Skip to content
cgc.c 55.5 KiB
Newer Older
ram's avatar
ram committed
/* cgc.c -*- Mode: C; comment-column: 40; -*-
 * $Header: /Volumes/share2/src/cmucl/cvs2git/cvsroot/src/lisp/cgc.c,v 1.6 1997/11/02 09:49:11 dtc Exp $
ram's avatar
ram committed
 *
 * Conservative Garbage Collector for CMUCL x86.
 *
 * This code is based on software written by William Lott, and
 * Public Domain codes from Carnegie Mellon University, and has
 * been placed in the Public Domain.
ram's avatar
ram committed
 *
 * Received from William 27 Jul 95.
 *
 * Debug, FreeBSD hooks, and integration by Paul Werkowski
 *
ram's avatar
ram committed
 */
#include <stdio.h>
#include <assert.h>
#include <signal.h>
#include "os.h"				/* for SetSymbolValue */
#include "x86-validate.h"		/* for memory layout  */
#include "x86-lispregs.h"
#include "lisp.h"			/* for object defs */
#include "interrupt.h"			/* interrupt_handlers */
#include "internals.h"
#include "cgc.h"

#if !defined MIN
#define MIN(a,b)(((a)<(b))?(a):(b))
#define MAX(a,b)(((a)>(b))?(a):(b))
#endif

#include <unistd.h>
#include <stdlib.h>
#if defined unix
#include <sys/param.h>
#endif
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>


#define dprintf(t,exp) if(t){printf exp ; fflush(stdout);}

/* Object representation details. The allocator/collector knows
 * almost nothing about lisp internals and is fairly general.
*/

#define ALIGN_BITS 3
#define ALIGN_BYTES (1<<ALIGN_BITS)
#define ALIGNEDP(addr) ((((int)addr)&(ALIGN_BYTES-1)) == 0)

/* Type of an object. */
typedef struct object
{
  long header;
  struct object*data[1];
} *obj_t;

/* Just leave unused space */
#define NOTE_EMPTY(ptr,bytes) {}


/* Collector datastructures */

#define BLOCK_BITS 16
#define BLOCK_BYTES (1<<BLOCK_BITS)
#define BLOCK_NUMBER(ptr) (((long)(ptr))>>BLOCK_BITS)
#define BLOCK_ADDRESS(num) ((void *)((num)<<BLOCK_BITS))

#define CHUNK_BITS 9
#define CHUNK_BYTES (1<<CHUNK_BITS)
#define CHUNK_NUMBER(ptr) (((long)(ptr))>>CHUNK_BITS)
#define CHUNK_ADDRESS(num) ((void *)((num)<<CHUNK_BITS))

#define BLOCK_CHUNKS (1<<(BLOCK_BITS-CHUNK_BITS))


#define ROUNDDOWN(val,x) ((val)&~((x)-1))
#define ROUNDUP(val,x) ROUNDDOWN((val)+(x)-1,x)

#define gc_abort() lose("GC invariant lost!  File \"%s\", line %d\n", \
			__FILE__, __LINE__)

#if 0
#define gc_assert(ex) {if (!(ex)) gc_abort();}
#else
#define gc_assert(ex)
#endif

char*alloc(int);


struct cluster {
    /* Link to the next cluster. */
    struct cluster *next;

    /* The number of blocks in this cluster. */
    int num_blocks;

    /* Pointer to the first region. */
    struct region *first_region;

    /* Table index by the chunk number of some pointer minus the chunk */
    /* number for the first region giving the number of chunks past */
    /* the chunk holding the region header that spans that pointer. */
    /* Actually, it might not be enough.  So after backing up that far, */
    /* try again. */
    unsigned char region_offset[1];
};

/* The first word of this is arranged to look like a fixnum
 * so as not to confuse 'room'.
 */
struct region {
  unsigned
  res1 :2, num_chunks :16, contains_small_objects :1, clean :1, hole :7;
  struct region **prev;
  struct region *next;
  struct space *space;
};

#define REGION_OVERHEAD ROUNDUP(sizeof(struct region), ALIGN_BYTES)


struct space {
    struct region *regions;
    struct region **regions_tail;
    char *alloc_ptr;
    char *alloc_end;
};

/* Chain of all the clusters. */
struct cluster *clusters = NULL;
static int num_clusters = 0;		/* for debugging */
int cgc_debug = 0;			/* maybe set from Lisp */
/* Table indexed by block number giving the cluster that block is part of. */
static struct cluster **block_table = NULL;

