Skip to content
gencgc.c 170 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/*
 * Generational Conservative Garbage Collector for CMUCL x86.
 *
 * This code was written by Douglas T. Crosher, based on Public Domain
 * codes from Carnegie Mellon University. This code has been placed in
 * the public domain, and is provided 'as is'.
 *
 * Douglas Crosher, 1996, 1997.
 *
 * $Header: /Volumes/share2/src/cmucl/cvs2git/cvsroot/src/lisp/gencgc.c,v 1.1 1997/11/25 17:59:18 dtc Exp $
 * */

#include <stdio.h>
#include <signal.h>
#include "lisp.h"
#include "internals.h"
#include "os.h"
#include "globals.h"
#include "interrupt.h"
#include "validate.h"
#include "lispregs.h"

#include "gencgc.h"

#define gc_abort() lose("GC invariant lost!  File \"%s\", line %d\n", \
			__FILE__, __LINE__)

#if 1
#define gc_assert(ex) do { \
	if (!(ex)) gc_abort(); \
} while (0)
#else
#define gc_assert(ex)
#endif


/* The number of generations, an extra is added to this for use as a
   temp. */
#define NUM_GENERATIONS 6

/* Debugging variables. */

boolean gencgc_verbose = FALSE;

/* To enable the use of page protection to help avoid the scavenging
   of pages that don't have pointers to younger generations. */
boolean  enable_page_protection = TRUE;

/* Hunt for pointers to old-space, when GCing generations >=
   verify_gen. Set to NUM_GENERATIONS to disable. */
int verify_gens = NUM_GENERATIONS-1;

/* Enable a pre-scan verify of generation 0 before it's GCed */
boolean pre_verify_gen_0 = FALSE;

/* Enable the printing of a note when code objects are found in the
   dynamic space during a heap verify. */
boolean verify_dynamic_code_check = FALSE;

/* Enable the checking of code objects for fixup errors after they are
   transported. */
boolean check_code_fixups = TRUE;

/* To enable unmapping of a page and re-mmaping it to have it zero
   filled. */
#if defined(__FreeBSD__)
/* Note: this can waste a lot of swap on FreeBSD so don't unmap. */
boolean gencgc_unmap_zero = FALSE;
#else
boolean gencgc_unmap_zero = TRUE;
#endif

/* Enable checking that newly allocated regions are zero filled. */
boolean gencgc_zero_check = FALSE;

/* The minimum size for a large object. */
unsigned large_object_size = 4*4096;

/* Enable the filtering of stack/register pointers. This could reduce
   the number of invalid pointers accepted. It will probably degrades
   interrupt safety during object initialisation. */
boolean enable_pointer_filter = TRUE;


/* The total bytes allocated. Seen by (dynamic-usage) */
unsigned long bytes_allocated = 0;
static unsigned long auto_gc_trigger = 0;

/* The src. and dest. generations. Set before a GC starts scavenging */
static int from_space;
static int new_space;


/* GC structures and variables.*/

#define PAGE_BYTES 4096

/* An array of page structures is statically allocated.
   This helps quickly map between an address its page structure.
   NUM_PAGES is set from the size of the dynamic space. */
struct page page_table[NUM_PAGES];

/* To map addresses to page structures the address of the first page
   is needed. */
static void *heap_base = NULL;

/* Calculate the start address for the given page number. */
inline void
*page_address(int page_num)
{
  return (heap_base + (page_num * 4096));
}

/* Find the page index within the page_table for the given
   address. Returns -1 on failure. */
inline int
find_page_index(void *addr)
{
  int index = addr-heap_base;

  if (index >= 0) {
    index = ((unsigned int)index)/4096;
    if (index < NUM_PAGES)
      return (index);
  }

  return (-1);
}


/* A structure to hold the state of a generation */
struct generation {

  /* The first page that gc_alloc checks on its next call. */
  int  alloc_start_page;

  /* The first page that gc_alloc_unboxed checks on its next call. */
  int  alloc_unboxed_start_page;

  /* The first page that gc_alloc_large (boxed) considers on its next
     call. Although it always allocates after the boxed_region. */
  int  alloc_large_start_page;

