
alexandria Manual
draft version

Alexandria software and associated documentation are in the public domain:

Authors dedicate this work to public domain, for the benefit of the public at
large and to the detriment of the authors’ heirs and successors. Authors intends
this dedication to be an overt act of relinquishment in perpetuity of all present
and future rights under copyright law, whether vested or contingent, in the
work. Authors understands that such relinquishment of all rights includes the
relinquishment of all rights to enforce (by lawsuit or otherwise) those copyrights
in the work.

Authors recognize that, once placed in the public domain, the work may be
freely reproduced, distributed, transmitted, used, modified, built upon, or oth-
erwise exploited by anyone for any purpose, commercial or non-commercial, and
in any way, including by methods that have not yet been invented or conceived.

In those legislations where public domain dedications are not recognized or possible, Alexan-
dria is distributed under the following terms and conditions:

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Unless otherwise noted, the symbols are exported from the "ALEXANDRIA" package; only
newer symbols that require "ALEXANDRIA-2" are fully qualified.

The package "ALEXANDRIA-2" includes all the symbols from "ALEXANDRIA-1".

i

Table of Contents

1 Hash Tables . 1

2 Data and Control Flow . 2

3 Conses . 7

4 Sequences . 10

5 IO . 13

6 Macro Writing . 14

7 Symbols . 17

8 Arrays . 18

9 Types . 19

10 Numbers . 20

1

1 Hash Tables

[Macro]ensure-gethash key hash-table &optional default
Like gethash, but if key is not found in the hash-table saves the default under key
before returning it. Secondary return value is true if key was already in the table.

[Function]copy-hash-table table &key key test size rehash-size
rehash-threshold

Returns a copy of hash table table, with the same keys and values as the table.
The copy has the same properties as the original, unless overridden by the keyword
arguments.

Before each of the original values is set into the new hash-table, key is invoked on the
value. As key defaults to cl:identity, a shallow copy is returned by default.

[Function]maphash-keys function table
Like maphash, but calls function with each key in the hash table table.

[Function]maphash-values function table
Like maphash, but calls function with each value in the hash table table.

[Function]hash-table-keys table
Returns a list containing the keys of hash table table.

[Function]hash-table-values table
Returns a list containing the values of hash table table.

[Function]hash-table-alist table
Returns an association list containing the keys and values of hash table table.

[Function]hash-table-plist table
Returns a property list containing the keys and values of hash table table.

[Function]alist-hash-table alist &rest hash-table-initargs
Returns a hash table containing the keys and values of the association list alist.
Hash table is initialized using the hash-table-initargs.

[Function]plist-hash-table plist &rest hash-table-initargs
Returns a hash table containing the keys and values of the property list plist. Hash
table is initialized using the hash-table-initargs.

2

2 Data and Control Flow

[Macro]define-constant name initial-value &key test documentation
Ensures that the global variable named by name is a constant with a value that is equal
under test to the result of evaluating initial-value. test is a /function designator/
that defaults to eql. If documentation is given, it becomes the documentation string
of the constant.

Signals an error if name is already a bound non-constant variable.

Signals an error if name is already a constant variable whose value is not equal under
test to result of evaluating initial-value.

[Macro]destructuring-case keyform &body clauses
destructuring-case, -ccase, and -ecase are a combination of case and
destructuring-bind. keyform must evaluate to a cons.

Clauses are of the form:

((CASE-KEYS . DESTRUCTURING-LAMBDA-LIST) FORM*)

The clause whose case-keys matches car of key, as if by case, ccase, or ecase, is
selected, and FORMs are then executed with cdr of key is destructured and bound
by the destructuring-lambda-list.