/* The allocated memory block_table is offset from. */
static struct cluster **block_table_base = NULL;

/* The maximum bounds on the heap. */
static void *heap_base = NULL;
static void *heap_end = NULL;

/* The two dynamic spaces. */
static struct space space_0 = { NULL };
static struct space space_1 = { NULL };
/* Pointers it whichever dynamic space is currently newspace and oldspace */
static struct space *newspace = NULL;
static struct space *oldspace = NULL;
/* Free lists of regions. */
static struct region *small_region_free_list = NULL;
static struct region *large_region_free_list = NULL;
static void move_to_newspace(struct region *region);

#if defined TESTING
static void print_region(struct region*r)
{
  dprintf(1,("[region %x %d <%x %x> %x]\n",
		     r,r->num_chunks,r->prev,r->next,r->space));
}
static void print_regions(struct region*r, char*str)
{
  printf("Regions %s:\n",str);
  for(; r != NULL; r = r->next)
    print_region(r);
}

static void print_space(struct space*s)
{
  struct region*r = s->regions;
  dprintf(1,("[space %x %s %s <%x - %x>]\n",
	     s,
	     (s == &space_0)? "S0" : "S1",
	     (s == newspace)? "NewSpace" : "OldSpace",
	     s->alloc_ptr, s->alloc_end));
  print_regions(r,"");

}
void print_spaces()
{
  print_space(&space_0);
  print_space(&space_1);
  print_regions(large_region_free_list,"LRFL");
  print_regions(small_region_free_list,"SRFL");
}
void print_cluster(struct cluster*cluster)
{
  printf("[cluster %x >%x %d]\n",cluster,cluster->next,cluster->num_blocks);
  print_regions(cluster->first_region,"cluster");
}
void print_clusters()
{
  struct cluster*cluster;
  for(cluster=clusters; cluster != NULL; cluster = cluster->next)
    print_cluster(cluster);
}
#endif /* TESTING */
  

/* Allocation/deallocation routines */

static void init_region(struct region *region, int nchunks)
{
    int region_block = BLOCK_NUMBER(region);
    struct cluster *cluster = block_table[region_block];
    int offset = CHUNK_NUMBER(region) - CHUNK_NUMBER(cluster->first_region);
    int i;
    dprintf(0,("init region %x %d\n",region,nchunks));
    *(long*)region = 0;			/* clear fields */
    region->num_chunks = nchunks;
    if (nchunks > UCHAR_MAX) {
	for (i = 0; i < UCHAR_MAX; i++)
	    cluster->region_offset[offset + i] = i;
	for (; i < nchunks; i++)
	    cluster->region_offset[offset + i] = UCHAR_MAX;
    }
    else {
	for (i = 0; i < nchunks; i++)
	    cluster->region_offset[offset + i] = i;
    }
}

static struct region *maybe_alloc_large_region(int nchunks)
{
    struct region *region, **prev;

    prev = &large_region_free_list;
    while ((region = *prev) != NULL) {
	if (region->num_chunks >= nchunks) {
	    if (region->num_chunks == nchunks)
		*prev = region->next;
	    else {
		struct region *new
		    = (struct region *)((char *)region + nchunks*CHUNK_BYTES);
		init_region(new, region->num_chunks - nchunks);
		new->next = region->next;
		new->prev = NULL;
		new->space = NULL;
		*prev = new;
		region->num_chunks = nchunks;
	    }
	    region->next = NULL;
	    region->prev = NULL;
	    region->space = NULL;
	    return region;
	}
	prev = &region->next;
    }
    return NULL;
}


/* from os_zero */
static void cgc_zero(addr, length)
os_vm_address_t addr;
os_vm_size_t length;
{
  os_vm_address_t block_start = os_round_up_to_page(addr);
  os_vm_address_t end = addr + length;
  os_vm_size_t block_size;
  
  
  if(block_start > addr)
    bzero((char *)addr, MIN(block_start - addr, length));

  if(block_start < end)
    {
      length -= block_start - addr;
      
      block_size =os_trunc_size_to_page(length);
      
      if(block_size < length)
	bzero((char *)block_start + block_size,length - block_size);
  
      if (block_size != 0)
	{
	  /* Now deallocate and allocate the block so that it */
	  /* faults in  zero-filled. */
	  
	  os_invalidate(block_start,block_size);
	  addr=os_validate(block_start,block_size);
	  