  /* The first page that gc_alloc_large (unboxed) considers on its
     next call. Although it always allocates after the
     current_unboxed_region. */
  int  alloc_large_unboxed_start_page;

  /* The bytes allocate to this generation. */
  int  bytes_allocated;

  /* The number of bytes at which to trigger a GC */
  int  gc_trigger;

  /* To calculate a new level for gc_trigger */
  int  bytes_consed_between_gc;

  /* The number of GCs since the last raise. */
  int  num_gc;

  /* The average age at after which a GC will raise objects to the
     next generation. */
  int  trigger_age;

  /* The cumulative sum of the bytes allocated to this generation. It is
     cleared after a GC on this generations, and update before new
     objects are added from a GC of a younger generation. Dividing by
     the bytes_allocated will give the average age of the memory in
     this generation since its last GC. */
  int  cum_sum_bytes_allocated;

  /* A minimum average memory age before a GC will occur helps
     prevent a GC when a large number of new live objects have been
     added, in which case a GC could be a waste of time. */
  double  min_av_mem_age;
};

/* An array of generation structures. There needs to be one more
   generation structure than actual generations as the oldest
   generations is temporarily raised then lowered. */
static struct generation generations[NUM_GENERATIONS+1];

/* The oldest generation that is will currently be GCed by default.
   Valid values are: 0, 1, ... (NUM_GENERATIONS-1)

   The default of (NUM_GENERATIONS-1) enables GC on all generations.

   Setting this to 0 effectively disables the generational nature of
   the GC. In some applications generational GC may not be useful
   because there are no long-lived objects.

   An intermediate value could be handy after moving long-lived data
   into an older generation so an unnecessary GC of this long-lived
   data can be avoided. */
unsigned int  gencgc_oldest_gen_to_gc = NUM_GENERATIONS-1;


/* The maximum free page in the heap is maintained and used to update
   ALLOCATION_POINTER which is used by the room function
   to limit its search of the heap. XX Gencgc obviously needs to be
   better integrated with the lisp code. */
static int  last_free_page;
static int  last_used_page = 0;



/* Misc. heap functions. */

/* Count the number of pages write protected within the given
   generation */
static int
count_write_protect_generation_pages(int generation)
{
  int i;
  int cnt = 0;
  
  for (i = 0; i < last_free_page; i++)
    if ((page_table[i].allocated != FREE_PAGE)
	&& (page_table[i].gen == generation)
	&& (page_table[i].write_protected == 1))
      cnt++;
  return(cnt);
}

/* Count the number of pages within the given generation */
static int
count_generation_pages(int generation)
{
  int i;
  int cnt = 0;
  
  for (i = 0; i < last_free_page; i++)
    if ((page_table[i].allocated != 0)
	&& (page_table[i].gen == generation))
      cnt++;
  return(cnt);
}

/* Count the number of dont_move pages. */
static int
count_dont_move_pages(void)
{
  int i;
  int cnt = 0;
  
  for (i = 0; i < last_free_page; i++)
    if ((page_table[i].allocated != 0)
	&& (page_table[i].dont_move != 0))
      cnt++;
  return(cnt);
}

/* Work through the pages and add up the number of bytes used for the
   given generation. */
static int
generation_bytes_allocated (int gen)
{
  int i;
  int bytes_allocated = 0;
  
  for (i = 0; i < last_free_page; i++) {
    if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
      bytes_allocated += page_table[i].bytes_used;
  }
  return (bytes_allocated);
}

/* Return the average age of the memory in a generation. */
static double
gen_av_mem_age(int gen)
{
  if (generations[gen].bytes_allocated == 0)
    return (0.0);
  
  return (((double)generations[gen].cum_sum_bytes_allocated)/((double)generations[gen].bytes_allocated));
}

/* The verbose argument controls how much to print out: 0 for normal
   level of detail; 1 for debugging. */
static void
print_generation_stats(int  verbose)
{
  int i, gens;

  /* Number of generations to print out. */
  if (verbose)
    gens = NUM_GENERATIONS+1;
  else
    gens = NUM_GENERATIONS;

