Sequence lterators

AN EXCITING GAME OF STRATEGY

Tobias-Christian Rittweiler

trittweiler@common-lisp.net

November 10, 2009

Scope of the library

m Sequence lterators: library for writing functions operating on sequences;
m it does NOT define an iteration protocol,

m it's supposed to be layered on TOP of such a protocol,

0 for example, Christophe Rhodes’ SB-SEQUENCES

Rhodes, C.: User-extensible Sequences in Common Lisp;

in International Lisp Conference Proceedings, 2007.

m it aims to provide:

[0 tools to write such functions conveniently

[0 vyet not blatantly inefficiently

2009-11-10, Sequence lterators, T.C.R. -2 / 19

Current state of affairs

Ever wrote a function operating on sequences?

You have to deal with

m two definitions: one for lists, the other for vectors
(unless you want to bury the list case in n"2)

m :key, and :test/:test-not

m :start and :end

[0 bound checking
[0 trimming of input sequence

m :from-end

[0 in very worst case, you have to add two new definitions

m result type should match input type

[0 think of specialized vectors

‘ 2009-11-10, Sequence lterators, T.C.R. -3 / 19

APl Overview

Key component

m with-sequence-iterator

On top

m dosequence and dosequences*
Utilities

m check-sequence-bounds

m make-sequence-like

m canonicalize-key

B canonicalize-test

2009-11-10, Sequence lterators, T.C.R. -4 / 19

Utilities

(canonicalize-key key-designator)

“Canonicalizes key-designator to a function object.
If it's nil, the identity function is returned.”

(canonicalize-test test &optional test-not)

“Canonicalizes test and test-not to a function object.
If both are given, an error is signaled.
If neither is given, the eql function is returned.”

(check-sequence-bounds sequence start end &optional length)

“Signals an error ... if start, and end are not valid bounding
indices for sequence sequence.”

m arguments are places where normalized values are stored

m including appropriate type annotations

2009-11-10, Sequence lterators, T.C.R. -5 / 19

Utilities

(make-sequence-like sequence length &key initial-element
initial-contents)

“Returns a new sequence of length /length and of the
same type as sequence.”

An example:

(defun subseq (sequence start &optional end)
(check-sequence-bounds sequence start end)
(let ((result (make-sequence-like sequence (- end start))))

(replace result sequence :start2 start :end2 end)))

2009-11-10, Sequence lterators, T.C.R. -6 / 19

Let's recall..

Ever wrote a function operating on sequences?

You have to deal with

m two definitions: one for lists, the other for vectors
m :key, and :test/:test-not ¢

m :start and :end

[0 bound checking 4
[0 trimming of input sequence

m :from-end

m result type should match input type v

2009-11-10, Sequence lterators, T.C.R. — note 1 of slide 6

With-Sequence-lterator

N

(with-sequence-iterator (iterator-name sequence &key start
end
from-end
place)

)

m iterator returns

1. boolean indicating when the iterator exhausted
2. the current element of sequence
3. the index of that element

m iterator traverses sequence

[0 starting from :start
[0 until :end,
[0 in reverse order if :from-end is given

m bounding indices are not checked for validity (use check-sequence-bounds)

m :place can be used to destructively modify sequence during traversal

2009-11-10, Sequence lterators, T.C.R. -7 / 19

Dosequence

(dosequence (var sequence &optional result &key start
end
from-end
place)

.)

m convenience macro

0 with-sequence-iterator
0 + loop until iterator exhausts

m var can also be of form (elt idx)
m like all do-style macros, body is executed in an implicit block and tagbody

m (everyone aware of semantics of &optional + &key?)

‘ 2009-11-10, Sequence lterators, T.C.R. -8 / 19

Dosequence (an example)

(defun find (item sequence &key (start 0) end from-end
key test test-not)
(check-sequence-bounds sequence start end)
(let ((key (canonicalize-key key))
(test (canonicalize-test test test-not)))
(dosequence (elt sequence nil :start start :end end
:from-end from-end)
(when (funcall test item (funcall key elt))

(return elt)))))

2009-11-10, Sequence lterators, T.C.R. -9 / 19

Dosequence (another example)

(defun map-into-subseq (sequence function &key (start 0) end from-end key)
(check-sequence-bounds sequence start end)
(let ((key (canonicalize-key key)))
(dosequence (elt sequence sequence :start start :end end
:from-end from-end
:place ptr)
(setf (ptr) (funcall function (funcall key elt))))))