	  if(addr == NULL || addr != block_start)
	    fprintf(stderr,"cgc_zero: block moved, 0x%08x ==> 0x%08x!\n",
		    block_start,addr);
	}
    }
}

static void compact_cluster(struct cluster *cluster)
{
  int show = 0;
  struct region *region = cluster->first_region;
  struct region *end =
    (struct region *)((char *)region + cluster->num_blocks * BLOCK_BYTES);
  int grown = 0;
pw's avatar
pw committed
  unsigned max_chunks = cluster->num_blocks * BLOCK_CHUNKS;
ram's avatar
ram committed
  struct region *large_additions = NULL;
  struct region **large_prev = &large_additions;
  struct region *small_additions = NULL;
  struct region **small_prev = &small_additions;
  
  dprintf(show,("compact cluster %x\n",cluster));
  while (region < end) {
    struct region *next =
      (struct region *) ((char *)region + region->num_chunks*CHUNK_BYTES);
    if (region->space != newspace) {	/* was == NULL */
      if (next < end && next->space != newspace) { /* was == NULL */
pw's avatar
pw committed
	gc_assert(region >= cluster->first_region);
ram's avatar
ram committed
	gc_assert(region->space == NULL);
pw's avatar
pw committed
	gc_assert(next  ->space == NULL);
ram's avatar
ram committed
	gc_assert(region->num_chunks > 0);
pw's avatar
pw committed
	gc_assert(next  ->num_chunks > 0);
	gc_assert((region->num_chunks+next->num_chunks) <= max_chunks);
ram's avatar
ram committed
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	region->num_chunks += next->num_chunks;
	grown = 1;
      }
      else {
	if (grown) {
	  init_region(region, region->num_chunks);
	  region->space = NULL;
	  grown = 0;
	}
	{
	  int ovh = REGION_OVERHEAD;
	  cgc_zero((os_vm_address_t)((char*)region + ovh),
		  (os_vm_size_t)(region->num_chunks*CHUNK_BYTES) - ovh);
	}

	if(region->num_chunks == 1) {
	  *small_prev = region;
	  small_prev = &region->next;
	}
	else {
	  *large_prev = region;
	  large_prev = &region->next;
	}
	region = next;
      }
    }
    else
      region = next;
  }
  
  *large_prev = large_region_free_list;
  large_region_free_list = large_additions;
  *small_prev = small_region_free_list;
  small_region_free_list = small_additions;
}

static void compact_free_regions()
{
  struct cluster*cluster;
    large_region_free_list = NULL;
    small_region_free_list = NULL;

    for (cluster = clusters; cluster != NULL; cluster = cluster->next)
	compact_cluster(cluster);
}

/* WL code arranged to allocate new space via the sbrk() mechanism.
 * However, I am going to start by allocating from the standard dynamic
 * space. The idea is to use the normal allocation scheme for initial
 * system build and switch to the cgc allocator when starting up a
 * saved image when dynamic space is hopefully clean.
 */
static struct region*new_region(int nblocks)
{
  /* take from existing dynamic space */
  char*new = (char*)SymbolValue(ALLOCATION_POINTER);
  struct region*region = (struct region*)(ROUNDUP((long)new,BLOCK_BYTES));
  int bn = BLOCK_NUMBER(region);
  new += (nblocks * BLOCK_BYTES + ((char*)region - new));
  SetSymbolValue(ALLOCATION_POINTER,(lispobj)new);
    return region;
}

static void new_cluster(int min_blocks)
{
    int nblocks = min_blocks < 4 ? 4 : min_blocks;
    int nchunks = nblocks << (BLOCK_BITS-CHUNK_BITS);
    int i;
    struct cluster *cluster = malloc(sizeof(struct cluster) + nchunks-1);
    struct region*region = new_region(nblocks);

    int bn = BLOCK_NUMBER(region);
    dprintf(cgc_debug,("new cluster %x region@%x\n",cluster,region));
    for (i = 0; i < nblocks; i++)
      block_table[bn+i] = cluster;

    num_clusters++;
    cluster->next = clusters;
    clusters = cluster;
    cluster->num_blocks = nblocks;
    cluster->first_region = region;

    init_region(region, nchunks);

    region->next = large_region_free_list;
    large_region_free_list = region;
    region->prev = NULL;
    region->space = NULL;
}

unsigned long cgc_bytes_allocated = 0;	/* Seen by (dynamic-usage) */
static unsigned long auto_gc_trigger = 0;
static int maybe_gc_called = 0;

