanced
developers define their own systems. More advanced developers
extend ASDF’s object model: they may define new components
in addition to Lisp source files, such as C source files or protocol
buffer definitions; or they may define new operations in addition
to compiling and loading, such as documentation generation or
regression testing.

ASDF is a central piece of software for the CL community. CL
libraries — especially the open source libraries — are overwhelm-
ingly delivered with ASDF system descriptions, and overwhelm-
ingly assume that ASDF will be present to handle their own library
dependencies.

One thing ASDF does not do is download such library depen-
dencies when they are missing. Other CL programs tackle this
problem, while delegating build and load management to ASDF.
These programs include the obsolescent asdf-install, the popu-
lar clbuild, the up-and-coming quicklisp, and challengers like
desire, LibCL or repo-install.

2.2 Analogy with make
It is conventional to explain ASDF as the CL analog of make [8]:
both are used to build software, compile documentation, run tests.
However, the analogy is very limited: while both ASDF and make
are used for such high-level building tasks, they differ in their goals,
their design, the constraints they respect, their internal architecture,
the concepts that underlie them, and the interfaces they expose to
users.

ASDF finds systems and loads systems, problems that are not
handled by build tools such as make or ant. These other build
tools don’t search for systems; they must be pointed at a system
definition in the current or specified directory. Finding systems at
build time would be analogous to a subset of libtool; finding and
loading systems at runtime would correspond to a subset of the
Unix dynamic linker ld.so. As for loading, the fact that ASDF is
available for interactive use makes it analogous to some component
of the operating system shell.1 Loading some systems might thus be
similar to importing shell functions, starting a daemon, registering a
plugin in your browser, loading code into some master process, etc.
Finally, ASDF maintains state in a running (perhaps long-running)
Lisp image. If system components have been changed, it is ASDF’s
job, at the user’s request, to generate and execute plans to modify
previously-loaded systems in order to accommodate those changes.

ASDF also differs from make in terms of how systems are
specified. make is built around a complex combination of multiple
layers of languages — some domain-specific languages and some
generalized programming languages. make interprets a makefile in
the following way: A text-substitution preprocessor expands macro
definitions in the file, producing a set of pattern-matching rules.
An inference engine uses the rules, chaining backwards from the

1 McDermott also makes this point in the paper about his chunk mainte-
nance system [12].

(defsystem "hello-lisp"
:description "hello-lisp: a sample Lisp system."
:version "0.3"
:author "Joe User <joe@example.com>"
:licence "Public Domain"
:depends-on (foo-utils)
:components ((:file "packages")

(:file "macros"
:depends-on ("packages"))

(:file "classes"
:depends-on ("packages"))

(:file "methods"
:depends-on ("macros" "classes"))

(:module "main"
:depends-on ("macros")
:serial t
:components
((:file "hello")
(:file "goodbye")))))

Figure 1. Sample ASDF system definition.

targets it has been directed to build. The rules are annotated with
parameterized shell scripts that actually perform the build actions.

make is a powerful tool that can express arbitrary programs,
but makefiles can grow into a mesh of code that defies any simple
analysis. ASDF is a small CL program, and its system definitions
are data rather than programs.

Supporting a new file type is relatively easy with make, by
adding a new rule with an appropriate pattern to recognize file-
names with the conventional extension, and corresponding shell
commands. Supporting a new file type in ASDF is more involved,
requiring one to define a class and a few methods as extensions to
the ASDF protocol. Unfortunately, this procedure is complicated
by the fact that the ASDF protocol is poorly documented.

On the other hand, when building C programs with make, ar-
bitrary side-effects have to be specified in a different language, in
the shell layer of the makefile. When building CL programs with
ASDF, arbitrary side-effects are specified in Lisp itself inside the
components being built. This is because the C compiler and linker
are pure functional file-to-file transformers, whereas the CL com-
piler and loader are imperative languages. The ability Lisp has to do
everything without cross-language barriers is a conceptual simpli-
fication, but of course, it doesn’t save you from the intrinsic com-
plexity of such side-effects.

A final difference between ASDF and make is that ASDF gener-
ates a full plan of the actions required to fulfill all the dependencies
of its goal before performing the planned actions. By contrast, make
performs actions as it traverses its dependency tree [8, 17]. We will
discuss this further in Section 2.4.

2.3 Basic ASDF object model
Figure 1 shows a sample ASDF system definition, illustrating core
features of the defsystem macro. This form shows how a system
can be defined in terms of components (files and sub-modules). It
also shows how system dependencies are specified (hello-lisp
depends-on foo-utils), and gives example metadata (authors,
versioning, license, etc.).

The defsystem macro parses the system definition into a set of
linked objects, all of them instances of (subclasses of) component.
The main object will be of type system. Primitive components
of systems are typically instances of a subclass of source-file,
by default cl-source-file. There are other predefined compo-
nent types, including static-file, representing files that are dis-
tributed with a system, but which do not undergo operations. Sys-
tems can be recursively organized in a tree of modules that may or
may not map to a similar tree of directories.



((#<COMPILE-OP> . #<CL-SOURCE-FILE "packages">)
(#<LOAD-OP> . #<CL-SOURCE-FILE "packages">)
(#<COMPILE-OP> . #<CL-SOURCE-FILE "macros">)
(#<COMPILE-OP> . #<CL-SOURCE-FILE "classes">)
(#<LOAD-OP> . #<CL-SOURCE-FILE "macros">)
(#<LOAD-OP> . #<CL-SOURCE-FILE "classes">)
(#<COMPILE-OP> . #<CL-SOURCE-FILE "methods">)
(#<COMPILE-OP> . #<CL-SOURCE-FILE "hello">)
(#<LOAD-OP> . #<CL-SOURCE-FILE "hello">)
(#<COMPILE-OP> . #<CL-SOURCE-FILE "goodbye">)

† (#<COMPILE-OP> . #<MODULE "main">)
(#<COMPILE-OP> . #<SYSTEM "hello-lisp">)
(#<LOAD-OP> . #<CL-SOURCE-FILE "methods">)
(#<LOAD-OP> . #<CL-SOURCE-FILE "goodbye">)

† (#<LOAD-OP> . #<MODULE "main">)
† (#<LOAD-OP> . #<SYSTEM "hello-lisp">))

Figure 2. Sample load-op plan for the system definition in Fig-
ure 1. We assume that foo-utils is already compiled and loaded.

System management tasks consist of applying the generic func-
tion operate on parameters specifying an operation and a
system. The operation is either a load-op, specifying that a
system or component is to be loaded into the current image, or a
compile-op specifying that a system or component is to be com-
piled into the filesystem. The system is designated by a string or a
symbol, and operate will first find and load the thus named sys-
tem definition. This is done by the generic function find-system,
which searches for the system definition in a configurable system
registry (and its in-memory cache). The system definition search is
one of the aspects of ASDF 1 that we reformed; see Section 4.3.

After a system definition is found, operate generates a plan for
completing the operation using the function traverse described
below. The plan will be a list of steps; the list will be topologically
sorted such that all the dependencies of a step appear before that
step. If a plan is successfully generated, operate will perform
each of its steps in sequence. If a step fails, ASDF offers the
user a chance to correct the step, retry, and continue according to
plan, making it easy to fix simple mistakes without interrupting the
operation.

2.4 Plan generation
The plan-generating function traverse performs a depth-first,
postorder traversal over the steps needed to operate on the target
system and its dependencies. Each step is a pair of an operation
and a component, What we mean by postorder here is that
when applying an operation to a system (or module), the plan
will contain steps first to complete the operation to the sub-
components, then to perform it on the system (or module) itself.
For example, a load-op plan for the system in Figure 1 is given
as Figure 2. Note the lines marked with a †, which show that op-
erations on composite components (modules and systems) are
scheduled after operations on their components.

When building a plan, traverse skips steps it can prove are
not necessary. A step is necessary if it hasn’t been done yet or if
it is forced by a change to one of the component’s dependencies.
When a compilation step is necessary, all the steps that depend on
it are forced to be necessary, since whatever was done before will
be out of date by the time the step is performed. If a step and all the
compilation steps transitively required in order to complete it have
already been done (by a previous run of ASDF), then the step is not
necessary and can be skipped.

To determine whether a step has already been done, traverse
calls the generic function operation-done-p on the operation
and component. For a compilation step, wanted for its effects on

the filesystem, operation-done-p compares the timestamps of
the corresponding input-files and output-files (if present).
For a load step, wanted for its effects on the current Lisp im-
age, there are no output-files, and operation-done-p com-
pares the timestamp of the input-files to the time they were
last loaded into the current image (if ever). Steps with neither
input-files nor output-files (e.g., where the component is
a module or system) are never considered necessary unless forced
by a dependency or sub-component.