  /* Print the heap stats */
  fprintf(stderr,"   Generation Boxed Unboxed LB   LUB    Alloc  Waste   Trig    WP  GCs Mem-age\n");

  for (i = 0; i < gens; i++) {
    int j;
    int boxed_cnt = 0;
    int unboxed_cnt = 0;
    int large_boxed_cnt = 0;
    int large_unboxed_cnt = 0;
    
    for (j = 0; j < last_free_page; j++)
      if (page_table[j].gen == i) {
	/* Count the number of boxed pages within the given generation */
	if (page_table[j].allocated == BOXED_PAGE)
	  if (page_table[j].large_object)
	    large_boxed_cnt++;
	  else
	    boxed_cnt++;
	
	/* Count the number of unboxed pages within the given generation */
	if (page_table[j].allocated == UNBOXED_PAGE)
	  if (page_table[j].large_object)
	    large_unboxed_cnt++;
	  else
	    unboxed_cnt++;
      }
    
    gc_assert(generations[i].bytes_allocated == generation_bytes_allocated(i));
    fprintf(stderr,"   %8d: %5d %5d %5d %5d %8d %5d %8d %4d %3d %7.4lf\n",
	    i,
	    boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
	    generations[i].bytes_allocated,
	    (count_generation_pages(i)*4096 - generations[i].bytes_allocated),
	    generations[i].gc_trigger,
	    count_write_protect_generation_pages(i),
	    generations[i].num_gc,
	    gen_av_mem_age(i));
  }
  fprintf(stderr,"   Total bytes alloc=%d\n", bytes_allocated);
}



/* Allocation routines */

/* To support quick and inline allocation, regions of memory can be
   allocated and then allocated from with just a free pointer and a
   check against an end address.

   Since objects can be allocated to spaces with different properties
   e.g. boxed/unboxed, generation, ages; there may need to be many
   allocation regions.

   Each allocation region may be start within a partly used page.
   Many features of memory use are noted on a page wise basis,
   E.g. the generation; so if a region starts within an existing
   allocated page it must be consistent with this page.

   During the scavenging of the newspace, objects will be transported
   into an allocation region, and pointers updated to point to this
   allocation region. It is possible that these pointers will be
   scavenged again before the allocation region is closed, E.g. due to
   trans_list which jumps all over the place to cleanup the list. It
   is important to be able to determine properties of all objects
   pointed to when scavenging, E.g to detect pointers to the
   oldspace. Thus it's important that the allocation regions have the
   correct properties set when allocated, and not just set when
   closed.  The region allocation routines return regions with the
   specified properties, and grab all the pages, setting there
   properties appropriately, except that the amount used is not known.

   These regions are used to support quicker allocation using just a
   free pointer. The actual space used by the region is not reflected
   in the pages tables until it is closed. It can't be scavenged until
   closed.

   When finished with the region it should be closed, which will
   update the page tables for the actual space used returning unused
   space. Further it may be noted in the new regions which is
   necessary when scavenging the newspace.

   Large objects may be allocated directly without an allocation
   region, the page tables are updated immediately.

   Unboxed objects don't contain points to other objects so don't need
   scavenging. Further they can't contain pointers to younger
   generations so WP is not needed.  By allocating pages to unboxed
   objects the whole page never needs scavenging or write protecting.

   */

/* Only using two regions at present, both are for the current
   newspace generation. */
struct alloc_region  boxed_region;
struct alloc_region  unboxed_region;

/* X hack. current lisp code uses the following. Need coping
   in/out. */
void *current_region_free_pointer;
void *current_region_end_addr;

/* The generation currently being allocated to. X */
static int  gc_alloc_generation;

/* Find a new region with room for at least the given number of bytes.

   It starts looking at the current generations alloc_start_page. So
   may pick up from the previous region if there is enough space. This
   keeps the allocation contiguous when scavenging the newspace.

   The alloc_region is should have been closed by a call to
   gc_alloc_update_page_tables, and will thus be in an empty state.
   