static struct region *alloc_large_region(int nchunks)
{
  struct region *region;
  {
    region = maybe_alloc_large_region(nchunks);

    if (region == NULL)
      {
	new_cluster((nchunks + BLOCK_CHUNKS - 1) >> (BLOCK_BITS-CHUNK_BITS));
	region = maybe_alloc_large_region(nchunks);
	gc_assert(region != NULL);
      }
  }
  gc_assert(region->space == NULL);
  return region;
}

static struct region *alloc_small_region()
{
    struct region *region = small_region_free_list;

    if (region == NULL)
	region = alloc_large_region(1);
    else
	small_region_free_list = region->next;
    region->next = NULL;
    region->prev = NULL;
    region->space = NULL;
    move_to_newspace(region);
    return region;
}

static int chunks_freed = 0;

static void free_region(struct region *region)
{
  gc_assert(region->space && region->space == oldspace);
  gc_assert(region->num_chunks > 0);

  region->space = NULL;			/* for compact_cluster? */
  region->prev = NULL;			/* housekeeping I hope */
  chunks_freed += region->num_chunks;

  if (region->num_chunks == 1)
    {
      region->next = small_region_free_list;
      small_region_free_list = region;
    }
  else
    {
      region->next = large_region_free_list;
      large_region_free_list = region;
    }
}

static void *alloc_large(int nbytes)
{
    int nchunks = (nbytes+REGION_OVERHEAD+CHUNK_BYTES-1) >> CHUNK_BITS;
    struct region *region = alloc_large_region(nchunks);
    region->contains_small_objects = 0;
    region->next = NULL;
    region->prev = NULL;
    region->space = NULL;
    cgc_bytes_allocated += region->num_chunks*CHUNK_BYTES;
    move_to_newspace(region);
    return (char *)region + REGION_OVERHEAD;
}

void *cgc_alloc(int nbytes)
{
  void*res;
  dprintf(0,("alloc %d\n", nbytes));

  if (nbytes > (CHUNK_BYTES - REGION_OVERHEAD))
    res = alloc_large(nbytes);
  else
    {
      struct space *space = newspace;
      if ((space->alloc_ptr + nbytes) > space->alloc_end)
	{
	  struct region *region;
	  if(space->alloc_ptr != NULL)
	    {
	      int hole = space->alloc_end - space->alloc_ptr;
	      if(hole >= ALIGN_BYTES)
		/* This wastes the space, eg suppose one cons
		 * has been allocated then a request for
		 * a maximum sized small obj comes in. I'd like
		 * to remember that there is still a lot of
		 * room left in this region. Maybe I could actually
		 * use the small_region_free_list in some way.
		 */
		NOTE_EMPTY(space->alloc_ptr, hole);
	    }
	  region = alloc_small_region();
	  region->contains_small_objects = 1;
	  space->alloc_ptr = (char *)region + REGION_OVERHEAD;
	  space->alloc_end = (char *)region + CHUNK_BYTES;
	  cgc_bytes_allocated += region->num_chunks*CHUNK_BYTES;
	}
      
      res = space->alloc_ptr;
      space->alloc_ptr += ROUNDUP(nbytes, ALIGN_BYTES);
    }
  return res;
}


static void move_to_newspace(struct region *region)
{
  /* (maybe) unlink region from oldspace and add to tail of 
   * newspace regions. Don't attempt to move a region that
   * is already in newspace.
   */
    struct space *space = newspace;
    if(region->space == oldspace)
      {
	/* Remove region from list. The prev slot holds
	 * the address of the 'next' slot of the previous
	 * list entry, not a pointer to that region (why?)
	 */
	*region->prev = region->next;
	if(region->next)
	  region->next->prev = region->prev;
	if(region->space->regions_tail == &region->next)
	  region->space->regions_tail = region->prev;
      }
    /* Append to newspace unless it has already been promoted. */
    if(region->space != newspace)
      {
	region->prev = space->regions_tail;
	region->next = NULL;
	*space->regions_tail = region;
	space->regions_tail = &region->next;
	region->space = space;
      }
}

static struct region *find_region(void *ptr)
{
    struct cluster *cluster;
    int cluster_chunk_num;
    int chunk_num;
    unsigned char delta;

    ptr = (void*)((int) ptr & ~0x3);
    if (ptr < heap_base || ptr >= heap_end)
	return NULL;

    cluster = block_table[BLOCK_NUMBER(ptr)];
    if (cluster == NULL)
	return NULL;