Example:

(defun dcase (x)

(destructuring-case x

((:foo a b)

(format nil "foo: ~S, ~S" a b))

((:bar &key a b)

(format nil "bar: ~S, ~S" a b))

(((:alt1 :alt2) a)

(format nil "alt: ~S" a))

((t &rest rest)

(format nil "unknown: ~S" rest))))

(dcase (list :foo 1 2)) ; => "foo: 1, 2"

(dcase (list :bar :a 1 :b 2)) ; => "bar: 1, 2"

(dcase (list :alt1 1)) ; => "alt: 1"

(dcase (list :alt2 2)) ; => "alt: 2"

(dcase (list :quux 1 2 3)) ; => "unknown: 1, 2, 3"

(defun decase (x)

(destructuring-case x

((:foo a b)

(format nil "foo: ~S, ~S" a b))

((:bar &key a b)

(format nil "bar: ~S, ~S" a b))

(((:alt1 :alt2) a)

(format nil "alt: ~S" a))))

(decase (list :foo 1 2)) ; => "foo: 1, 2"

Chapter 2: Data and Control Flow 3

(decase (list :bar :a 1 :b 2)) ; => "bar: 1, 2"

(decase (list :alt1 1)) ; => "alt: 1"

(decase (list :alt2 2)) ; => "alt: 2"

(decase (list :quux 1 2 3)) ; =| error

[Macro]ensure-functionf &rest places
Multiple-place modify macro for ensure-function: ensures that each of places con-
tains a function.

[Macro]multiple-value-prog2 first-form second-form &body forms
Evaluates first-form, then second-form, and then forms. Yields as its value all
the value returned by second-form.

[Macro]named-lambda name lambda-list &body body
Expands into a lambda-expression within whose body name denotes the corresponding
function.

[Macro]nth-value-or nth-value &body forms
Evaluates form arguments one at a time, until the nth-value returned by one of the
forms is true. It then returns all the values returned by evaluating that form. If none
of the forms return a true nth value, this form returns nil.

[Macro]if-let bindings &body (then-form &optional else-form)
Creates new variable bindings, and conditionally executes either then-form or
else-form. else-form defaults to nil.

bindings must be either single binding of the form:

(variable initial-form)

or a list of bindings of the form:

((variable-1 initial-form-1)

(variable-2 initial-form-2)

...

(variable-n initial-form-n))

All initial-forms are executed sequentially in the specified order. Then all the variables
are bound to the corresponding values.

If all variables were bound to true values, the then-form is executed with the bindings
in effect, otherwise the else-form is executed with the bindings in effect.

[Macro]when-let bindings &body forms
Creates new variable bindings, and conditionally executes forms.

bindings must be either single binding of the form:

(variable initial-form)

or a list of bindings of the form:

((variable-1 initial-form-1)

(variable-2 initial-form-2)

...

(variable-n initial-form-n))

Chapter 2: Data and Control Flow 4

All initial-forms are executed sequentially in the specified order. Then all the variables
are bound to the corresponding values.

If all variables were bound to true values, then forms are executed as an implicit
progn.

[Macro]when-let* bindings &body body
Creates new variable bindings, and conditionally executes body.

bindings must be either single binding of the form:

(variable initial-form)

or a list of bindings of the form:

((variable-1 initial-form-1)

(variable-2 initial-form-2)

...

(variable-n initial-form-n))

Each initial-form is executed in turn, and the variable bound to the corresponding
value. initial-form expressions can refer to variables previously bound by the
when-let*.

Execution of when-let* stops immediately if any initial-form evaluates to nil. If
all INITIAL-FORMs evaluate to true, then body is executed as an implicit progn.

[Macro]switch (object &key test key) &body clauses
Evaluates first matching clause, returning its values, or evaluates and returns the
values of t or otherwise if no keys match.

[Macro]cswitch (object &key test key) &body clauses
Like switch, but signals a continuable error if no key matches.

[Macro]eswitch (object &key test key) &body clauses
Like switch, but signals an error if no key matches.

[Macro]whichever &rest possibilities
Evaluates exactly one of possibilities, chosen at random.

[Macro]xor &rest datums
Evaluates its arguments one at a time, from left to right. If more than one argument
evaluates to a true value no further datums are evaluated, and nil is returned as both
primary and secondary value. If exactly one argument evaluates to true, its value is
returned as the primary value after all the arguments have been evaluated, and t is
returned as the secondary value. If no arguments evaluate to true nil is returned as
primary, and t as secondary value.