   To assist the scavenging functions write protected pages are not
   used. Free pages should not be write protected.

   It is critical to the conservative GC that the start of regions be
   known. To help achieve this only small regions are allocated at a
   time.

   During scavenging pointers may be found to within the current
   region and the page generation must be set so pointers to the from
   space can be recognised.  So the generation of pages in the region
   are set to gc_alloc_generation.  To prevent another allocation call
   using the same pages, all the pages in the region are allocated,
   although they will initially be empty.

  */
static void
gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
{
  int first_page;
  int last_page;
  int region_size;
  int restart_page;
  int bytes_found;
  int num_pages;
  int i;

  /* fprintf(stderr,"alloc_new_region for %d bytes from gen %d\n",
	  nbytes, gc_alloc_generation);*/

  /* Check that the region is in a reset state. */
  gc_assert((alloc_region->first_page == 0)
	    && (alloc_region->last_page == -1)
	    && (alloc_region->free_pointer == alloc_region->end_addr));

  if (unboxed)
    restart_page = generations[gc_alloc_generation].alloc_unboxed_start_page;
  else
    restart_page = generations[gc_alloc_generation].alloc_start_page;

  /* Search for a contiguous free region of at least nbytes with the
     given properties: boxed/unboxed, generation. */
  do {
    first_page = restart_page;
    
    /* First search for a page with at least 32 bytes free, that is
       not write protected, or marked dont_move. */
    while ((first_page < NUM_PAGES)
	   && (page_table[first_page].allocated != FREE_PAGE) /* Not free page */
	   && ((unboxed && (page_table[first_page].allocated != UNBOXED_PAGE))
	       || (!unboxed &&
		   (page_table[first_page].allocated != BOXED_PAGE))
	       || (page_table[first_page].large_object != 0)
	       || (page_table[first_page].gen != gc_alloc_generation)
	       || (page_table[first_page].bytes_used >= (4096-32))
	       || (page_table[first_page].write_protected != 0)
	       || (page_table[first_page].dont_move != 0)))
      first_page++;
    /* Check for a failure */
    if (first_page >= NUM_PAGES) {
      fprintf(stderr,"*A2 gc_alloc_new_region failed, nbytes=%d.\n", nbytes);
      print_generation_stats(1);
      exit(1);
    }
    
    gc_assert(page_table[first_page].write_protected == 0);
    
    /*      fprintf(stderr,"  first_page=%d bytes_used=%d\n",first_page, page_table[first_page].bytes_used);*/
    
    /* Now search forward to calculate the available region size.  It
       tries to keeps going until nbytes are found and the number of
       pages is greater than some level. This helps keep down the
       number of pages in a region. */
    last_page = first_page;
    bytes_found = 4096 - page_table[first_page].bytes_used;
    num_pages = 1;
    while (((bytes_found < nbytes) || (num_pages < 2))
	   && (last_page < (NUM_PAGES-1))
	   && (page_table[last_page+1].allocated == FREE_PAGE)) {
      last_page++;
      num_pages++;
      bytes_found += 4096;
      gc_assert(page_table[last_page].write_protected == 0);
    }
    
    region_size = (4096 - page_table[first_page].bytes_used)
      + 4096*(last_page-first_page);
    
    gc_assert(bytes_found == region_size);
    
    /* fprintf(stderr,"  last_page=%d bytes_found=%d num_pages=%d\n",last_page, bytes_found, num_pages);*/
    
    restart_page = last_page + 1;
  }
  while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
  
  /* Check for a failure */
  if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
    fprintf(stderr,"*A1 gc_alloc_new_region failed, nbytes=%d.\n", nbytes);
    print_generation_stats(1);
    exit(1);
  }
  
  /*fprintf(stderr,"gc_alloc_new_region gen %d: %d bytes: from pages %d to %d: addr=%x\n", gc_alloc_generation, bytes_found, first_page, last_page, page_address(first_page));*/
  