    if (ptr < (void*)cluster->first_region)
	return NULL;

    cluster_chunk_num = CHUNK_NUMBER(cluster->first_region);
    chunk_num = CHUNK_NUMBER(ptr);

    while (delta = cluster->region_offset[chunk_num - cluster_chunk_num])
	chunk_num -= delta;

    return CHUNK_ADDRESS(chunk_num);
}

/* Interface to std collector */
static inline boolean
from_space_p(lispobj obj)
{
  struct region*region=find_region((void*)obj);
  return (region != NULL && region->space == oldspace);
}
static inline boolean
new_space_p(lispobj obj)
{
  struct region*region=find_region((void*)obj);
  return (region != NULL && region->space == newspace);
}
static inline boolean
static_space_p(lispobj obj)
{
  return (STATIC_SPACE_START < obj
	  && obj < SymbolValue(STATIC_SPACE_FREE_POINTER));
}

/* Predicate that returns true if an object is a pointer. */
#undef  POINTERP
#define POINTERP(obj) Pointerp((obj)->header)

/* Predicate that returns true if an object has been forwarded. */
#define FORWARDED(obj) ((obj_t)(obj)->header == (obj_t)0x1)

/* Returns the forwarding pointer for the given object. */
#define FORWARDING_PTR(obj) ((lispobj)(obj)->data[0])

/* Marks obj as forwarded to new */
#define DEPOSIT_FORWARDING_PTR(obj,new) \
 ((obj_t)(obj)->header = 0x1, (obj_t)(obj)->data[0] = (obj_t)new)

/* Returns an obj_t for the object starting at addr */
#define OBJECT_AT(addr) ((obj_t)(addr))

/* Returns the size (in bytes) of obj. */
#define OBJECT_SIZE(obj) (sizeOfObject((obj_t)obj)<<2)

/* Scavenges an object. */
#define SCAVENGE_OBJECT(obj) scavengex((lispobj*)obj)

#if 0
/* Makes a region of memory look like some kind of object. */
#define NOTE_EMPTY(ptr,bytes) \
    (((obj_t)ptr)->header = (((bytes+ALIGN_BYTES-1)>>ALIGN_BITS)<<8) | 1)
#endif

static unsigned long bytes_copied = 0;
#   define  HAVE_FASTCOPY
#if defined HAVE_FASTCOPY
#define COPYDUAL(a,b,c) fastcopy16(a,b,c)
void fastcopy16(void*,void*,size_t);
#else
#define COPYDUAL(a,b,c) memmove(a,b,c)
#endif
static inline lispobj
copy(lispobj taggedobj)
{
  obj_t source = (obj_t)PTR(taggedobj);
  int nbytes = OBJECT_SIZE(source);
  gc_assert(Pointerp(taggedobj));
  gc_assert(!(nbytes & (ALIGN_BYTES-1)));
  {
    int lowtag = LowtagOf(taggedobj);
    obj_t newobj = cgc_alloc(nbytes);
    COPYDUAL(newobj, source, nbytes);
    bytes_copied += nbytes;
    return ((lispobj)newobj | lowtag);
  }
}


#define CEILING(x,y) (((x) + ((y) - 1)) & (~((y) - 1)))
#define NWORDS(x,y) (CEILING((x),(y)) / (y))

#define WEAK_POINTER_NWORDS \
	CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
static struct weak_pointer *weak_pointers;


/* Scavenging:
 * CMU CL objects can be classified as BOXED, UNBOXED or other.
 * Boxed objects have a header containing length and type followed
 * by LENGTH tagged object descriptors which may be pointers.
 * UNBOXED objects have a header but the data is other than
 * tagged descriptors, such as floats, bignums, saps or code.
 * Others (code) contain a mix of boxed and unboxed and some
 * (cons) are like BOXED but without header. The scavenger needs
 * to consider these different kinds of objects. I will use a
 * table indexed by type to detect the simple cases of boxed
 * or unboxed.
 */
#define IMMED_OR_LOSE(thing) gc_assert(sct[TypeOf(thing)].sc_kind == SC_IMMED)
static void scavenge_pointer(lispobj*);
static int noise = 0;

typedef struct { unsigned sc_kind : 3, ve_l2bits : 5;} OSC_t;