[Function]disjoin predicate &rest more-predicates
Returns a function that applies each of predicate and more-predicate functions in
turn to its arguments, returning the primary value of the first predicate that returns
true, without calling the remaining predicates. If none of the predicates returns true,
nil is returned.

Chapter 2: Data and Control Flow 5

[Function]conjoin predicate &rest more-predicates
Returns a function that applies each of predicate and more-predicate functions in
turn to its arguments, returning nil if any of the predicates returns false, without
calling the remaining predicates. If none of the predicates returns false, returns the
primary value of the last predicate.

[Function]compose function &rest more-functions
Returns a function composed of function and more-functions that applies its ar-
guments to to each in turn, starting from the rightmost of more-functions, and then
calling the next one with the primary value of the last.

[Function]ensure-function function-designator
Returns the function designated by function-designator: if function-designator
is a function, it is returned, otherwise it must be a function name and its fdefinition
is returned.

[Function]multiple-value-compose function &rest more-functions
Returns a function composed of function and more-functions that applies its ar-
guments to each in turn, starting from the rightmost of more-functions, and then
calling the next one with all the return values of the last.

[Function]curry function &rest arguments
Returns a function that applies arguments and the arguments it is called with to
function.

[Function]rcurry function &rest arguments
Returns a function that applies the arguments it is called with and arguments to
function.

[Macro]alexandria-2:line-up-first &rest forms
Lines up forms elements as the first argument of their successor. Example:

(line-up-first

5

(+ 20)

/

(+ 40))

is equivalent to:

(+ (/ (+ 5 20)) 40)

Note how the single ’/ got converted into a list before threading.

[Macro]alexandria-2:line-up-last &rest forms
Lines up forms elements as the last argument of their successor. Example:

(line-up-last

5

(+ 20)

/

(+ 40))

Chapter 2: Data and Control Flow 6

is equivalent to:

(+ 40 (/ (+ 20 5)))

Note how the single ’/ got converted into a list before threading.

7

3 Conses

[Type]proper-list
Type designator for proper lists. Implemented as a satisfies type, hence not rec-
ommended for performance intensive use. Main usefullness as a type designator of
the expected type in a type-error.

[Type]circular-list
Type designator for circular lists. Implemented as a satisfies type, so not recom-
mended for performance intensive use. Main usefullness as the expected-type desig-
nator of a type-error.

[Macro]appendf place &rest lists
Modify-macro for append. Appends lists to the place designated by the first argu-
ment.

[Macro]nconcf place &rest lists
Modify-macro for nconc. Concatenates lists to place designated by the first argu-
ment.

[Macro]remove-from-plistf place &rest keys
Modify macro for remove-from-plist.

[Macro]delete-from-plistf place &rest keys
Modify macro for delete-from-plist.

[Macro]reversef place
Modify-macro for reverse. Copies and reverses the list stored in the given place and
saves back the result into the place.

[Macro]nreversef place
Modify-macro for nreverse. Reverses the list stored in the given place by destruc-
tively modifying it and saves back the result into the place.

[Macro]unionf place list &rest args
Modify-macro for union. Saves the union of list and the contents of the place
designated by the first argument to the designated place.

[Macro]nunionf place list &rest args
Modify-macro for nunion. Saves the union of list and the contents of the place des-
ignated by the first argument to the designated place. May modify either argument.

[Macro]doplist (key val plist &optional values) &body body
Iterates over elements of plist. body can be preceded by declarations, and is like a
tagbody. return may be used to terminate the iteration early. If return is not used,
returns values.

[Function]circular-list-p object
Returns true if object is a circular list, nil otherwise.

Chapter 3: Conses 8

[Function]circular-tree-p object
Returns true if object is a circular tree, nil otherwise.

[Function]proper-list-p object
Returns true if object is a proper list.

[Function]alist-plist alist
Returns a property list containing the same keys and values as the association list
alist in the same order.

[Function]plist-alist plist
Returns an association list containing the same keys and values as the property list
plist in the same order.

[Function]circular-list &rest elements
Creates a circular list of elements.

[Function]make-circular-list length &key initial-element
Creates a circular list of length with the given initial-element.