  /* Setup the alloc_region. */
  alloc_region->first_page = first_page;
  alloc_region->last_page = last_page;
  alloc_region->start_addr = page_table[first_page].bytes_used
    + page_address(first_page);
  alloc_region->free_pointer = alloc_region->start_addr;
  alloc_region->end_addr = alloc_region->start_addr + bytes_found;

  if (gencgc_zero_check) {
    int *p;
    for(p = (int *)alloc_region->start_addr;
	p < (int *)alloc_region->end_addr; p++)
      if (*p != 0)
	fprintf(stderr,"** new region not zero @ %x\n",p);
  }

  /* Setup the pages. */

  /* The first page may have already been in use. */
  if (page_table[first_page].bytes_used == 0) {
    if (unboxed)
      page_table[first_page].allocated = UNBOXED_PAGE;
    else
      page_table[first_page].allocated = BOXED_PAGE;
    page_table[first_page].gen = gc_alloc_generation;
    page_table[first_page].large_object = 0;
    page_table[first_page].first_object_offset = 0;
  }
  
  if (unboxed)
    gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
  else
    gc_assert(page_table[first_page].allocated == BOXED_PAGE);
  gc_assert(page_table[first_page].gen == gc_alloc_generation);
  gc_assert(page_table[first_page].large_object == 0);

  for (i = first_page+1; i <= last_page; i++) {
    if (unboxed)
      page_table[i].allocated = UNBOXED_PAGE;
    else
      page_table[i].allocated = BOXED_PAGE;
    page_table[i].gen = gc_alloc_generation;
    page_table[i].large_object = 0;
    /* This may not be necessary for unboxed regions (think it was
       broken before!) */
    page_table[i].first_object_offset =
      alloc_region->start_addr - page_address(i);
  }

  /* Bump up last_free_page */
  if (last_page+1 > last_free_page) {
    last_free_page = last_page+1;
    SetSymbolValue(ALLOCATION_POINTER,
		   (lispobj)(((char *)heap_base) + last_free_page*4096));
    if (last_page+1 > last_used_page)
      last_used_page = last_page+1;
  }
}



/* If the record_new_objects flag is 2 then all new regions created
   are recorded.

   If it's 1 then then it is only recorded if the first page of the
   current region is <= new_areas_ignore_page. This helps avoid
   unnecessary recording when doing full scavenge pass.

   The new_object structure holds the page, byte offset, and size of
   new regions of objects. Each new area is placed in the array of
   these structures pointer to by new_areas. new_areas_index holds the
   offset into new_areas.

   If new_area overflows NUM_NEW_AREAS then it stops adding them. The
   later code must detect this an handle it, probably by doing a full
   scavenge of a generation.  */

#define NUM_NEW_AREAS 512
static int record_new_objects = 0;
static int new_areas_ignore_page;
struct new_area {
  int  page;
  int  offset;
  int  size;
};
static struct new_area (*new_areas)[];
static new_areas_index;
int max_new_areas;

/* Add a new area to new_areas. */
static void
add_new_area(int first_page, int offset, int size)
{
  unsigned new_area_start,c;
  int i;

  /* Ignore if full */
  if (new_areas_index >= NUM_NEW_AREAS)
    return;

  switch (record_new_objects) {
  case 0:
    return;
  case 1:
    if (first_page > new_areas_ignore_page)
      return;
    break;
  case 2:
    break;
  default:
    gc_abort();
  }
  
  new_area_start = 4096*first_page + offset;

  /* Search backwards for a prior area that this follows from.  If
     found this will save adding a new area. */
  for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
    unsigned area_end = 4096*((*new_areas)[i].page)
      + (*new_areas)[i].offset + (*new_areas)[i].size; 
    /*fprintf(stderr,"*S1 %d %d %d %d\n",i,c,new_area_start,area_end);*/
    if (new_area_start == area_end) {
      /*fprintf(stderr,"-> Adding to [%d] %d %d %d with %d %d %d:\n",
	      i, (*new_areas)[i].page, (*new_areas)[i].offset ,
	      (*new_areas)[i].size, first_page, offset, size);*/
      (*new_areas)[i].size += size;
      return;
    }
  }
  /*fprintf(stderr,"*S1 %d %d %d\n",i,c,new_area_start);*/

  (*new_areas)[new_areas_index].page = first_page;
  (*new_areas)[new_areas_index].offset = offset;
  (*new_areas)[new_areas_index].size = size;
  /*fprintf(stderr,"  new_area %d page %d offset %d size %d\n",
	  new_areas_index, first_page, offset, size);*/
  new_areas_index++;
  
  /* Note the max new_areas used. */
  if (new_areas_index > max_new_areas)
    max_new_areas = new_areas_index;
}


/* Update the tables for the alloc_region. The region maybe added to
   the new_areas.