Tracing traverse and inspecting the plan it returns is often a
good way to debug one’s system definitions. Running traverse
can also be useful as an introspection tool on a system (e.g. to
determine what files need be recompiled, and run according tests
after recompilation). We have improved traverse somewhat in
ASDF 2, but have limited the scope of our efforts out of concern
for backwards compatibility. See Section 6. traverse is not an
exported part of the ASDF API, so in theory users and extenders
should not depend on it, but that has proven not to work, because
of the leakiness of the abstraction. We discuss this further in Section
8.

Importantly, note that system definitions only specify depen-
dencies between steps. These dependencies only specify a partial
order, so for a given operation and system there may be multiple
possible complete plans. Moreover, the semantics do not dictate
a “plan-then-execute” implementation. And indeed, a parallelizing
extension to ASDF, POIU, does things differently (see Section 5.5).

2.5 Social role of ASDF
ASDF had a major role in enabling the growth of open source CL
libraries, and the renaissance of the CL community. Prior to the
existence of ASDF, there have been many efforts at consolidating a
Lisp community [20], but it was hard to assemble the pieces of code
gathered from over the net, because there was no portable way to
specify how to build a system out of components that were not all
supplied together. Installing a CL system was often a tricky matter
of filling a load file full of logical or physical pathname definitions.
Sharing a CL system across a group, even on the same filesystem,
often involved fussy coordination of logical pathname definitions.
Typically, CL software developers simply developed and delivered
enormous, monolithic systems, and there was little opportunity for
code reuse across work groups.

ASDF changed all this by providing a de facto standard for
specifying systems. ASDF made it easy to specify how one system
could depend on others. This could now be done simply by naming
the systems depended on, and users could trust ASDF to find the
requisite system definitions and system contents. Unfortunately,
ASDF had several flaws that made this system configuration, and
the social software development process, more difficult than need
be — though still much easier than doing without ASDF. In this
paper, we will discuss some of these flaws, and the steps we have
taken to overcome them in ASDF 2.

The CL renaissance is still fragile. For that reason, and because
of central role of ASDF in the community, we needed to be ex-
tremely careful that our modifications and extensions to ASDF
would only strengthen it and not, for example, break the community
up into islands running separate and incompatible ASDF versions.

3. Dynamic Code Update
3.1 Social Rationale
As discussed in the introduction, in-memory upgradeability of
ASDF was essential to solve the social issues regarding the de-
velopment, distribution and usage of new versions of ASDF. Only
if we guarantee that ASDF can be upgraded if needed can users
rely on new features and bug fixes of ASDF.



Previously, there was no portable way to load and configure
ASDF unless it had been pre-loaded with your Lisp image (as by
common-lisp-controller under Debian), and there was no way
to upgrade a pre-loaded ASDF with a new version. With ASDF
2, users can install a new version of ASDF into an image with an
old version simply by executing the following command, assuming
ASDF was properly configured to find the new definition:

(asdf:load-system :asdf)

In an apparent paradox, allowing for divergence creates an
incentive towards convergence: because they are confident that
ASDF 2 can be upgraded, implementation vendors have less pres-
sure to be conservative and keep a “trusted” old version (which may
differ between implementations). Also, with less pressure to get it
exactly right, CL implementers need not hesitate to upgrade to the
latest upstream release; if they update their code every so often and
ASDF does not change too fast, they will quickly converge to the
same version, the latest stable release. By removing the require-
ment for a priori coupling of release cycles, we achieve better a
posteriori coupling of release cycles.

3.2 Technical Challenge
Unlike other build systems, such as make, ASDF is an “in-image”
build system managing systems that are compiled and loaded
in the current CL image.

Build tools of other languages typically rely on some external,
operating system provided shell to build software that is loaded
into virtual machines (processes in Unix parlance) distinct from
the current one. When using these other languages, all the state
necessary to build software is typically kept in the filesystem, and
incompatible changes in interfaces or internals of the build system
are resolved simply by starting a new virtual machine.

ASDF does not start separate processes for compilation. We be-
lieve that there are a number of reasons for this design decision.
First, CL implementations historically have run on a vast variety of
operating systems, some of which lacked the capability of virtual-
izing a Lisp process. Previous build systems were designed around
that constraint, and ASDF followed their design. Also, even on
modern operating systems that allow this virtualization, starting a
CL process can sometimes be a relatively expensive process (de-
pending on the individual CL implementation). Moreover, because
of the presence of code to be executed at compile time and the
dependence on a substantial amount of compile-time state, it is dif-
ficult to decompose the process of building a CL system into inde-
pendent pieces and parcel them out to different processes. Finally,
CL programmers often build very extensive state in a long-living
CL image, and so prefer to keep them alive. ASDF supports such a
use pattern.

Because ASDF performs its build tasks in the user’s current
Lisp process, upgrading ASDF entails modifying some existing
functions and data structures in situ, requiring delicate surgery to
keep things working as you modify them.

To make things slightly harder, the same source code must be
able to both define a fresh ASDF (if it hasn’t been loaded yet),
or upgrade an existing ASDF installation to the current code (if a
previous version already exists). In addition, the code for an ASDF
version must recognize the special case when the very same version
is already loaded so as to ensure such reloads are idempotent. It
does this by relying on a simple version identification string, to be
bumped up at every modification of ASDF.

3.3 Rebinding a symbol
The semantics of redefining or overriding a function is not fully
specified by the CL standard. The many implementations at the
time of standardization may have had explicitly different semantics,

the semantic difficulties may have been overlooked, implementers
may have called for underspecification as leaving them more room
for optimization, or it may have otherwise not been considered
appropriate for the committee to standardize a practice that wasn’t
widely accepted. In writing the code that makes it possible to
upgrade ASDF, we encountered two complementary difficulties
when rebinding the functional value of symbols.

The first difficulty arises from incompatibilities between new
and old function definitions bound to a same symbol when new
functions are dynamically called by an old client, with data follow-
ing the old convention. The second difficulty arises from incom-
patibilities between the new and old function definitions bound to
a same symbol when old functions are statically called by an old
client, with data following the new convention.

A dynamic call is when the call site dereferences the function
bound to the symbol at runtime, and does so at every call. A static
call is when the compiler or linker dereferences the function bound
to the symbol once at compile-time or load-time and prepares the
runtime to always directly use the code of that function. An actual
implementation need not do the above naively, as long as it behaves
in a semantically equivalent way.2

The two above difficulties are inherent in redefining functions
and are not specific to either CL or ASDF. However, these diffi-
culties are particularly relevant in the case of ASDF, because it
drives compilation and loading of Lisp code possibly including new
versions of ASDF itself. ASDF’s redefined functions are therefore
likely to be in the continuation of their own function redefinitions,
where the old code will for a short while be a client to the new code.
Moreover, these difficulties are compounded by the fact that the CL
standard [1, section 3.2.2.3] does not specify whether any particular
call will be dynamic or static, unless the function was explicitly de-
clared notinline, in which case it should always be dynamic. In
practice, implementations may legitimately inline function bodies,
cache effective methods for generic function calls, specialize call
sites to declared calling conventions, etc. This means that redefin-
ing a function requires taking proper precautions against errors that
may or may not happen, depending on details of individual CL im-
plementations, the nature of the function being redefined, and the
evaluation context.

CL provides a primitive fmakunbound that is meant to undo the
binding of a symbol to a function. fmakunbound ought to clear out
any related state and make way for a new definition. Indeed, in the
simple case where a function is not referenced in the continuation
of the current compile or load, and not exported to code from
other files, all references to it will be overridden by newly loaded
code. In this case, it is sufficient to fmakunbound the function
symbol (and possibly re-declaim its type) before redefining it with
an incompatible signature. Any inlined or cached version of the
function will be overridden by the new definitions in the newly
loaded file.

On the other hand, when a function may be referenced in
the continuation of the current compile or load, then whether
fmakunbound will work or not depends on the implementation,
the optimization levels, etc. Generic functions in particular may
require special MOP operations that haven’t been standardized. We
cannot work around limitations of MOP standardizations by using
a portability layer such as CLOSER-MOP [7], lest by doing so we

2 For instance, assuming functions are seldom rebound, dynamic calls may
be implemented just like static calls, except that the value of the binding is
a cache that gets invalidated between the time the function is rebound and
the time the cache is next used.
As for static calls, they may be implemented not just by linking a call to the
proper code value, but also by inlining the body of the target function, or at
the other end of the spectrum, by doing a dynamic call to an alpha-converted
symbol that will never be rebound.



create a circular dependency between the portability layer (loaded
using ASDF) and ASDF itself.

3.4 Shadowing a symbol
In cases where fmakunbound will not work and a symbol cannot
be rebound, we may instead unintern the symbol whose function
binding we want to redefine. Doing so we effectively shadow the
old definition. All existing references to the symbol from old code
will continue to point to the old symbol and its existing bindings.
The next time same symbol name appears, a new, distinct, symbol
will be interned, and further code that is read into the system will
refer to this new symbol and its associated bindings.