[Function]ensure-car thing
If thing is a cons, its car is returned. Otherwise thing is returned.

[Function]ensure-cons cons
If cons is a cons, it is returned. Otherwise returns a fresh cons with cons in the car,
and nil in the cdr.

[Function]ensure-list list
If list is a list, it is returned. Otherwise returns the list designated by list.

[Function]flatten tree
Traverses the tree in order, collecting non-null leaves into a list.

[Function]lastcar list
Returns the last element of list. Signals a type-error if list is not a proper list.

[Function](setf lastcar)
Sets the last element of list. Signals a type-error if list is not a proper list.

[Function]proper-list-length list
Returns length of list, signalling an error if it is not a proper list.

[Function]mappend function &rest lists
Applies function to respective element(s) of each list, appending all the all the
result list to a single list. function must return a list.

[Function]map-product function list &rest more-lists
Returns a list containing the results of calling function with one argument from
list, and one from each of more-lists for each combination of arguments. In other
words, returns the product of list and more-lists using function.

Example:

(map-product ’list ’(1 2) ’(3 4) ’(5 6))

=> ((1 3 5) (1 3 6) (1 4 5) (1 4 6)

(2 3 5) (2 3 6) (2 4 5) (2 4 6))

Chapter 3: Conses 9

[Function]remove-from-plist plist &rest keys
Returns a property-list with same keys and values as plist, except that keys in the
list designated by keys and values corresponding to them are removed. The returned
property-list may share structure with the plist, but plist is not destructively
modified. Keys are compared using eq.

[Function]delete-from-plist plist &rest keys
Just like remove-from-plist, but this version may destructively modify the provided
plist.

[Function]alexandria-2:delete-from-plist* plist &rest keys
Just like remove-from-plist, but this version may destructively modify the provided
plist. The second return value is an alist of the removed items, in unspecified order.

[Function]set-equal list1 list2 &key test key
Returns true if every element of list1 matches some element of list2 and every
element of list2 matches some element of list1. Otherwise returns false.

[Function]setp object &key test key
Returns true if object is a list that denotes a set, nil otherwise. A list denotes a set
if each element of the list is unique under key and test.

10

4 Sequences

[Type]proper-sequence
Type designator for proper sequences, that is proper lists and sequences that are not
lists.

[Macro]deletef place item &rest keyword-arguments
Modify-macro for delete. Sets place designated by the first argument to the result
of calling delete with item, place, and the keyword-arguments.

[Macro]removef place item &rest keyword-arguments
Modify-macro for remove. Sets place designated by the first argument to the result
of calling remove with item, place, and the keyword-arguments.

[Function]rotate sequence &optional n
Returns a sequence of the same type as sequence, with the elements of sequence
rotated by n: n elements are moved from the end of the sequence to the front if n is
positive, and -n elements moved from the front to the end if n is negative. sequence
must be a proper sequence. n must be an integer, defaulting to 1.

If absolute value of n is greater then the length of the sequence, the results are identical
to calling rotate with

(* (signum n) (mod n (length sequence))).

Note: the original sequence may be destructively altered, and result sequence may
share structure with it.

[Function]shuffle sequence &key start end
Returns a random permutation of sequence bounded by start and end. Original
sequence may be destructively modified. Signals an error if sequence is not a proper
sequence.

[Function]random-elt sequence &key start end
Returns a random element from sequence bounded by start and end. Signals an
error if the sequence is not a proper non-empty sequence, or if end and start are
not proper bounding index designators for sequence.

[Generic Function]emptyp sequence
Returns t if sequence is an empty sequence and nil otherwise. Signals an error if
sequence is not a sequence.

[Function]sequence-of-length-p sequence length
Return true if sequence is a sequence of length length. Signals an error if sequence
is not a sequence. Returns false for circular lists.

[Function]length= &rest sequences
Takes any number of sequences or integers in any order. Returns true iff the length
of all the sequences and the integers are equal. Hint: there’s a compiler macro that
expands into more efficient code if the first argument is a literal integer.