   When done the alloc_region its setup so that the next quick alloc
   will fail safely and thus a new regions will be allocated. Further
   it is safe to try and re-update the page table of this reset
   alloc_region.

   */
void
gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
{
  int more;
  int first_page;
  int next_page;
  int bytes_used;
  int orig_first_page_bytes_used;
  int region_size;
  int byte_cnt;

  /*fprintf(stderr,"gc_alloc_update_page_tables to gen %d: ",
	  gc_alloc_generation);*/

  first_page = alloc_region->first_page;

  /* Catch an unused alloc_region. */
  if ((first_page == 0) && (alloc_region->last_page == -1))
    return;

  next_page = first_page+1;

  /* Skip if no bytes were allocated */
  if (alloc_region->free_pointer != alloc_region->start_addr) {
    orig_first_page_bytes_used = page_table[first_page].bytes_used;
    
    gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
    
    /* All the pages used need to be updated */
    
    /* Update the first page. */
    
    /*      fprintf(stderr,"0");*/
    
    /* If the page was free then setup the gen, and
       first_object_offset. */
    if (page_table[first_page].bytes_used == 0)
      gc_assert(page_table[first_page].first_object_offset == 0);
    
    if (unboxed)
      gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
    else
      gc_assert(page_table[first_page].allocated == BOXED_PAGE);
    gc_assert(page_table[first_page].gen == gc_alloc_generation);
    gc_assert(page_table[first_page].large_object == 0);
    
    byte_cnt = 0;
    
    /* Calc. the number of bytes used in this page. This is not always
       the number of new bytes, unless it was free. */
    more = 0;
    if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>4096) {
      bytes_used = 4096;
      more = 1;
    }
    page_table[first_page].bytes_used = bytes_used;
    byte_cnt += bytes_used;
    
    
    /* All the rest of the pages should be free. Need to set their
       first_object_offset pointer to the start of the region, and set
       the bytes_used. */
    while (more) {
      /*	  	  fprintf(stderr,"+")*/
      if (unboxed)
	gc_assert(page_table[next_page].allocated == UNBOXED_PAGE);
      else
	gc_assert(page_table[next_page].allocated == BOXED_PAGE);
      gc_assert(page_table[next_page].bytes_used == 0);
      gc_assert(page_table[next_page].gen == gc_alloc_generation);
      gc_assert(page_table[next_page].large_object == 0);
      
      gc_assert(page_table[next_page].first_object_offset ==
		alloc_region->start_addr - page_address(next_page));
      
      /* Calc. the number of bytes used in this page. */
      more = 0;
      if ((bytes_used = (alloc_region->free_pointer
			 - page_address(next_page)))>4096) {
	bytes_used = 4096;
	more = 1;
      }
      page_table[next_page].bytes_used = bytes_used;
      byte_cnt += bytes_used;
      
      next_page++;
    }
    
    region_size = alloc_region->free_pointer - alloc_region->start_addr;
    bytes_allocated += region_size;
    generations[gc_alloc_generation].bytes_allocated += region_size;
    
    gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
    
    /* Set the generations alloc restart page to the last page of
       the region. */
    if (unboxed)
      generations[gc_alloc_generation].alloc_unboxed_start_page =
	next_page-1;
    else
      generations[gc_alloc_generation].alloc_start_page = next_page-1;
    
    /* Add the region to the new_areas if requested. */
    if (!unboxed)
      add_new_area(first_page,orig_first_page_bytes_used, region_size);
    