In addition to cases where bugs and limitations of the implemen-
tation prevent fmakunbound from working, there are cases where
the CL standard doesn’t provide any redefinition mechanism, and
shadowing the old symbol is the only option available. This is no-
tably the case regarding CL not providing any guaranteed primitive
to undo the declaration making the binding of a symbol to a variable
special (i.e. dynamic, as opposed to lexical, i.e. static), or constant,
or to undo declarations using a named type that is being redefined.
These issues are usually worked around by programmers following
syntactic conventions, such as *ear-muffs* for special variables
and something similar for +constants+. There should never be a
need to turn the *ear-muffs* variable into something that is lexi-
cally scoped, or to change +constants+ at all.

The main downside of shadowing as a redefinition mechanism is
that it requires that all clients be reloaded and possibly recompiled
to be able to use the new interface, even if the code of these
clients hasn’t changed at all. Indeed, previously loaded clients will
continue to use the old symbols and their bindings, and there may
be confusion if old and new clients interact while expecting to be
talking to the same service.

Another problem is that unintern runs the risk of causing “col-
lateral damage.” When a symbol has several bindings associated to
it, such as a function or macro; variable or constant; type or class or
condition; property, etc. All of these bindings will simultaneously
become inaccessible when the symbol is uninterned.

Consider a user developing on a CL image that includes ASDF
and on top of it ASDF clients such as POIU or CFFI-GROVEL.
If the user upgrades ASDF, then she must also reload POIU and
CFFI-GROVEL before she may use them. She must do so even if
there were no code changes in either of the latter systems, lest the
previously loaded system be in an invalid, unusable state. Code in
these systems may be linked to obsolete, now-uninterned symbols
from the old ASDF. For these client systems to function properly,
they must be linked against the symbols from the new ASDF.

Ideally, whether we rebind or shadow would be a matter of the
distinction between intension and extension: which symbols we
consider intensional fixed entry points that denote some “same”
higher meaning when implementation changes underneath, and
which symbols denote extensional constant code values, the imple-
mentation of which cannot be changed, but that can be shadowed
and forgotten.

In practice, which of rebinding and shadowing we use de-
pends on the implementation into which we are loading ASDF,
because different implementations have different quirks, bugs and
constraints when upgrading code. For instance, rebinding some
generic functions fails to flush method caches on SBCL, but shad-
owing symbols while loading a FASL breaks linker optimizations
on ECL and GCL. We barely managed to support the basic use case
of upgrading from implementation-provided versions of ASDF to
the latest version of ASDF, but we had to deal with more hurdles
than we expect the average CL programmer ever to want to deal
with.

To make things more complex, in CL, multiple symbols of the
same name may coexist, if each of them is interned in a different
package. Packages are global flat structures, and each package may
import symbols from other packages (without renaming). Packages
may “use” other packages that export symbols, which helps auto-
mate some of this importing. If unintern was causing problems
when redefining functions, redefining packages only leads to more
madness as uninterned symbols may have been imported by other
packages, the package use graph may have changed, etc. There
again, we may try either to do complex surgery on an existing pack-
age object and preserve its relationship to other packages using it
or its symbols, or to simply rename it away and shadow it and all
its symbols with it, and require client packages to be reloaded to
link to the new package object.

ASDF 2 takes care to define the ASDF package if it doesn’t
exist, redefine it properly if it exists, etc. ASDF 2 reuses existing
packages and symbols whenever possible, so as not to invalidate
previously interned client code, etc. This package wrangling was
difficult to get right, and once again, we have to take into account
the eager linking done by ECL and GCL. One reason we could
make this package wrangling work is that we do not need to blindly
handle the general case of upgrading arbitrary package definitions
to arbitrary new ones. All we needed to do was to upgrade previous
versions of our own packages. This was simplified by the fact that
our package does not use any other package that is a moving target.
If any package uses ASDF and that somehow causes a clash, it is the
responsibility of the authors of that client package to update their
code.

3.5 Happy non-issue: Data Upgrade
CL makes dynamic data upgrade extraordinarily easy. Classes
can be redefined, slots can be added to them, removed from them,
or modified, and all instances will be automatically updated be-
fore their next use to fit the new definition. The Common Lisp
Object System (CLOS) [6] allows users to control this instance
update programmatically by defining methods on update-ins-
tance-for-redefined-class. We rely on this functionality in
ASDF 2 to ensure that previously loaded systems can still be used
after an upgrade of ASDF (assuming they are not themselves ASDF
extensions). Without such functionality, preserving the existing
data (system definitions, etc.) would have been a major undertaking
requiring a global rewrite, and requiring much better control over
the version of ASDF 1 being replaced than was easily available.

There was one catch with using update-instance-for-re-
defined-class for the purposes of ASDF 2. This was a chicken-
and-egg issue between defclass and defmethod update-ins-
tance-for-redefined-class: it was difficult to order the defi-
nitions so that the same code would work without warning or error
in both the case of defining a fresh ASDF and the case of an up-
grade from a previous ASDF.

Defining the class before the method may on some implemen-
tations cause objects to be upgraded before the method is defined
and therefore without the upgrade being properly run. Defining the
method before the class in the source code may cause a warning the
first time around when the class isn’t defined yet. Inserting an intro-
spective check for class existence may cause the method definition
not to be statically compiled and emit a warning on some imple-
mentations. Protecting the method definition with delayed evalua-
tion (as we finally did) hushes the warning. Unfortunately, it also
causes slightly inefficient runtime compilation on some implemen-
tations. Nevertheless, it doesn’t cause any significant user-visible
pause, since the user is compiling ASDF and (presumably lots of
other code with it); the slight added delay is not perceptible.

The CL protocol for class redefinition is relatively well-desig-
ned and quite effectively handles the difficult problem of schema



upgrade that other programming languages do not dare to tackle.
However, the schema upgrade API was written with “upgrade
scripts” in mind, and is clumsy to use when writing code that spec-
ifies end-result semantics independently of whether the code is an
initial definition or an upgrade.

Note that none of this would have been possible if ASDF,
like its predecessor MK-DEFSYSTEM, had been using pre-CLOS
defstruct. CL structures do not provide a safe upgrade protocol
the way CLOS classes do.

3.6 Towards a better specification
It is to the credit of CL that dynamic code upgrade is possible at
all; it is not possible in most programming languages. However,
it is possible to support dynamic code upgrade much better. For
instance, Erlang solves the issue of dynamic code upgrade by pro-
viding syntactic distinction between the two semantically different
kinds of calls: calls specifying a syntactically unqualified identifier
are always semantically static calls (to a function in the same mod-
ule), and calls to a syntactically module-qualified identifier (even in
the same module) are always semantically dynamic calls. The ef-
fect of function redefinition on each call site is therefore perfectly
predictable, and this does not prevent optimizations as the CL stan-
dard authors might have feared.

It is probably possible to express the Erlang semantics on top
of CL, by explicitly funcalling either (fdefinition ’foo) or
(load-time-value (fdefinition ’foo)) depending on the
call being static or dynamic. However this is cumbersome, non-
idiomatic, and most importantly requires existing code to be mod-
ified to use the new convention before it may be safely upgraded.
Therefore it is not compatible with using existing libraries as black
boxes. Future Lisp standards and specifications could learn from
Erlang.

CL users could incorporate Erlang-like semantics in a mostly
transparent way by layering a CL implementation on top of CL,
shadowing the usual reader and evaluator to replace them with
something that provides well-defined semantics for hot upgrade,
assuming all code is (re)compiled on top of this implementation
rather than directly with the underlying implementation. This, how-
ever, would be a large, challenging task and not obviously worth
the cost. Furthermore, if one were to design and implement what
amounts to a new language on top of CL, would it and should it be
CL all again? Interestingly, in the presence of concurrent threads
within a same Lisp image (as is common nowadays), some model
of atomicity or PCLSRing [5] would be required, which also goes
beyond the current CL language specification.

Lacking such a better-specified Lisp, possibly implemented
atop CL, there are ways to work around these limitations; but not
only are they are quite unidiomatic, they require manual manage-
ment. For instance, we could use some kind of symbol versioning:
use completely different symbols any time we would previously
redefine things, mark old symbols as obsolete and never reuse
them. In other words, add a monotonicity (purity) constraint to
our bindings and achieve guaranteed static calls through manual
alpha-conversion. Therefore function FOO would never be rede-
fined, instead FOO-V2 then FOO-V3 would be defined and used by
client code. This client code in turn would itself need to be renamed
with a new version since its contents have changed to use new func-
tion names. In a limited way, that is what uninterning symbols does
for you, and what renaming away packages would do, etc. How-
ever, monotonicity requires new clients not only to be recompiled,
but also to be modified any time any code is changed incompatibly.