OSC_t make_OSC(int kind, int log2bits)
{
  OSC_t thing;
  thing.sc_kind = kind;
  thing.ve_l2bits = log2bits;
  return thing;
}
#define SETSCT(indx,kind,logbits) sct[indx] = make_OSC(kind,logbits)
#define SC_ISBOXED 1
#define SC_UNBOXED 2
#define SC_IMMED   3
#define SC_POINTER 4
#define SC_VECTOR  5
#define SC_STRING  6
#define SC_OTHER   7
#define SC_LOSER   0
static OSC_t sct[256];

int sizeOfObject(obj_t obj)
{
  int obj_type = TypeOf(obj->header);
  OSC_t class = sct[obj_type];
  struct vector*vector;
  int length = 1;
  int nwords = 1;
  switch (class.sc_kind)
    {
    case SC_POINTER:
    case SC_IMMED:
      return 1;
    case SC_ISBOXED:
    case SC_UNBOXED:
      gc_assert(HeaderValue(obj->header) > 0);
      nwords = length = HeaderValue(obj->header) + 1;
      break;
    case SC_STRING:
    case SC_VECTOR:
      {
	int log2bits = class.ve_l2bits;
	int bits_per_el = 1 << log2bits;
	int extra = 0;
	int els_per_word = 1 << (5 - log2bits);
	if(log2bits > 5)
	  {
	    els_per_word = 1;
	    extra = log2bits - 5;
	  }
	length = ((struct vector*)obj)->length;
	length = fixnum_value(length);	/* Zero Length IS valid */
	length +=  (class.sc_kind == SC_STRING);
	length <<= extra;
	nwords = NWORDS(length, els_per_word);
	nwords += 2;			/* header + length */
      }
      break;
    case SC_OTHER:
      switch(obj_type)
	{
	case type_CodeHeader:
	  {
	    struct code *code;
	    int nheader_words, ncode_words;
	    code = (struct code *)obj;
	    ncode_words = fixnum_value(code->code_size);
	    nheader_words = HeaderValue(code->header);
	    nwords = ncode_words + nheader_words;
	  } break;
	default:
	  fprintf(stderr,"GC losage: no size for other type %d\n",obj_type);
	  gc_abort();
	}
      break;
    default:
      fprintf(stderr,"GC losage: no size for other type %d\n",obj_type);
      gc_abort();
    }
  return CEILING(nwords,2);
}

static void init_osc()
{
  int i;
  for (i = 0; i < 256; i++)
    SETSCT(i ,SC_LOSER, 0);
  for (i = 0; i < 32; i++)
    {
      SETSCT(type_EvenFixnum|(i<<3)	,SC_IMMED,0);
      SETSCT(type_FunctionPointer|(i<<3),SC_POINTER,0);
      /* OtherImmediate0 */
      SETSCT(type_ListPointer|(i<<3)	,SC_POINTER,0);
      SETSCT(type_OddFixnum|(i<<3) 	,SC_IMMED,0);
      SETSCT(type_InstancePointer|(i<<3),SC_POINTER,0);
      /* OtherImmediate1 */
      SETSCT(type_OtherPointer|(i<<3) 	,SC_POINTER,0);
    }
  SETSCT(type_Bignum			,SC_UNBOXED,0);
  SETSCT(type_Ratio			,SC_ISBOXED,0);
  SETSCT(type_SingleFloat		,SC_UNBOXED,0);
  SETSCT(type_DoubleFloat		,SC_UNBOXED,0);
#if defined type_ComplexSingleFloat
  SETSCT(type_ComplexSingleFloat	,SC_UNBOXED,0);
#endif
#if defined type_ComplexDoubleFloat
  SETSCT(type_ComplexDoubleFloat	,SC_UNBOXED,0);
#endif
ram's avatar
ram committed
  SETSCT(type_Complex			,SC_ISBOXED,0);
  SETSCT(type_SimpleArray		,SC_ISBOXED,0);
  SETSCT(type_SimpleString		,SC_STRING,3);
  SETSCT(type_SimpleBitVector		,SC_VECTOR,0);
  SETSCT(type_SimpleVector		,SC_VECTOR,5);
  SETSCT(type_SimpleArrayUnsignedByte2	,SC_VECTOR,1);
  SETSCT(type_SimpleArrayUnsignedByte4	,SC_VECTOR,2);
  SETSCT(type_SimpleArrayUnsignedByte8	,SC_VECTOR,3);
  SETSCT(type_SimpleArrayUnsignedByte16	,SC_VECTOR,4);
  SETSCT(type_SimpleArrayUnsignedByte32	,SC_VECTOR,5);
pw's avatar
pw committed
#if defined type_SimpleArraySignedByte8
  SETSCT(type_SimpleArraySignedByte8	,SC_VECTOR,3);
#endif
#if defined type_SimpleArraySignedByte16
  SETSCT(type_SimpleArraySignedByte16	,SC_VECTOR,4);
#endif
#if defined type_SimpleArraySignedByte30
  SETSCT(type_SimpleArraySignedByte30	,SC_VECTOR,5);
#endif
#if defined type_SimpleArraySignedByte32
  SETSCT(type_SimpleArraySignedByte32	,SC_VECTOR,5);
#endif
ram's avatar
ram committed
  SETSCT(type_SimpleArraySingleFloat	,SC_VECTOR,5);
  SETSCT(type_SimpleArrayDoubleFloat	,SC_VECTOR,6);
#if defined type_SimpleArrayComplexSingleFloat
  SETSCT(type_SimpleArrayComplexSingleFloat	,SC_VECTOR,6);
#endif
#if defined type_SimpleArrayComplexDoubleFloat
  SETSCT(type_SimpleArrayComplexDoubleFloat	,SC_VECTOR,7);
#endif
ram's avatar
ram committed
  SETSCT(type_ComplexString		,SC_ISBOXED,0);
  SETSCT(type_ComplexBitVector		,SC_ISBOXED,0);
  SETSCT(type_ComplexVector		,SC_ISBOXED,0);
  SETSCT(type_ComplexArray		,SC_ISBOXED,0);
  SETSCT(type_CodeHeader		,SC_OTHER,0);
  SETSCT(type_FunctionHeader		,SC_OTHER,0);
  SETSCT(type_ClosureFunctionHeader	,SC_OTHER,0);
  SETSCT(type_ReturnPcHeader		,SC_OTHER,0);
  SETSCT(type_ClosureHeader		,SC_ISBOXED,0);
  SETSCT(type_FuncallableInstanceHeader	,SC_ISBOXED,0);
  SETSCT(type_ByteCodeFunction		,SC_ISBOXED,0);
  SETSCT(type_ByteCodeClosure		,SC_ISBOXED,0);
  SETSCT(type_DylanFunctionHeader	,SC_ISBOXED,0);