    /*            fprintf(stderr,"  gc_alloc_update_page_tables update %d bytes to gen %d\n",region_size,gc_alloc_generation);*/
  }
  else
    /* No bytes allocated. Unallocate the first_page if there are 0
       bytes_used. */
    if (page_table[first_page].bytes_used == 0)
      page_table[first_page].allocated = FREE_PAGE;
  
  /* Unallocate any unused pages. */
  while (next_page <= alloc_region->last_page) {
    gc_assert(page_table[next_page].bytes_used == 0);
    page_table[next_page].allocated = FREE_PAGE;
    next_page++;
  }

  /* Reset the alloc_region. */
  alloc_region->first_page = 0;
  alloc_region->last_page = -1;
  alloc_region->start_addr = page_address(0);
  alloc_region->free_pointer = page_address(0);
  alloc_region->end_addr = page_address(0);

  /*    fprintf(stderr,"\n");*/
}



static inline void *gc_quick_alloc(int nbytes);

/* Allocate a possibly large object. */
static void
*gc_alloc_large(int  nbytes, int unboxed, struct alloc_region *alloc_region)
{
  int first_page;
  int last_page;
  int region_size;
  int restart_page;
  int bytes_found;
  int num_pages;
  int orig_first_page_bytes_used;
  int byte_cnt;
  int more;
  int bytes_used;
  int next_page;
  int large = (nbytes >= large_object_size);

  /*  if (nbytes > 200000)
    fprintf(stderr,"*** alloc_large %d\n",nbytes);*/

  /*  fprintf(stderr,"gc_alloc_large for %d bytes from gen %d\n",
	  nbytes, gc_alloc_generation);*/

  /* If the object is small, and there is room in the current region
     then allocation it in the current region. */
  if (!large
      && ((alloc_region->end_addr-alloc_region->free_pointer) >= nbytes))
    return gc_quick_alloc(nbytes);
  
  /* Search for a contiguous free region of at least nbytes. If it's a
     large object then align it on a page boundary by searching for a
     free page. */

  /* To allow the allocation of small objects without the danger of
     using a page in the current boxed region, the search starts after
     the current boxed free region. XX could probably keep a page
     index ahead of the current region and bumped up here to save a
     lot of re-scanning. */
  if (unboxed)
    restart_page = generations[gc_alloc_generation].alloc_large_unboxed_start_page;
  else
    restart_page = generations[gc_alloc_generation].alloc_large_start_page;
  if (restart_page <= alloc_region->last_page)
    restart_page = alloc_region->last_page+1;

  do {
    first_page = restart_page;
    
    if (large)
      while ((first_page < NUM_PAGES)
	     && (page_table[first_page].allocated != FREE_PAGE))
	first_page++;
    else
      while ((first_page < NUM_PAGES)
	     && (page_table[first_page].allocated != FREE_PAGE)
	     && ((unboxed &&
		  (page_table[first_page].allocated != UNBOXED_PAGE))
		 || (!unboxed &&
		     (page_table[first_page].allocated != BOXED_PAGE))
		 || (page_table[first_page].large_object != 0)
		 || (page_table[first_page].gen != gc_alloc_generation)
		 || (page_table[first_page].bytes_used >= (4096-32))
		 || (page_table[first_page].write_protected != 0)
		 || (page_table[first_page].dont_move != 0)))
	first_page++;
    
    /* Check for a failure */
    if (first_page >= NUM_PAGES) {
      fprintf(stderr,"*A2 gc_alloc_large failed, nbytes=%d.\n", nbytes);
      print_generation_stats(1);
      exit(1);
    }
    
    gc_assert(page_table[first_page].write_protected == 0);
    
    /*      fprintf(stderr,"  first_page=%d bytes_used=%d\n",first_page, page_table[first_page].bytes_used);*/
    
    last_page = first_page;
    bytes_found = 4096 - page_table[first_page].bytes_used;
    num_pages = 1;
    while ((bytes_found < nbytes)
	   && (last_page < (NUM_PAGES-1))
	   && (page_table[last_page+1].allocated == FREE_PAGE)) {
      last_page++;
      num_pages++;
      bytes_found += 4096;
      gc_assert(page_table[last_page].write_protected == 0);
    }
    
    region_size = (4096 - page_table[first_page].bytes_used)
      + 4096*(last_page-first_page);
    
    gc_assert(bytes_found == region_size);
    