2009-11-10, Sequence lterators, T.C.R. — 10 / 19

Dosequences*™

(dosequences* ((var sequence &optional result &key start
end
from-end
place)

&rest more-clauses)

)

m convenience macro to iterate through multiple sequences simultaneously

[0 multiple with-sequence-iterators
0 + loop until one of the iterators exhausts

m returns the result of the clause belonging to the iterator exhausted first

m dosequences* because it runs iterators sequentially (a la dox)

2009-11-10, Sequence lterators, T.C.R. — 11 / 19

Dosequences™ (an example)

(defun begins-with-subseq (prefix sequence &key key test test-not
(startl 0) endl
(start2 0) end2)
(check-sequence-bounds prefix startl endl)
(check-sequence-bounds sequence start2 end2)
(let ((key (canonicalize-key key))
(test (canonicalize-test test test-not)))
(dosequences* ((p prefix t :start startl :end endl)
(s sequence nil :start start2 :end end2))
(unless (funcall test (funcall key p) (funcall key s))

(return nil)))))

2009-11-10, Sequence lterators, T.C.R. — 12 / 19

Let's recall again..

Ever wrote a function operating on sequences?

You have to deal with

m two definitions: one for lists, the other for vectors v
m :key, and :test/:test-not (V)

m :start and :end

O bound checking)
0 trimming of input sequence v

m :from-end /

m result type should match input type (¢)

2009-11-10, Sequence lterators, T.C.R. — note 1 of slide 12

Short break...

¢,98,9,
g, 9, 8,
What is the next auvmber in the

SEQUENCE?

! CC) 2009, T Wi . HINJADOODLE . COm

2009-11-10, Sequence lterators, T.C.R. — 13 / 19

N

Performance

Compared reimplementation of standard functions (find, count, subseq, ...)
with builtin equivalents.

On SBCL:

m sequence iterators are pretty fast

m depending on grade of builtin optimization: 1.3x - 2x slower

On CCL:

m sequence iterators are an order of magnitude slower

m | haven't investigated why (perhaps because the current code
assumes good type derivation)

‘ 2009-11-10, Sequence lterators, T.C.R. — 14 / 19

Open issues

N

m declarations (e.g. ignore)

0 currently not allowed in body of dosequence/dosequences*
[0 have to split body, and insert declarations at right places
0 luckily, I wrote a library for that in 2008:

http://common-lisp.net/project/parse-declarations/

2009-11-10, Sequence lterators, T.C.R. — 15 / 19

http://common-lisp.net/project/parse-declarations/

N

Open issues (cont.)

m copy-sequence-iterator

0 How do we traverse lists in reverse order?
[0 we create a reversed list of pointers (for :place) and traverse that

0 Implementing search: nested with-sequence-iterators
(on same sequence, different :start)

[0 that's costy!

[0 copy-sequence-iterator could create a copy with some shared state.

2009-11-10, Sequence lterators, T.C.R. — 16 / 19

Open issues (cont.)

N

m output sequence allocation
0 Often you do not in advance how big the result sequence must be

= E.g. when implementing remove-if

[0 various possible solutions

= iterate twice (first to calculate exact output size, then to fill output sequence)
= allocate input-sized output sequence, fill, shrink
« incremently allocate chunks, fill, concatenate (similiar to “list arrays”)

= anything else? (anonymous reader, | count on thee!)

0 it is not yet clear to me what to prefer (perhaps depend on (> space speed)?)

[0 should probably check prior work..

2009-11-10, Sequence lterators, T.C.R. — 17 / 19

Long-term issues

N

m on top of Sequence lterators, library which provides additional sequence functions

[split-sequence,

[J take-while, drop-while,

[J partitiomn, group,

[J replace-match, replace-all-matches

m underneath Sequence lterators

[0 add generic iteration protocol
0 then, implement standard sequence functions with Sequence lterators

0 wvoild: portable extensible sequences for Common Lisp

‘ 2009-11-10, Sequence lterators, T.C.R. — 18 / 19

The End

Comming soon:

http://common-lisp.net/project/sequence-iterators/

2009-11-10, Sequence lterators, T.C.R. — 19 / 19

http://common-lisp.net/project/sequence-iterators/

	Scope of the library
	Current state of affairs
	API Overview
	Utilities
	Utilities
	With-Sequence-Iterator
	Dosequence
	Dosequence (an example)
	Dosequence (another example)
	Dosequences*
	Dosequences* (an example)
	Short break...
	Performance
	Open issues
	Open issues (cont.)
	Open issues (cont.)
	Long-term issues
	The End