This latter approach is semantically safe and technically simple,
but we didn’t adopt it, because of its social implications. This
approach requires us to either keep supporting old interfaces, or
gratuitously break old programs, all the more gratuitously when

the incompatibility with previous interface lies in “extensions”
that were conceptually broken and remained (mostly?) unused. Its
advantage is that it allows to make interfaces formal where they
weren’t. Its disadvantage is that it requires to maintain formal
interfaces where you mostly don’t need them. As part of the CL
community, that ascribes a high cost to social interactions and
especially to formality in such, we chose to tackle one annoying
technical issue that we needed only solve once over a social issue
that would crop up every time.

3.7 Lessons Learned
We encountered many technical issues when providing hot upgrad-
ability of ASDF. The good news is that it is possible to write hot
upgradable code in CL in a reasonably portable way, whereas dy-
namic code upgrade is not even possible in most programming lan-
guages. The bad news is that hot upgrade remains quite tricky, espe-
cially portable hot upgrade, and it imposes limitations on the code
to be upgraded. In order to write hot upgrade code, you have to use
application-specific knowledge to determine what is safe and what
is not. Furthermore, not only is such dynamic code upgrade not
thread safe, it can even damage the operation of a single-threaded
environment.

CL support for hot upgrade of code may exist but is any-
thing but seamless. Happily, programmers only need to deal with
hot upgrade as an issue for their own programs, and so they have
the required, application-specific knowledge available; so at least
the problem is socially solvable, if technically hard.

In the end, the general problem with CL is that its semantics
are defined in terms of irreversible side-effects to global data
structures in the current image. Not only does this complicate
hot upgrade, it also makes semantic analysis, separate compilation,
dependency management, and a lot of things much harder than they
should be.

4. Interface Modifications
4.1 Objectives and limitations
Our goals in replacing ASDF 1 with ASDF 2 were limited: fixing
bugs, pulling in new features that were commonly used but that had
to be separately installed, resolving ambiguities in the specified or
implemented semantics, cleaning up a few internals, and lowering
the barrier to entry for users. While doing this, we aimed above all
to maintain backwards compatibility. We did not take as our goal
designing a better system (but see Section 7.2), making incompati-
ble improvements, etc. We wanted a stable base to build upon and,
indeed, a clear sense of what we would be incompatible with be-
fore venturing into unexplored territory. We thought our goals were
modest, but they turned out to be quite challenging.

4.2 Pathnames
ASDF had a lot of subtle breakage related to pathnames, due to
discrepancies between how pathnames behave across vendors and
across operating systems. There were cases that one could have
expected to work and which actually worked on some implementa-
tions that would fail miserably on others.

In particular, the static-file component class was wholly
broken when used with pathnames without extensions such as the
typical README (whereas README.txt would function correctly).
Attempts to use hierarchical pathname strings such as "foo/bar"
as a component name would fail on most, but not all, imple-
mentations. Painfully specifying such hierarchical pathnames as
:pathname overrides would usually work but still failed in many
corner cases.

At the root of these ASDF issues was the fact that the CL stan-
dard leaves many things underspecified about pathnames. As a



result implementations can and do interpret things in very different
ways, depending on what struck each implementer as preferrable
on each implementation code base on each operating system. Even
restricting oneself to current implementations running on modern
operating systems (Windows, Linux, MacOS X, etc.), the discrep-
ancies in pathname implementations made it impossible to write a
truly portable ASDF system definition using anything but the most
basic pathnames lest it break somewhere.

Some ASDF system definers attempted to work around these
problems by explicitly providing pathnames to ASDF using the
all-powerful “#.” read-time evaluation and make-pathname and
merge-pathnames to build pathnames manually. This provides
portably defined syntax, but at the expense of extremely cum-
bersome definitions. Even adopting this expedient, programmers
would often fail to produce a portable system definition, because
of the subtle semantics of merge-pathnames. In particular, com-
mon, apparently reasonably definitions would work on Unix plat-
forms yet could fail spectacularly on Windows machines, yielding
pathnames with the wrong host and device. This would happen be-
cause of the way make-pathname inherits host and device slots
from *default-pathname-defaults*. CL pathname primitives
do not include a portable notion of a relative path independent from
a host and device, so there is no portable syntax for specifying such
paths.

We therefore built a new merge-pathnames* to replace mer-
ge-pathnames. Unlike the latter, merge-pathnames* considers
relative pathnames as not specifying host and device. Typically
modern computer users do not wish to specify hosts or devices
when working with relative pathnames, but that is not supported
portably by CL pathnames. On top of merge-pathnames*, we
built and formally specified a mechanism, merge-component-na-
me-type, for users to provide such relative pathnames in a portable
syntax, and have them merged properly with the rest of a compo-
nent specification.

In other words, we provided a clean, well-specified abstraction
interface on top of CL’s pathname interface to the filesystem, rein-
verting some “abstraction inversions” [3] of that interface so users
don’t have to go through the pain themselves. Each programmer
knows the relative paths for his files and can specify them, but may
not know the fine rules of syntax for pathnames on their particular
Lisp implementation and operating system. Even if he does, he is
extremely unlikely to know what those rules would be on imple-
mentations and systems used by other users of his software. With
ASDF 1 it was too hard to get pathname specifications right. With
ASDF 2 we made it hard to get pathname specifications wrong.

4.3 Configuring Input Locations
Another issue with CL software that ASDF has to deal with is that
there is no well-defined place where to find source code on any
particular operating system.

Using ASDF 1, the end user had to somehow configure the
global variable asdf:*central-registry* in between the mo-
ment ASDF was loaded and the moment it was first used. This was
tricky, and required all programmers, even newbies, to be able to in-
sert program snippets in the midst of any source code provided by
a third party, so that that code would run properly. Advanced users
might add some configuration to their implementation-dependent
startup file, but there was no convention whereby distributors of
independent software modules could safely add system-wide con-
figuration, or whereby users could extend or override such con-
figuration. At best, some launch scripts (such as cl-launch or
buildapp) might help one specify those things in a portable way
as part of the same relatively simple shell command that invokes
the Lisp software.

Some developers suggested that we should use the CL notion
of logical pathnames, arguing that logical pathnames provide the
correct kind of abstraction for this task. The idea fell through
because logical pathnames have too many limitations preventing
their portable use. Worse, the logical pathnames themselves need
to be configured, which cannot be done portably, so using logical
pathnames simply replaces one hairy problem with another even
hairier.

A common strategy using ASDF 1 was to minimize changes
required to the asdf:*central-registry* by setting up “link
farms.” A single directory, the link farm, would be added to the
registry, and that directory would hold the actual state of the config-
uration, in the form of symlinks to .asd files. ASDF would follow
those symlinks to the actual files and the associated source code.
This strategy wasn’t practical on Windows, where symlinks are not
traditionally well supported. In ASDF 2, we added support for Win-
dows shortcuts, that are that platform’s analog to Unix’s symbolic
links. Furthermore, the integrity of the link farms was always under
threat: if a new version of an installed system was to add or remove
some asd files, it was up to the user to notice and repair her link
farm.

Another strategy, used by one of us (Goldman) was to write a
specialized, portable version of the Unix find utility, that would
find .asd files. Using this utility, one could easily initialize ASDF
1’s *central-registry* from, for example, the top-level work-
ing directory for a project’s revision control system. In turn, that
made it possible for a project team to get a consistent, shared ASDF
configuration by loading a single file, without the clumsy expedient
of a “link farm” (difficult to maintain), and making it possible for
programmers easily to change between different project-specific
ASDF configurations. In a somewhat simpler expedient, ITA used
a directory of .../**/*.asd to locate all relevant directories to
push to the central registry.3

Based on a discussion with Stelian Ionescu about the proper
way that Unix utilities and Debian distributions are configured, we
created a new configuration mechanism, the source registry, that
solves all the above mentioned configuration issues. We kept the
*central-registry* mechanism for backwards compatibility,
allowing for a smooth upgrade, but that registry is now empty by
default.

4.4 Configuring Output Locations
CL compilers produce FASL (“FASt Loading”) files, or fasls, that
can be loaded faster than source code. FASL files play a role
analogous to C object files. Unlike C object files, compiled CL code
may contain arbitrary expressions to be evaluated at load time, in
addition to simple function definitions as in other languages. CL
compilation can be slow enough that you usually want to use FASL
files instead of recompiling the source code every time, as some
scripting languages do.

Modern Lisp implementations typically include some kind of
compiler that produces reasonably fast code, but take some time to
optimize their output. Some implementations (such as ECL) also
include an interpreter that simply evaluates the input code more
or less directly. This is practical for code that only gets run once,
while building or interactively. Other implementations (such as
SBCL) eschew an interpreter altogether. For such implementations,
evaluation of an interactive form is done by compiling it then
immediately executing the compiled code.