    /*     fprintf(stderr,"  last_page=%d bytes_found=%d num_pages=%d\n",last_page, bytes_found, num_pages);*/
    
    restart_page = last_page + 1;
  }
  while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
  
  /* Check for a failure */
  if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
    fprintf(stderr,"*A1 gc_alloc_large failed, nbytes=%d.\n", nbytes);
    print_generation_stats(1);
    exit(1);
  }
  
  /*  if (large)
    fprintf(stderr,"gc_alloc_large gen %d: %d of %d bytes: from pages %d to %d: addr=%x\n",
	    gc_alloc_generation, nbytes, bytes_found,
	    first_page, last_page, page_address(first_page));*/

  gc_assert(first_page > alloc_region->last_page);
  if (unboxed)
    generations[gc_alloc_generation].alloc_large_unboxed_start_page =
      last_page;
  else
    generations[gc_alloc_generation].alloc_large_start_page = last_page;

  /* Setup the pages. */
  orig_first_page_bytes_used = page_table[first_page].bytes_used;
  
  /* If the first page was free then setup the gen, and
     first_object_offset. */
  if (page_table[first_page].bytes_used == 0) {
    if (unboxed)
      page_table[first_page].allocated = UNBOXED_PAGE;
    else
      page_table[first_page].allocated = BOXED_PAGE;
    page_table[first_page].gen = gc_alloc_generation;
    page_table[first_page].first_object_offset = 0;
    page_table[first_page].large_object = large;
  }

  if (unboxed)
    gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
  else
    gc_assert(page_table[first_page].allocated == BOXED_PAGE);
  gc_assert(page_table[first_page].gen == gc_alloc_generation);
  gc_assert(page_table[first_page].large_object == large);
  
  byte_cnt = 0;
      
  /* Calc. the number of bytes used in this page. This is not
     always the number of new bytes, unless it was free. */
  more = 0;
  if ((bytes_used = nbytes+orig_first_page_bytes_used) > 4096) {
    bytes_used = 4096;
    more = 1;
  }
  page_table[first_page].bytes_used = bytes_used;
  byte_cnt += bytes_used;

  next_page = first_page+1;

  /* All the rest of the pages should be free. Need to set their
     first_object_offset pointer to the start of the region, and
     set the bytes_used. */
  while (more) {
    /*      fprintf(stderr,"+");*/
    
    gc_assert(page_table[next_page].allocated == FREE_PAGE);
    gc_assert(page_table[next_page].bytes_used == 0);
    if (unboxed)
      page_table[next_page].allocated = UNBOXED_PAGE;
    else
      page_table[next_page].allocated = BOXED_PAGE;
    page_table[next_page].gen = gc_alloc_generation;
    page_table[next_page].large_object = large;
    
    page_table[next_page].first_object_offset =
      orig_first_page_bytes_used - 4096*(next_page-first_page);
    
    /* Calc. the number of bytes used in this page. */
    more = 0;
    if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > 4096) {
      bytes_used = 4096;
      more = 1;
    }
    page_table[next_page].bytes_used = bytes_used;
    byte_cnt += bytes_used;
    
    next_page++;
  }
  
  gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);

  bytes_allocated += nbytes;
  generations[gc_alloc_generation].bytes_allocated += nbytes;

  /* Add the region to the new_areas if requested. */
  if (!unboxed)
    add_new_area(first_page,orig_first_page_bytes_used,nbytes);
  
  /* Bump up last_free_page */
  if (last_page+1 > last_free_page) {
    last_free_page = last_page+1;
    SetSymbolValue(ALLOCATION_POINTER,
		   (lispobj)(((char *)heap_base) + last_free_page*4096));
    if (last_page+1 > last_used_page)
      last_used_page = last_page+1;
  }
  
  return((void *)(page_address(first_page)+orig_first_page_bytes_used));
}