  SETSCT(type_ValueCellHeader		,SC_ISBOXED,0);
  SETSCT(type_SymbolHeader		,SC_ISBOXED,0);
  SETSCT(type_BaseChar			,SC_IMMED,0);
  SETSCT(type_Sap			,SC_UNBOXED,0);
  SETSCT(type_UnboundMarker		,SC_IMMED,0);
  SETSCT(type_WeakPointer		,SC_UNBOXED,0);
  SETSCT(type_InstanceHeader		,SC_ISBOXED,0);
  SETSCT(type_Fdefn			,SC_ISBOXED,0);
}

static lispobj* scavenge(lispobj*,int);
static lispobj*scavenge_object(lispobj*);
static lispobj*scavengex(lispobj*);

static inline scavenge_1word_obj(lispobj*addr)
{
  if(Pointerp(*addr))
    {
      if(*addr != NIL && *addr != T)
	scavenge_pointer(addr);
    }
  else
    IMMED_OR_LOSE(*addr);
}
static int debug_code = 0;
static int
scav_code_header(lispobj*where)
{
  lispobj object = *where;
  struct code *code;
  int i,nheader_words, ncode_words, nwords;
  lispobj fheaderl;
  struct function *fheaderp;
  dprintf(0,("code: %x %x\n",where,object));
  code = (struct code *) where;
  ncode_words = fixnum_value(code->code_size);
  nheader_words = HeaderValue(object);
  nwords = ncode_words + nheader_words;
  nwords = CEILING(nwords, 2);
  /* Scavenge the boxed section of the code data block */
  /* NOTE: seeing a problem where the trace_table_offset slot
   * is a bogus list pointer instead of a fixnum such that 
   * junk gets moved to newspace which causes problems later.
   * Purify doesn't look at that slot (a bug?). Need
   * to figure out how it happens. Ans: from loading top-level
   * forms that init byte-compiled functions like "defun fcn".
   * Fix the loader to not do this and save some space!
   */
  for(i=1; i < nheader_words; i++)
    scavenge_1word_obj(where + i);