3 This simpler approach wasn’t available to us, because our directories
also contained Java code. The proliferation of subdirectories caused by the
Java namespacing protocol made simple tree search unacceptably slow; we
needed the equivalent of find’s -prune directive. (Robert P. Goldman)



Every implementation has a different format for fasl files, re-
flecting different implementation strategies, etc. Indeed, the format
for fasls often varies between different versions of the same im-
plementation. In extreme cases, formats may even vary between
installations of identical versions of a single implementation that
have been compiled with different options: SBCL compiled with
or without thread support, ECL compiled with or without unicode
support, Allegro in “modern” or traditional mode, etc.

In this way fasls are unlike C object files, where on any given
operating system and processor platform, a standardized Applica-
tion Binary Interface (ABI) specifies object file format, calling con-
ventions, exception side tables, debugging information, etc.: every-
thing that is needed for producers and users of object files to inter-
operate. Every CL implementation has its own ABI, and this makes
sense, because C is a relatively low-level language designed to be
close to the processor, so the mapping from C to processor is sim-
ple and direct, whereas CL is a higher level language, which leaves
much more leeway in mapping CL to the processor. There are many
ways that features like argument passing in presence of optional
and keyword arguments, non-local exits, symbol function derefer-
ence, fixnum encoding, garbage collection and thread synchroniza-
tion for garbage collection, etc., can be implemented. These imple-
mentation decisions impact the CL ABI and are deeply tied into the
guts of the compiler.

Unfortunately, the pathname type (filename extension) for those
fasls does not vary as much as the file formats. For example, both
Allegro and Steel Bank CL compilers generate files with the .fasl
extension, but neither compiler’s fasls can be loaded into the other’s
images.

Therefore, for multiple CL implementations to coexist peace-
ably, we must have a mechanism to allow ASDF to store compiler
output in implementation-dependent places. This mechanism will,
as a further benefit, allow software to be distributed as source code
in shared system-wide directories and compiled by each user to her
own cache with her favorite implementation and compilation op-
tions, without giving away write access to the shared directories.
Shared write access to a directory containing code fragments that
will be run by other users is of course a big security liability. Nor
will allowing arbitrary programmers, of arbitrary levels of skill, to
modify libraries shared by others contribute to overall system reli-
ability.

The mechanism for controlling output locations is based on
clever design by the original ASDF author. For compile-op oper-
ations on cl-source-file components, ASDF will direct the CL
compiler to compile the file pointed to by the component-path-
name and write it to the location pointed to by the output-files
generic function. By defining an around method for output-fi-
les, it is possible to redirect where ASDF stores its outputs: such a
method may apply some pathname translations to each of the con-
sidered pathnames and substitute the translated pathnames for the
original pathnames. All ASDF-defined perform methods cooper-
ate with this protocol, and user-defined methods are expected to do
so as well.

ASDF-Binary-Locations (henceforth A-B-L) was a popular
piece of software to redirect compiler output for ASDF, developed
by Gary King. One problem with A-B-L was that output transla-
tions could not apply to the A-B-L source file itself, since A-B-L
wasn’t configured when it was compiled. Another problem was
that, as for input locations above (Section 4.3), any non-standard
configuration required code to be executed after the software was
loaded but before it was used. Such configuration code had to set
various ad hoc variables whose values would be combined in a
complex way to create a configuration.

Other solutions included common-lisp-controller (C-L-C)
or cl-launch, which were simpler and integrated well with other

aspects of Unix, though less configurable. C-L-C avoided the above
issues by making its translation mechanism part of a dumped im-
age, and having a working default system-wide configuration. Un-
fortunately, C-L-C often broke libraries that were not written as-
suming that they would be controlled by it. Furthermore, CL imple-
mentations not distributed with C-L-C would not “see” the C-L-C-
configured libraries. For instance, a programmer on a Debian sys-
tem with C-L-C-integrated SBCL would not be able to easily use
her C-L-C-managed libraries in a copy of Allegro she installed.
cl-launch avoided the same issues as it carefully managed the
execution, inserting the configuration code at the proper time, and
providing a working default configuration that the user could over-
ride when invoking the launch script. However it only helped dur-
ing deployment, not during development.

While ASDF maintainer, Gary King decided to integrate A-B-L
into ASDF, which solved the first issue with A-B-L (loading it).
However, this didn’t solve the second issue (configuring it). We
wanted an output locations mechanism whose configuration would
have the same good properties as the the configuration of input lo-
cations. This didn’t seem possible with the existing A-B-L API.
Since we had to break backwards compatibility anyway, and since
A-B-L was not one of the core parts of ASDF for which we guar-
anteed backwards compatibility, we designed a new mechanism,
ASDF-Output-Translations.

ASDF-Output-Translations (A-O-T) is based on a few Do-
main-Specific Languages (DSLs) that allow to specify pathname
patterns and translations in a simple way. We gave it a sensible
default configuration that redirected the output of compiled files to
an implementation-dependent path under the user’s home directory,
following the model of cl-launch but with improvements:
~/.cache/common-lisp/implementation-id/source-path
For example:

/Users/fred/.cache/common-lisp/
allegro-8.2a-64bit-macosx-x86-64/
Users/fred/Downloads/spatial-trees-0.2/

We ensured that A-O-T could express all the cases possible with
A-B-L, and the other previous solutions. We went beyond this,
covering cases not handled by any of the previous solutions. In
particular, we improved the handling of Windows implementations,
where pathnames have non-trivial host and device components. We
provided a function to convert an A-B-L configuration into a new
A-O-T configuration to ease transition. Finally, we provided the
developer of ASDF extensions with an interface to specify when
the translation should or should not occur.

Despite the backwards incompatibility, the sensible defaults, the
upgrade path from previous solutions, and the ability to disable the
mechanism in a documented way all conspired to make this new
feature one that was widely accepted without much negative feed-
back. The biggest compatibility problem was with some systems
using ASDF extensions that weren’t designed for translated output;
but they would have been broken by A-B-L already. By enabling
output file translation by default, we caused these broken systems
to fail early for everyone rather than pass as working for some
and then fail for others.

4.5 Decentralized Configuration
As opposed to the previous central registry, our new source registry
is decentralized. The configuration for our new output translations
is also decentralized, and the two configuration mechanisms ac-
tually share a lot of code. At the user level and the system level,
configuration files make it possible to extend or override the con-
figuration. Moreover, at both levels, information is easy to provide
in a decentralized way with configuration directories, and is easy to
override in a centralized way with configuration files. Finally, the



ability to recurse through a directory hierarchy removes the need
to either maintain a link farm or update the configuration as library
source trees evolve.

The new decentralized configuration facilities decouple soft-
ware distribution from software integration. The operating system
software distribution (e.g. Debian or Red Hat) or user-level soft-
ware distribution (e.g. clbuild) can simply provide software mod-
ules together with proper configuration as to where to find those
modules. The distribution mechanism need not track and modify all
the user-controlled programs that may use those modules. Further,
the authors of CL programs can now rely on some software distri-
bution mechanism rather than having to include their own module
management. They can write scripts that integrate those libraries
into programs without having to worry about how the libraries were
distributed to the user. The steps of acquiring and using libraries can
now be independent for CL programmers as they have for a long
time been when using other languages (say C or Python), though
with different constraints and through different means.

C programmers usually rely on libraries being installed in some
system path, as compiled according to the system-wide ABI. CL
lacks both system support and a standardized ABI; which imple-
mentation a library will be used with can’t be determined at in-
stallation time, so this strategy won’t work. Moreover, Lisp being
a dynamic language favoring interactive development, distributing
code as source allows for debugging and documentation habits that
would be foiled by binary-only distribution. Source is all the more
important since CL doesn’t have a notion of “header files” describ-
ing the interface of functions independently from their source code,
nor much of a standardized documentation system beyond reading
the source code (though there are programmatically available doc-
umentation strings).

Compared to dynamic “scripting” languages like Python or Perl,
CL in practice requires pre-compilation of source code into FASLs.
It also has an exploded community divided by many implementa-
tions, so there cannot be such thing as a standard distribution of CL
software. CL vendors install their bundle software wherever they
want, or (like Franz) leave the installation location decision to their
customers, and there is no cross-vendor standard for software in-
stallation.

The ability for ASDF to easily and predictably override a user’s
default configuration is also very important. Consider the case of
a programmer who is involved in multiple different projects, each
depending on its own portfolio of libraries. Each of the projects
may require specific versions of libraries, sometimes the latest de-
velopment software, sometimes an old release, sometimes includ-
ing local patches, in ways that are incompatible with the version
requirements of another project. Such a project may also need to
be deterministically compiled from a controlled configuration of li-
brary dependencies rather than from whichever configuration sits
on a particular computer, or is used by the team members to com-
pile their other projects. Therefore, we make it possible to extend
or override ASDF 2’s configuration using environment variables; or
programmatically from within the Lisp image.