Chapter 4: Sequences 11

[Function]copy-sequence type sequence
Returns a fresh sequence of type, which has the same elements as sequence.

[Function]first-elt sequence
Returns the first element of sequence. Signals a type-error if sequence is not a
sequence, or is an empty sequence.

[Function](setf first-elt)
Sets the first element of sequence. Signals a type-error if sequence is not a sequence,
is an empty sequence, or if object cannot be stored in sequence.

[Function]last-elt sequence
Returns the last element of sequence. Signals a type-error if sequence is not a proper
sequence, or is an empty sequence.

[Function](setf last-elt)
Sets the last element of sequence. Signals a type-error if sequence is not a proper
sequence, is an empty sequence, or if object cannot be stored in sequence.

[Function]starts-with object sequence &key test key
Returns true if sequence is a sequence whose first element is eql to object. Returns
nil if the sequence is not a sequence or is an empty sequence.

[Function]starts-with-subseq prefix sequence &rest args &key return-suffix
&allow-other-keys

Test whether the first elements of sequence are the same (as per TEST) as the
elements of prefix.

If return-suffix is t the function returns, as a second value, a sub-sequence or
displaced array pointing to the sequence after prefix.

[Function]ends-with object sequence &key test key
Returns true if sequence is a sequence whose last element is eql to object. Returns
nil if the sequence is not a sequence or is an empty sequence. Signals an error if
sequence is an improper list.

[Function]ends-with-subseq suffix sequence &key test
Test whether sequence ends with suffix. In other words: return true if the last
(length SUFFIX) elements of sequence are equal to suffix.

[Function]map-combinations function sequence &key start end length copy
Calls function with each combination of length constructable from the elements
of the subsequence of sequence delimited by start and end. start defaults to 0,
end to length of sequence, and length to the length of the delimited subsequence.
(So unless length is specified there is only a single combination, which has the same
elements as the delimited subsequence.) If copy is true (the default) each combination
is freshly allocated. If copy is false all combinations are eq to each other, in which
case consequences are unspecified if a combination is modified by function.

Chapter 4: Sequences 12

[Function]map-derangements function sequence &key start end copy
Calls function with each derangement of the subsequence of sequence denoted by
the bounding index designators start and end. Derangement is a permutation of the
sequence where no element remains in place. sequence is not modified, but individual
derangements are eq to each other. Consequences are unspecified if calling function

modifies either the derangement or sequence.

[Function]map-permutations function sequence &key start end length copy
Calls function with each permutation of length constructable from the subsequence
of sequence delimited by start and end. start defaults to 0, end to length of the
sequence, and length to the length of the delimited subsequence.

13

5 IO

[Function]read-stream-content-into-string stream &key buffer-size
Return the "content" of stream as a fresh string.

[Function]read-file-into-string pathname &key buffer-size external-format
Return the contents of the file denoted by pathname as a fresh string.

The external-format parameter will be passed directly to with-open-file unless
it’s nil, which means the system default.

[Function]read-stream-content-into-byte-vector stream &key %length
initial-size

Return "content" of stream as freshly allocated (unsigned-byte 8) vector.

[Function]read-file-into-byte-vector pathname
Read pathname into a freshly allocated (unsigned-byte 8) vector.

14

6 Macro Writing

[Macro]once-only specs &body forms
Constructs code whose primary goal is to help automate the handling of multiple
evaluation within macros. Multiple evaluation is handled by introducing intermediate
variables, in order to reuse the result of an expression.

The returned value is a list of the form

(let ((<gensym-1> <expr-1>)

...

(<gensym-n> <expr-n>))

<res>)

where gensym-1, ..., gensym-n are the intermediate variables introduced in order to
evaluate expr-1, ..., expr-n once, only. res is code that is the result of evaluating
the implicit progn forms within a special context determined by specs. res should
make use of (reference) the intermediate variables.

Each element within specs is either a symbol symbol or a pair (SYMBOL INIT-
FORM). Bare symbols are equivalent to the pair (SYMBOL SYMBOL).