  /* Scavenge the boxed section of each function object in the 
   * code data block.
   */
  fheaderl = code->entry_points;
  while (fheaderl != NIL) {
    fheaderp = (struct function *) PTR(fheaderl);
    gc_assert(TypeOf(fheaderp->header) == type_FunctionHeader);
    scavenge_1word_obj(&fheaderp->name);
    scavenge_1word_obj(&fheaderp->arglist);
    scavenge_1word_obj(&fheaderp->type);
    fheaderl = fheaderp->next;
  }
  return nwords;
}

#define RAW_ADDR_OFFSET (6*sizeof(lispobj) - type_FunctionPointer)
#ifdef i386
static void scavenge_fcn_header(struct function*object)
{
  struct function*fheader = object;
  unsigned long offset = HeaderValue(fheader->header) * 4;
  /* Ok, we don't transport code here, but we do need to
   * scavenge the constants and functions (of which this is one).
   * This should be done as part of scavenging a live code object
   * and we could now be trying to do CPR on a corpse!
   */
  struct code*code = (struct code *) ((unsigned long) fheader - offset);
  gc_assert(TypeOf(fheader->header) == type_FunctionHeader);
  scav_code_header((lispobj*)code);
}

static int docode=0;			/* maybe not needed */
static int
scav_closure_header(struct closure*closure)
{
  /* Could also be a funcallable_instance. The x86 port has the
   * raw code address in the function slot, not a lisp object.
   * However, the function object is a known distance from the code.
   */
  lispobj fun, fheader1;
  int i,words;
  gc_assert(ALIGNEDP(closure));
  words = HeaderValue(closure->header);
  fun = closure->function - RAW_ADDR_OFFSET;
  /* This needs to be done to get at live code. I now have no
   * way to know if this has already been scavenged so I assume
   * that it hasn't. Code that has been seen by purify is
   * supposed RO and doesn't (shouldn't) need to be looked at
   * so this maybe really redundant.
   *
   * I have seen one case where FI was incomplete with function
   * and lexenv slots == 0! Is this a bug?
   *
   * Update, it appears this is not needed. I will disable execution
   * by default but leave the code here in case something breaks.
   */
  if(docode && static_space_p(closure->function))
    scavenge_fcn_header((struct function*)PTR(fun));
  else					/* "normal" */
    scavenge_1word_obj(&fun);

  /* Now the boxed part of the closure header. */
  for(i = 0; i < words - 1; i++)
    scavenge_1word_obj(&closure->info[i]);

  return CEILING(words + 1, 2);
}
static int fnoise=0;			/* experimental */
static int
scav_fdefn(lispobj*where)
{
  /* I don't know if this is really needs to be special cased here.
   * raw_address  should look like a fixnum and function is in static
   * space -- unless it is pointing to something in C like closure_tramp
   * or maybe undefined_tramp.
   * Actually function is in dynamic space if it is a byte-function!
   * Hmm, have seen case of function slot containing 1. Bug?
   */
  struct fdefn * fdefn = (struct fdefn*)where;
  int words = HeaderValue(fdefn->header);
  int fix_func = ((char*)(fdefn->function+RAW_ADDR_OFFSET) == fdefn->raw_addr);
  scavenge_pointer(&fdefn->name);
  if(fnoise && LowtagOf(fdefn->function) == type_FunctionPointer)
    {
      obj_t fcnobj = (obj_t)PTR(fdefn->function);
      switch(TypeOf(fcnobj->header))
	{
	  /* Can only be in static space and may need to scavenge code object.
	   * Won't be noticed by scavenge_pointer().
	   */
	case type_FunctionHeader:
	  scavenge_fcn_header((struct function*)fcnobj);
	  break;
	  /* If in static space it was moved there by purify and we are
	   * doing normal scavenge. Handle normally.
	   */
	case type_FuncallableInstanceHeader:
	case type_ClosureHeader:
	  scavenge_pointer(&fdefn->function);
	  break;
	default:
	  dprintf(1,("Ignoring bogus value %x for fdefn function.\n", 
		     *fcnobj));
	}
    }
  else
    /* NIL for undefined function? */
    scavenge_pointer(&fdefn->function);

  if (fix_func)
    { /* This shouldn't be needed yet. */
      fdefn->raw_addr = (char *)(fdefn->function + RAW_ADDR_OFFSET);
    }
  return sizeof(struct fdefn) / sizeof(lispobj);
}

#endif

/* List scavenger taken from gc.c and adapted */

static FILE*log=NULL;
static int scav_ro = 0;			/* for testing  */
static int debug=0;
static void*trapaddr=0;
void check_trap(void*addr)