Additionally, we provide a conventional shell-friendly syntax
for the most commonly used subset of our configuration DSLs as
well as a full-featured Lisp syntax, in the hope of keeping everyday
system administration simple.

All this work on configuration, while technically simple, signif-
icantly increased the size of ASDF; but it was well worth it, be-
cause this allows each one to contribute what he knows when
he knows it, and does not require him to contribute what he
doesn’t know. ASDF 1 required expert configuration work to be
done by the end user, who needed to know all about the location of
the various software modules involved in each project. With ASDF
2, the source-registry and output-translation configuration can be

provided in pieces, each piece configured by He Who Knows Best
about that piece, without requiring him to also configure things he
doesn’t know about. Distributors can distribute code and provide
configuration information about where code is distributed, either at
the system level or the user level. Integrators can write scripts that
glue code together without having to worry about code distribution.
Individual users can add bits about their user-specific configuration
and either inherit system-provided configuration or override it, de-
pending on their needs.

In the end, the aim of our interface modifications was this
change in how programmers interact with the machine and with
each other, smoothing the need for synchronization between ex-
perts and lowering the barriers to entry for newbies.

4.6 Finding data files
An extension related to pathnames above as well as to input and
output locations is the question of how to find files distributed
with an ASDF system, such as data files. A system contain-
ing code that wished to find such files for use at run time, of-
ten encountered difficulties: code that, for example, attempted
to use *load-pathname* would be foiled by A-B-L or A-O-T.
There were workarounds, typically involving the use of (or
*compile-file-pathname* *load-pathname*), or the defini-
tion of a global variable based on *load-truename* in a system’s
.asd file; but these were cumbersome and black art that were rein-
vented over and over. We have added system-relative-path-
name to the ASDF API to make this easier. It accepts a portable
relative pathname syntax and helps find files in their input loca-
tions without being foiled by translated output locations.

5. Engineering Best Practices
5.1 Sensible Data Structures
ASDF is (a) a lot of setup and configuration to build a graph that
models the software being built, (b) a few simple actions that can be
done on components, and (c) a small planning phase that computes
from the model a list of such actions.

This planning phase, which is conceptually a simple depth first
search but with plenty of cases, used to be encoded in a single hu-
mongous function traverse. In our bid to understand the algo-
rithm and fix several bugs that affected correctness and/or perfor-
mance, we broke the function down into smaller, more understand-
able parts. Along the way, we refactored the code, and reexperi-
enced the fact that good data structures and algorithms matter.

ASDF was using the all-purpose Lisp data structure of linked
lists as internal representations for sets of components and se-
quences of operations. This probably made the initial exploratory
development of ASDF easy by allowing the original author to reuse
the relatively well-endowed builtin “library” of CL functions oper-
ating such linked lists. However, linked lists are seldom the correct
data structure for large data sets, and indeed, ASDF was extremely
slow when running on large systems.

After breaking down the traverse function, we saw that while
traversing the graph of component dependencies, ASDF 1 used to
search for components by name through a linear search in a list,
costing linear time per search and quadratic time overall. ASDF 2
uses a per-module hash-table, with constant access time per search,
linear cost overall. Similarly in ASDF 1, the pruning of redun-
dant subgraph traversals and the detection of circularity were done
with sets implemented as lists, with linear time per operation cost,
quadratic time overall cost. ASDF 2 uses hash-tables instead with
constant time per operation, for an overall linear cost. Last but not
least, in ASDF 1, the traverse function was recursively append-
ing lists that are themselves the result of append operations from
recursive calls to traverse, for an overall cubic runtime. ASDF



2 instead recursively accumulates items in a tree, then flattens the
tree in the end, for a linear overall cost.

We ultimately gained over an order of magnitude speedup when
using ASDF to plan the build of a large system (over 700 files) used
at ITA Software. This system was generated by flattening what used
to be a hierarchy of systems that had grown ugly cross-directory
dependencies.

5.2 Regression Test Suite
When we redid the traverse algorithm, we found that there were
bugs in some of undocumented features such that these features
couldn’t possibly have ever been working, much less used. One
was the “feature” feature to conditionally depend on another com-
ponent. Another was specifying a list as the :force keyword argu-
ment to operate with the intent of specifying systems that have to
be rebuilt even if they haven’t changed. In both cases, we fixed the
code, and inserted a (continuable) error to warn the potential user
that such a feature was never supported.

The main point is that if these features had had tests, the author
would have caught earlier the fact that they weren’t working. In
software as complex as ASDF, a seemingly innocuous change
can often break things badly in situations that the author of the
change failed to consider. In order to avoid such bad changes, it
is extremely important to have a good (or even a bad) regression
test suite, that will detect changes in behavior and make it obvious
when a change is bad that might otherwise have seemed good.
To actually detect regressions, it is important that all tests should
always pass on all supported implementations, even if some tests
have to be disabled or tweaked on some implementations to not
crash somewhere.

Testing is paramount. Without the test suite, we’d be nowhere.
We only regret that we did not muster the time and courage to add
test cases for every single feature.

5.3 Backward Compatibility
It is a testament to how central ASDF has become to the whole
community that we felt enormous pressure to be backward com-
patible. We could not have achieved this goal without a regres-
sion test suite, and any failure we had in backward compatibility
was first our failure to adequately extend our test suite. We did fail
to maintain compatibility in many ways, sometimes intentionally,
sometimes not. These compatibility failures caused pain for all in-
volved, but it seems that ASDF 2 is welcome overall.

Interestingly, most of our incompatibilities are somehow related
to pathname handling. Output pathname translations is now en-
abled by default, which surprised a few users, and broke a few
systems that expected no such translation. The compatibility mode
with A-B-L requires users to adjust their configuration, though in
a straightforward way (also, one common configuration triggers
a bug on one implementation). In ASDF 1, the :pathname key-
word argument of defsystem was specially evaluated (other key-
word arguments were not). We disabled evaluation of this argu-
ment, to make it homogenous with the same keyword argument
for other components, which bit some users who switched to our
new portable pathname designator syntax. Our new portable way
of specifying relative pathnames for components was incompatible
in a few corner cases in order to achieve a simple, coherent specifi-
cation; this broke some existing code.

Our recursive search feature for the source registry has a slight
but noticeable performance hit on some implementations, and
failed due to a bug in one implementation. Finally, the mecha-
nism by which one customizes a system so that Lisp files may use
a different extension from the default .lisp has changed, due to
our computing component pathnames eagerly rather than lazily.

A few programs that relied on unexported internals of ASDF
had to be fixed when we changed the calling conventions of some
functions; but we consider we were in our rights, as these inter-
faces hadn’t been exported. We do export them now, however, and
promise that we won’t change them incompatibly in the future.
However, exporting new functions created a namespace manage-
ment issue for users who import all the symbols from ASDF, as
some symbols clashed with symbols from other used libraries.

These incompatibilities were all easy to identify and fix, but it
must be noted that we sometimes sacrificed backward compatibility
to a greater sanity.

5.4 Portability
While developing ASDF 2, we relearned the value of several well-
known software development practices. Here are the lessons we
learned in the context of CL.

The first thing we learned to value was portability. For ASDF 2
to be widely adopted, we needed it to be portable to as many CL
implementations as possible, adapting to the features, quirks, bugs
and limitations of each. At the same time, for software using ASDF
to be portable, we also needed to precisely define the semantics of
ASDF 2 in a way that leaves as little space for undefined behavior
as possible. We can’t simply be “transparent” with respect to
semantic discrepancies between underlying implementations;
we must abstract those discrepancies away.

Most importantly, and as mentioned in Section 4.2 above, we
had to implement our own well-defined syntax and semantics
for specifying and using relative pathnames whose type compo-
nent may have been independently specified. We also had to ei-
ther rebind or shadow symbols for redefined functions depending
on implementation as discussed in Section 3. In order to elimi-
nate all warnings on all implementations, we had to be careful
to include ignorable declarations in defmethods, and avoid
forward references to as yet undefined and undeclared func-
tions. We also had to revert the previous use of the long form
of define-method-combination, that some implementations
did not support, instead introducing additional generic functions
as extension points for which users may define methods. Finally,
we wrote several portable wrappers over implementation-specific
functions to access the environment, such as getenv, and made
tens of small implementation-specific adaptations.

There is, however, one place where we took pains to be transpar-
ent to cross-platform semantic discrepancies: in the mini-languages
to specify pathnames with a shell-friendly syntax, we adopted the
same separator for lists of paths as the shells use respectively on
Unix and Windows. Thus, we are using “:” on Unix vs “;” on
Windows — indeed “:” is used as a device name indicator on Win-
dows and cannot be used as a separator, and “;” is traditionally
used instead. The reason our previously mentioned rule about ab-
stracting underlying semantic discrepancies doesn’t apply here is
because the shell configuration is not something done below the
level of ASDF that we may hide from the user, but something done
above the level of ASDF. Indeed when the user is using cygwin as a
Unix emulation over Windows, then the shell uses “:” and so does
ASDF.