Each pair (SYMBOL INITFORM) specifies a single intermediate variable:

• initform is an expression evaluated to produce EXPR-i

• symbol is the name of the variable that will be bound around forms to the corre-
sponding gensym GENSYM-i, in order for forms to generate res that references
the intermediate variable

The evaluation of INITFORMs and binding of SYMBOLs resembles let. INIT-
FORMs of all the pairs are evaluated before binding SYMBOLs and evaluating forms.

Example:

The following expression

(let ((x ’(incf y)))

(once-only (x)

‘(cons ,x ,x)))

;;; =>

;;; (let ((#1=#:X123 (incf y)))

;;; (cons #1# #1#))

could be used within a macro to avoid multiple evaluation like so

(defmacro cons1 (x)

(once-only (x)

‘(cons ,x ,x)))

(let ((y 0))

(cons1 (incf y)))

;;; => (1 . 1)

Example:

The following expression demonstrates the usage of the initform field

(let ((expr ’(incf y)))

Chapter 6: Macro Writing 15

(once-only ((var ‘(1+ ,expr)))

‘(list ’,expr ,var ,var)))

;;; =>

;;; (let ((#1=#:VAR123 (1+ (incf y))))

;;; (list ’(incf y) #1# #1))

which could be used like so

(defmacro print-succ-twice (expr)

(once-only ((var ‘(1+ ,expr)))

‘(format t "Expr: ~s, Once: ~s, Twice: ~s~%" ’,expr ,var ,var)))

(let ((y 10))

(print-succ-twice (incf y)))

;;; >>

;;; Expr: (INCF Y), Once: 12, Twice: 12

[Macro]with-gensyms names &body forms
Binds a set of variables to gensyms and evaluates the implicit progn forms.

Each element within names is either a symbol symbol or a pair (SYMBOL STRING-
DESIGNATOR). Bare symbols are equivalent to the pair (SYMBOL SYMBOL).

Each pair (SYMBOL STRING-DESIGNATOR) specifies that the variable named
by symbol should be bound to a symbol constructed using gensym with the string
designated by string-designator being its first argument.

[Macro]with-unique-names names &body forms
Alias for with-gensyms.

[Function]featurep feature-expression
Returns t if the argument matches the state of the *features* list and nil if it does
not. feature-expression can be any atom or list acceptable to the reader macros
#+ and #-.

[Function]parse-body body &key documentation whole
Parses body into (values remaining-forms declarations doc-string). Documentation
strings are recognized only if documentation is true. Syntax errors in body are
signalled and whole is used in the signal arguments when given.

[Function]parse-ordinary-lambda-list lambda-list &key normalize
allow-specializers normalize-optional normalize-keyword
normalize-auxilary

Parses an ordinary lambda-list, returning as multiple values:

1. Required parameters.

2. Optional parameter specifications, normalized into form:

(name init suppliedp)

3. Name of the rest parameter, or nil.

4. Keyword parameter specifications, normalized into form:

((keyword-name name) init suppliedp)

Chapter 6: Macro Writing 16

5. Boolean indicating &allow-other-keys presence.

6. &aux parameter specifications, normalized into form

(name init).

7. Existence of &key in the lambda-list.

Signals a program-error is the lambda-list is malformed.

17

7 Symbols

[Function]ensure-symbol name &optional package
Returns a symbol with name designated by name, accessible in package designated by
package. If symbol is not already accessible in package, it is interned there. Returns
a secondary value reflecting the status of the symbol in the package, which matches
the secondary return value of intern.

Example:

(ensure-symbol :cons :cl) => cl:cons, :external

[Function]format-symbol package control &rest arguments
Constructs a string by applying arguments to string designator control as if by
format within with-standard-io-syntax, and then creates a symbol named by that
string.

If package is nil, returns an uninterned symbol, if package is t, returns a symbol in-
terned in the current package, and otherwise returns a symbol interned in the package
designated by package.

[Function]make-keyword name
Interns the string designated by name in the keyword package.

[Function]make-gensym name
If name is a non-negative integer, calls gensym using it. Otherwise name must be
a string designator, in which case calls gensym using the designated string as the
argument.