5.5 Keeping It Simple
In revising ASDF we vowed to follow the KISS principle, and not
introduce any unnecessary complexity into the program. However,
we did find that a lot of complexity was necessary — more than
was originally anticipated by either the original authors or us.

We will maintain ASDF as the minimal but extensible core
functionality of a build system for CL software. The principle is
that anything that can be provided as an extension should be
provided as an extension and left out of the core. ASDF has been



(defsystem :test-module-depend
:components
((:file "file1")
(:module "quux"
:depends-on ("file1")
:components
((:file "file2")
(:module "file3mod"
:components
((:file "file3")))))))

Figure 3. Example system illustrating the module dependency
bug.

successfully extended to support such things as FFI generation,
syntax extensions, etc. Although we tried to maintain simplicity,
we found that configuration had to go into the core of ASDF.
You can’t bootstrap the configuration of inputs and outputs as
an extension, because you need that configuration to locate and
compile extensions. Similarly, on Windows, support for shortcuts
had to go into the core.

With all the things we added, ASDF almost doubled in size
since we started working on ASDF 2, and almost quadrupled since
the original author left. Our release 2.008 is 146448 bytes long;
1.369, the last release by Gary King was 77079 bytes long; the last
version by Daniel Barlow, in 2004, was 38881 bytes long.

On a positive note, CL helped us keep things simple. Andreas
Fuchs wrote POIU [10], an extension for ASDF implementing par-
allel compilation. Because ASDF was lacking appropriate hooks,
he had to redefine many internals of ASDF. These redefinitions
were broken by our ASDF 2 modifications. One of us (Faré) sud-
denly became the maintainer of both pieces of software, and took
the opportunity to provide from ASDF all the pieces needed for
POIU to work without having to redefine anything. This required
exposing a new function component-operation-time; making
operate a generic function rather than a simple function, so that
POIU could define :around methods on it; and adding slots to
components to remember original definition-time. This dependency
information was not previously retained by ASDF, which only re-
membered a digest fit for its specific traversal algorithm.

POIU showed CL, and particularly the CLOS object system,
at its best. First, it was very impressive that POIU could be writ-
ten without cooperation from the ASDF maintainers. This was
achieved thanks to CLOS class redefinition. Second, the power of
CLOS allowed us to keep the interface between POIU and ASDF
very simple and informal.

6. Fixing traverse
One of the most annoying bugs we fixed for ASDF 2 was a problem
with dependencies involving composite components (modules and
systems). This bug illustrates issues in the original design of ASDF
as well as limitations in our rewrite of it. Ours was a partial fix, and
we will have to tackle a full solution in the future.

In ASDF 1, the dependencies of a composite component would
fail to trigger recompilation of that component and its depen-
dents (the components that depend on it). Figure 3 gives a sys-
tem that shows the bug. If one were to load this system, modify
file1.lisp, and reload the system, ASDF 1 would fail to recom-
pile file2.lisp or file3.lisp the second time around.

The problem arises because of the way that ASDF models com-
posite components such as system or module, that contain other
components. As per the original design of ASDF, traverse gen-
erates a plan made of a sequence of elementary steps to perform,
each a pair of operation and component. This design can be con-

trasted with a maybe more intuitive model where instead of a list
of elementary steps the plan would have been a tree of composite
steps and their constituent sub-steps. A consequence of this design
is that the step corresponding to operating on the composite com-
ponent does not wrap around the steps involving its constituents,
but is only a synchronization mark scheduled after all of them. The
perform method over such an step does nothing.

So, in ASDF 1, if one was to (compile and) load system
test-module-depend, touch file2.lisp, and then ask whether
compile-op had been done on module quux (containing file2),
the answer would be “yes” (there are no effects to the perform
method, there is nothing to do to re-do that, and you should not
force any dependency because of that step not having been done
yet), although according to the maybe more intuitive model, the
answer would be “no” (there are effects required to compile the
constituents of that module).

This foils the common desire of ASDF system definers to define
:around methods for perform. Such methods could for instance
bind a dynamic variable (such as *readtable*) around all of the
loading done to a module or system, or establish some handler to
catch common conditions, or build and check some datastructure
based on effects of operating on sub-components (e.g. exported
interfaces). Currently, such things have to be done inside each
source file, or by specializing the class of the source files in the
module.

Trying to fix composite dependencies in traverse, therefore,
opened a big can of worms. The rule of good engineering that
ASDF fails to adhere to is, thou shalt tailor thy datastructures
to the target problem, not pick them based on how easy they
are to express in the source programming language (and if your
programming language isn’t expressive enough, you picked the
wrong one). CL, with its strong support for cons cells as lists
and sets, was certainly misleading here; however ASDF gets some
excuse for being a piece of software that cannot use datastructure
libraries, since it is the one responsible for loading libraries.

ASDF 1 originally contained special-purpose, ad hoc, logic for
modules to decide when their components needed to be operated
on (since operation-done-p could not be used), and this special-
purpose logic had some bugs. Faced with buggy code we didn’t
understand, we considered but quickly decided against a radical
reimplementation according to the model we think was more intu-
itive, that would give wrapping semantics to perform on modules.
Indeed, we didn’t dare make big sweeping changes because we
didn’t understand the algorithm we were trying to fix, and the con-
sequences such fix would have on client systems that may have de-
pended on the existing model. It is only after refactoring the whole
implementation, then later proofreading each other’s explanations
while writing this article, that we finally understand the ins and outs
of the algorithm.

As for the bug illustrated in Figure 3 (which was taken from
the ASDF 2 test suite), we also decided to only fix it in the case
of modules within a system, but not in the case of systems. If a
system a, depended on by system b, changes, that change does not
trigger recompilation in b. We feel that this is not correct behavior.
However, some users had come to consider this as a feature rather
than a bug. We were conservative and preserved this behavior.

The rationale for the existing behavior is that, unlike the files
that internal modules depend on, systems usually have stable in-
terfaces, and that when their interface changes, either the client
systems will change accordingly (in which case ASDF will detect
that change and recompile them), or things will otherwise break
in obvious ways. However, other users have complained that this
is the wrong thing, and that compilers are fast enough that it is
better to pay to recompile in the above cases. According to this
argument, the recompilation is cheaper than wasting hours at de-



bugging an invalid image that wasn’t properly recompiled when a
system interface changes in a subtly incompatible way that causes
an non-obvious bug (such by a modified macro definition). We will
probably do what we consider to be the right thing eventually, and
sacrifice backward compatibility with a dubious model. See Sec-
tion 8.

7. Related work
7.1 History
A key inspiration for ASDF was MK-DEFSYSTEM, Mark Kan-
trowitz’s portable DEFSYSTEM facility [11]. At the time when
MK-DEFSYSTEM was developed, there was no portable, non-propri-
etary system definition facility for CL, as Lisp moved off special-
purpose platforms and onto general-purpose hardware. Prior to this
(and substantially prior to a true Common Lisp), there were a num-
ber of different system-defining facilities, notably the Symbolics
DEFSYSTEM [21]4, but people wanting to portably define systems
had to rely on LOAD scripts and/or REQUIRE.

The ASDF manual [4], discussing MK-DEFSYSTEM as an inspira-
tion, explains that it was intended to better use modern CL capabil-
ities. Notably, MK-DEFSYSTEM is written in pre-CLOS CL, whereas
ASDF boasts use of CLOS for features for extensibility, in a way
partly inspired by a design by Kent Pitman [14]. However, we ar-
gue that a primary reason for ASDF’s success was not its CLOS
architecture, but its elegant use of *load-truename* to solve the
social problem of installing and referencing installed Lisp libraries.
The problem of installing Lisp libraries was not helped by MK-DEF-
SYSTEM, but was substantially eased by ASDF. See Section 4.3 for
more discussion of this issue.

BUILD [17] was an earlier Lisp build system (antedating CL)
meant to replace the Symbolics DEFSYSTEM. It is cited as an influ-
ence to MK-DEFSYSTEM. BUILD attempted to be more declarative
than make and other predecessors. It notably introduced the notion
of automatically deducing dependencies from a graph of inter-file
references, rather than having to manually declare rules that transi-
tively enforce recompilation upon file modification.

7.2 Competing CL build tools
In the modern Lisp world, two alternatives to ASDF provide an
interesting contrast. XCVB [16] abandons ASDF’s single-image
model to bring the pure functional way of building software in sep-
arate processes. On the other hand, McDermott’s YTools system
focuses on image maintenance, allowing the programmer to spec-
ify dependencies for units smaller than files, up to and including
individual data structures.

XCVB XCVB [16] is a proposed replacement for ASDF. Where
ASDF builds software into the current “One True” Lisp world in
a context-dependent way, XCVB deterministically builds software
into multiple virtual Lisp worlds (as many Unix processes). Image
maintenance is achieved through a small system xcvb-master
(one tenth the size of ASDF 2), that spawns XCVB as an external
process to build software, that it subsequently loads in the current
image, eliminating interferences between the current image and the
build process.

XCVB is currently working and has many features that ASDF
doesn’t have and could not be evolved to have, including a deter-
ministic build model, cross-compilation, and enforcement of de-
clared dependencies. On the other hand, XCVB requires CL soft-
ware to be adapted to its build specification format and its slightly
stricter build constraints, and it doesn’t currently support as many
target platforms as does ASDF. Development of XCVB is ongo-
ing, but from the simple one-paragraph idea to a satisfying prod-

4 Cited by Robbins [17]

uct, an incredible — and originally unforeseen — amount of work
is needed. XCVB has to handle most of the issues that we faced in
ASDF 2, and some others as well, from the fine semantics of UNIX
signals to distinctions between host and target system that appear
in cross-compilation. On the other hand, XCVB has the advantage
of clean slate redesign on its side.

Yale tools McDermott’s YTools system [12]5 is at the opposite
extreme from XCVB. Instead of concentrating on the build aspect
of the problem, and starting multiple CL processes to do this most
cleanly, McDermott’s system focuses on the problem of “maintain-
ing the coherence of a running Lisp.” McDermott aims specifically
at keeping a single, long-lived CL process in a coherent state. While
the YTools system can do the same sorts of task as ASDF, Mc-
Dermott also allows programmers to decompose system definition
below the file level, allowing them to name arbitrary chunks, and
define how these chunks are derived from each other. So, for ex-
ample, one might define in a logic programming system, a table for
procedural attachment, attaching functions to keywords, maintain-
ing the functional attachment in a hash table. McDermott’s system
would allow one to record the fact that the hash table (one chunk) is
derived from a set of function definitions (other chunks), automat-
ing the process of updating the hash table when one of the function
definition changes. McDermott uses his chunk maintenance sys-
tem as the substrate for the YTools File Manager, which plays a
role similar to ASDF.

7.3 Build tools beyond CL
There are many related tools for other programming languages;
too many to list here. We have already discussed make [8] in
Section 2.2. Omake [9] is a notable modern take on the make
concept: of interest to readers of this article are features such
as automated dependency analysis, sub-project management, use
of cryptographic checksums instead of timestamps, and extension
using a DSL (instead of relying on shell commands). Possibly
closer to ASDF in flavor are integrated build systems such as
CONS [19] and SCONS [18], that aim to unify the entire build
chain. These, too, aim to overcome many of the limitations of
make. The ant system for Java also attempts to go beyond make,
in particular in using an XML dialect to provide more declarative
system specifications [2].

8. Future Directions
There are many as-yet unresolved issues in ASDF, which present
opportunities for future improvement. We regarded these issues as
out of scope for ASDF 2, either because we didn’t have resources
to solve them yet, or because they threatened backwards compati-
bility.

There have been repeated calls to make ASDF system defini-
tions more fully declarative. Currently, ASDF system definitions
are not fully declarative, which makes it difficult for ASDF exten-
sions to be able to look into .asd files and reason about them. One
substantial reason for being non-declarative is that there is no clear
protocol for loading ASDF extensions required to interpret a sys-
tem definition. Right now, system definers that use an ASDF exten-
sion must put something like

(asdf:load-system "my-asdf-extension")

or define their own classes and methods in the .asd file. The prob-
lem with this is, of course, that after it all bets are off about
the readability of the file’s contents. In ASDF 2 we extended

5 This system is, as far as we could tell, nameless. We call it “YTools,”
because the chunk manager is distributed as part of McDermott’s YTools
CL utilities library[13].



defsystem with a :defsystem-depends-on argument so de-
velopers may declare dependencies required in order to process
the system definition. However, :defsystem-depends-on hasn’t
been widely adopted yet, and interacts poorly with previous con-
ventions whereby symbols in extension packages were to be used
in the defsystem form. Extension packages cannot be used with
:defsystem-depends-on because the defsystem form has to be
read before the :defsystem-depends-on argument is processed,
causing the symbols to be created. We suspect that other aspects
of the ASDF extension protocol may have to be amended before
ASDF can be usefully considered declarative.

Another frequent request is provide a clean way to specify “con-
ditional components.” These may be used to support files only used
on some implementations, or for test files only loaded when doing a
test-op, not a simple load-op. Conditional system dependencies
could also be added, such as test libraries, or support systems. Cur-
rently, implementation-specific changes are typically implemented
with “#+” reader-conditions that are invisible to ASDF, and test
files are typically handled by defining a separate test system.

Earlier in this paper (see Section 6), we discussed our strug-
gles to fix composite component dependencies in traverse, and
the somewhat unsatisfactory partial solution we came up with. Fur-
ther fixing this problem would involve addressing the semantic
problems of operations on composite components. One solution
could be to modify the operation-done-p protocol to propagate
a timestamp from the transitive dependencies of a build step. Or we
could abandon the current model of a generated plan as a sequence
of atomic actions for a more intuitive model that allows for nested
actions, and may or may not generate a plan in advance. Consider-
ing how this may affect backward compatibility, such changes will
no happen as part of the current ASDF 2 line, but may be part of a
future ASDF 3.

There have been calls to make traverse part of the ASDF API
in order to enable more introspection. This would be especially
useful for authors of ASDF extensions. It would be wise to resolve
the traverse bug before doing this, in order to provide a stable
API, especially if we were to choose to add nested steps to ASDF
plans.

More modest extensions include adding new standard opera-
tions and components to ASDF. There have been calls to add a
doc-op, whose purpose would be to build documentation for a
system. There does exist a test-op, but it has very weak seman-
tics. System definers who implement this operation do not have
clear directions about how to, e.g., signal success or failure. This
is complicated by the fact the protocol for operate does not pro-
vide a standard return value.6 One component type that has been
repeatedly added by system definers (and often in a buggy way)
is a “load-only” CL source file. This is a file that is to be loaded
but never compiled. Previous system defining facilities, including
MK-DEFSYSTEM [11], have included such components.

Perhaps the most valuable extension one could make would be
to improve ASDF’s documentation. We have begun this project,
but have not done the thorough, end-to-end rewrite that is needed.
A particular need in this area is to clearly document the ASDF pro-
tocols for operations and components. ASDF claims to be exten-
sible through its use of CLOS, but in practice this extensibility is
limited and problematic. The problem is that there is no clear spec-
ification of which methods must be defined when creating either a
new component subclass or a new operation subclass. In practice,

6 While this might seem an obvious addition, accumulating such a return
value is once again complicated by the fact that operate is done by process-
ing a flat plan structure. For compile and load operations, one can simply
raise an error, but one would not want a test operation to raise an error and
abort on the first failure; typically one wants a report of all passing and
failing tests.

we find ASDF users doing this empirically, and such definers of-
ten find that what seemed to work well for them does not work for
others using their new classes.

9. Conclusion
From the point of view of computability, there is nothing one can
do with ASDF 2 that one couldn’t already do with ASDF 1. For that
matter, there is nothing one can do with ASDF 1, that one couldn’t
do without it, and nothing that any piece of software can do that one
couldn’t do by reimplementing said piece of software. Of course,
the implicit assumption above is that of development by a single
notional programmer with unlimited resources. The whole point
of ASDF is to improve software development in the case of many
programmers each with limited resources, where communication
between programmers is costly.

Our ambitions in developing ASDF 2 were relatively modest, as
indeed were the ambitions behind ASDF itself. Despite this, ASDF
has brought something to the CL community that past system build
systems failed to achieve: the ability for developers to cooperate
with each other, using pre-negotiated conventions to share their
work and build large systems across the community without cen-
tralized coordination. In revising ASDF 1 to ASDF 2 much of the
challenge was to do so in ways that would minimally disrupt this
sharing, and ideally would further it. Doing so, we were reminded
that software is hard, very hard. Simple ideas can take literally hun-
dreds of iterations to get right.

We would like to conclude with an invitation to the entire CL
community to enjoy ASDF 2 and, if they are so inclined, to fur-
ther contribute. Interested parties can investigate the ASDF source
repository. There is documentation, however imperfect. We would
encourage CL implementers to please incorporate ASDF 2 into
your implementations. To users we say: (1) Enjoy the new fea-
tures, (2) report bugs to launchpad (https://bugs.launchpad.
net/asdf) and (3) help us write better documentation. If you are
really enthusiastic, become the new ASDF maintainer! If you do
so, though, please be conscious of its central social role, and when
changing it “Primum non nocere” — First, do no harm. We found
this to be harder than it first appeared.
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