[Function]make-gensym-list length &optional x
Returns a list of length gensyms, each generated as if with a call to make-gensym,
using the second (optional, defaulting to "G") argument.

[Function]symbolicate &rest things
Concatenate together the names of some strings and symbols, producing a symbol in
the current package.

18

8 Arrays

[Type]array-index
Type designator for an index into array of length: an integer between 0 (inclusive)
and length (exclusive). length defaults to one less than array-dimension-limit.

[Type]array-length
Type designator for a dimension of an array of length: an integer between 0 (in-
clusive) and length (inclusive). length defaults to one less than array-dimension-

limit.

[Function]copy-array array &key element-type fill-pointer adjustable
Returns an undisplaced copy of array, with same fill-pointer and adjustability (if
any) as the original, unless overridden by the keyword arguments.

19

9 Types

[Type]string-designator
A string designator type. A string designator is either a string, a symbol, or a
character.

[Macro]coercef place type-spec
Modify-macro for coerce.

[Function]of-type type
Returns a function of one argument, which returns true when its argument is of type.

[Function]type= type1 type2
Returns a primary value of t is type1 and type2 are the same type, and a secondary
value that is true is the type equality could be reliably determined: primary value of
nil and secondary value of t indicates that the types are not equivalent.

20

10 Numbers

[Macro]maxf place &rest numbers
Modify-macro for max. Sets place designated by the first argument to the maximum
of its original value and numbers.

[Macro]minf place &rest numbers
Modify-macro for min. Sets place designated by the first argument to the minimum
of its original value and numbers.

[Function]binomial-coefficient n k
Binomial coefficient of n and k, also expressed as n choose k. This is the number of
k element combinations given n choises. n must be equal to or greater then k.

[Function]count-permutations n &optional k
Number of k element permutations for a sequence of n objects. k defaults to n

[Function]clamp number min max
Clamps the number into [min, max] range. Returns min if number is lesser then min

and max if number is greater then max, otherwise returns number.

[Function]lerp v a b
Returns the result of linear interpolation between A and b, using the interpolation
coefficient v.

[Function]factorial n
Factorial of non-negative integer n.

[Function]subfactorial n
Subfactorial of the non-negative integer n.

[Function]gaussian-random &optional min max
Returns two gaussian random double floats as the primary and secondary value,
optionally constrained by min and max. Gaussian random numbers form a standard
normal distribution around 0.0d0.

Sufficiently positive min or negative max will cause the algorithm used to take a very
long time. If min is positive it should be close to zero, and similarly if max is negative
it should be close to zero.

[Function]iota n &key start step
Return a list of n numbers, starting from start (with numeric contagion from step

applied), each consequtive number being the sum of the previous one and step. start
defaults to 0 and step to 1.

Examples:

(iota 4) => (0 1 2 3)

(iota 3 :start 1 :step 1.0) => (1.0 2.0 3.0)

(iota 3 :start -1 :step -1/2) => (-1 -3/2 -2)

Chapter 10: Numbers 21

[Function]map-iota function n &key start step
Calls function with n numbers, starting from start (with numeric contagion from
step applied), each consequtive number being the sum of the previous one and step.
start defaults to 0 and step to 1. Returns n.

Examples:

(map-iota #’print 3 :start 1 :step 1.0) => 3

;;; 1.0

;;; 2.0

;;; 3.0

[Function]mean sample
Returns the mean of sample. sample must be a sequence of numbers.

[Function]median sample
Returns median of sample. sample must be a sequence of real numbers.

[Function]variance sample &key biased
Variance of sample. Returns the biased variance if biased is true (the default), and
the unbiased estimator of variance if biased is false. sample must be a sequence of
numbers.

[Function]standard-deviation sample &key biased
Standard deviation of sample. Returns the biased standard deviation if biased is true
(the default), and the square root of the unbiased estimator for variance if biased
is false (which is not the same as the unbiased estimator for standard deviation).
sample must be a sequence of numbers.

	1 Hash Tables
	2 Data and Control Flow
	3 Conses
	4 Sequences
	5 IO
	6 Macro Writing
	7 Symbols
	8 Arrays
	9 Types
	10 Numbers

